Properties

Label 1248.2.g
Level $1248$
Weight $2$
Character orbit 1248.g
Rep. character $\chi_{1248}(625,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $2$
Sturm bound $448$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(448\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).

Total New Old
Modular forms 240 24 216
Cusp forms 208 24 184
Eisenstein series 32 0 32

Trace form

\( 24 q - 8 q^{7} - 24 q^{9} + 8 q^{15} + 16 q^{23} - 24 q^{25} + 8 q^{31} - 8 q^{39} - 48 q^{47} + 24 q^{49} + 16 q^{55} + 8 q^{63} - 16 q^{71} + 24 q^{81} + 48 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1248.2.g.a 1248.g 8.b $8$ $9.965$ \(\Q(\zeta_{20})\) None 312.2.g.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{3}+(\beta_{2}-\beta_1)q^{5}+(-\beta_{5}-1)q^{7}+\cdots\)
1248.2.g.b 1248.g 8.b $16$ $9.965$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 312.2.g.b \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{3}+\beta _{12}q^{5}-\beta _{5}q^{7}-q^{9}+\beta _{10}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)