Properties

Label 1248.2.bc.l.1087.1
Level $1248$
Weight $2$
Character 1248.1087
Analytic conductor $9.965$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(31,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,4,0,-4,0,-2,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1087.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1248.1087
Dual form 1248.2.bc.l.31.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(2.00000 + 2.00000i) q^{5} +(-2.00000 - 2.00000i) q^{7} -1.00000 q^{9} +(-3.00000 - 3.00000i) q^{11} +(-3.00000 + 2.00000i) q^{13} +(2.00000 - 2.00000i) q^{15} -2.00000i q^{17} +(-2.00000 + 2.00000i) q^{21} -6.00000 q^{23} +3.00000i q^{25} +1.00000i q^{27} -6.00000 q^{29} +(-3.00000 + 3.00000i) q^{33} -8.00000i q^{35} +(3.00000 - 3.00000i) q^{37} +(2.00000 + 3.00000i) q^{39} +(-8.00000 - 8.00000i) q^{41} -4.00000 q^{43} +(-2.00000 - 2.00000i) q^{45} +(5.00000 + 5.00000i) q^{47} +1.00000i q^{49} -2.00000 q^{51} +6.00000 q^{53} -12.0000i q^{55} +(1.00000 + 1.00000i) q^{59} +8.00000 q^{61} +(2.00000 + 2.00000i) q^{63} +(-10.0000 - 2.00000i) q^{65} +(2.00000 - 2.00000i) q^{67} +6.00000i q^{69} +(-5.00000 + 5.00000i) q^{71} +(-3.00000 + 3.00000i) q^{73} +3.00000 q^{75} +12.0000i q^{77} -12.0000i q^{79} +1.00000 q^{81} +(5.00000 - 5.00000i) q^{83} +(4.00000 - 4.00000i) q^{85} +6.00000i q^{87} +(-10.0000 + 10.0000i) q^{89} +(10.0000 + 2.00000i) q^{91} +(-11.0000 - 11.0000i) q^{97} +(3.00000 + 3.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 4 q^{7} - 2 q^{9} - 6 q^{11} - 6 q^{13} + 4 q^{15} - 4 q^{21} - 12 q^{23} - 12 q^{29} - 6 q^{33} + 6 q^{37} + 4 q^{39} - 16 q^{41} - 8 q^{43} - 4 q^{45} + 10 q^{47} - 4 q^{51} + 12 q^{53}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000 + 2.00000i 0.894427 + 0.894427i 0.994936 0.100509i \(-0.0320471\pi\)
−0.100509 + 0.994936i \(0.532047\pi\)
\(6\) 0 0
\(7\) −2.00000 2.00000i −0.755929 0.755929i 0.219650 0.975579i \(-0.429509\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.00000 3.00000i −0.904534 0.904534i 0.0912903 0.995824i \(-0.470901\pi\)
−0.995824 + 0.0912903i \(0.970901\pi\)
\(12\) 0 0
\(13\) −3.00000 + 2.00000i −0.832050 + 0.554700i
\(14\) 0 0
\(15\) 2.00000 2.00000i 0.516398 0.516398i
\(16\) 0 0
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 0 0
\(21\) −2.00000 + 2.00000i −0.436436 + 0.436436i
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 0 0
\(33\) −3.00000 + 3.00000i −0.522233 + 0.522233i
\(34\) 0 0
\(35\) 8.00000i 1.35225i
\(36\) 0 0
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) 2.00000 + 3.00000i 0.320256 + 0.480384i
\(40\) 0 0
\(41\) −8.00000 8.00000i −1.24939 1.24939i −0.955990 0.293400i \(-0.905213\pi\)
−0.293400 0.955990i \(-0.594787\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −2.00000 2.00000i −0.298142 0.298142i
\(46\) 0 0
\(47\) 5.00000 + 5.00000i 0.729325 + 0.729325i 0.970485 0.241160i \(-0.0775280\pi\)
−0.241160 + 0.970485i \(0.577528\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 12.0000i 1.61808i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.00000 + 1.00000i 0.130189 + 0.130189i 0.769199 0.639010i \(-0.220656\pi\)
−0.639010 + 0.769199i \(0.720656\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 0 0
\(63\) 2.00000 + 2.00000i 0.251976 + 0.251976i
\(64\) 0 0
\(65\) −10.0000 2.00000i −1.24035 0.248069i
\(66\) 0 0
\(67\) 2.00000 2.00000i 0.244339 0.244339i −0.574304 0.818642i \(-0.694727\pi\)
0.818642 + 0.574304i \(0.194727\pi\)
\(68\) 0 0
\(69\) 6.00000i 0.722315i
\(70\) 0 0
\(71\) −5.00000 + 5.00000i −0.593391 + 0.593391i −0.938546 0.345155i \(-0.887826\pi\)
0.345155 + 0.938546i \(0.387826\pi\)
