Defining parameters
Level: | \( N \) | \(=\) | \( 1248 = 2^{5} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1248.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 24 | 216 |
Cusp forms | 208 | 24 | 184 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1248.2.g.a | $8$ | $9.965$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta_1 q^{3}+(\beta_{2}-\beta_1)q^{5}+(-\beta_{5}-1)q^{7}+\cdots\) |
1248.2.g.b | $16$ | $9.965$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta _{6}q^{3}+\beta _{12}q^{5}-\beta _{5}q^{7}-q^{9}+\beta _{10}q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)