\(72\) 0 0
\(73\) −3.00000 + 3.00000i −0.351123 + 0.351123i −0.860527 0.509404i \(-0.829866\pi\)
0.509404 + 0.860527i \(0.329866\pi\)
\(74\) 0 0
\(75\) 3.00000 0.346410
\(76\) 0 0
\(77\) 12.0000i 1.36753i
\(78\) 0 0
\(79\) 12.0000i 1.35011i −0.737769 0.675053i \(-0.764121\pi\)
0.737769 0.675053i \(-0.235879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.00000 5.00000i 0.548821 0.548821i −0.377279 0.926100i \(-0.623140\pi\)
0.926100 + 0.377279i \(0.123140\pi\)
\(84\) 0 0
\(85\) 4.00000 4.00000i 0.433861 0.433861i
\(86\) 0 0
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) −10.0000 + 10.0000i −1.06000 + 1.06000i −0.0619166 + 0.998081i \(0.519721\pi\)
−0.998081 + 0.0619166i \(0.980279\pi\)
\(90\) 0 0
\(91\) 10.0000 + 2.00000i 1.04828 + 0.209657i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.0000 11.0000i −1.11688 1.11688i −0.992196 0.124684i \(-0.960208\pi\)
−0.124684 0.992196i \(-0.539792\pi\)
\(98\) 0 0
\(99\) 3.00000 + 3.00000i 0.301511 + 0.301511i
\(100\) 0 0
\(101\) 2.00000i 0.199007i 0.995037 + 0.0995037i \(0.0317255\pi\)
−0.995037 + 0.0995037i \(0.968274\pi\)
\(102\) 0 0
\(103\) −20.0000 −1.97066 −0.985329 0.170664i \(-0.945409\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) −8.00000 −0.780720
\(106\) 0 0
\(107\) 14.0000i 1.35343i −0.736245 0.676716i \(-0.763403\pi\)
0.736245 0.676716i \(-0.236597\pi\)
\(108\) 0 0
\(109\) 3.00000 + 3.00000i 0.287348 + 0.287348i 0.836031 0.548683i \(-0.184871\pi\)
−0.548683 + 0.836031i \(0.684871\pi\)
\(110\) 0 0
\(111\) −3.00000 3.00000i −0.284747 0.284747i
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) −12.0000 12.0000i −1.11901 1.11901i
\(116\) 0 0
\(117\) 3.00000 2.00000i 0.277350 0.184900i
\(118\) 0 0
\(119\) −4.00000 + 4.00000i −0.366679 + 0.366679i
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) −8.00000 + 8.00000i −0.721336 + 0.721336i
\(124\) 0 0
\(125\) 4.00000 4.00000i 0.357771 0.357771i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 4.00000i 0.352180i
\(130\) 0 0
\(131\) 22.0000i 1.92215i 0.276289 + 0.961074i \(0.410895\pi\)
−0.276289 + 0.961074i \(0.589105\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.00000 + 2.00000i −0.172133 + 0.172133i
\(136\) 0 0
\(137\) −12.0000 + 12.0000i −1.02523 + 1.02523i −0.0255558 + 0.999673i \(0.508136\pi\)
−0.999673 + 0.0255558i \(0.991864\pi\)
\(138\) 0 0
\(139\) 8.00000i 0.678551i 0.940687 + 0.339276i \(0.110182\pi\)
−0.940687 + 0.339276i \(0.889818\pi\)
\(140\) 0 0
\(141\) 5.00000 5.00000i 0.421076 0.421076i
\(142\) 0 0
\(143\) 15.0000 + 3.00000i 1.25436 + 0.250873i
\(144\) 0 0
\(145\) −12.0000 12.0000i −0.996546 0.996546i
\(146\) 0 0
\(147\) 1.00000 0.0824786
\(148\) 0 0
\(149\) 8.00000 + 8.00000i 0.655386 + 0.655386i 0.954285 0.298899i \(-0.0966194\pi\)
−0.298899 + 0.954285i \(0.596619\pi\)
\(150\) 0 0
\(151\) −12.0000 12.0000i −0.976546 0.976546i 0.0231850 0.999731i \(-0.492619\pi\)
−0.999731 + 0.0231850i \(0.992619\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 20.0000 1.59617 0.798087 0.602542i \(-0.205846\pi\)
0.798087 + 0.602542i \(0.205846\pi\)
\(158\) 0 0
\(159\) 6.00000i 0.475831i
\(160\) 0 0
\(161\) 12.0000 + 12.0000i 0.945732 + 0.945732i
\(162\) 0 0
\(163\) −12.0000 12.0000i −0.939913 0.939913i 0.0583818 0.998294i \(-0.481406\pi\)
−0.998294 + 0.0583818i \(0.981406\pi\)
\(164\) 0 0
\(165\) −12.0000 −0.934199
\(166\) 0 0
\(167\) 13.0000 + 13.0000i 1.00597 + 1.00597i 0.999982 + 0.00598813i \(0.00190609\pi\)
0.00598813 + 0.999982i \(0.498094\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.00000i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 6.00000 6.00000i 0.453557 0.453557i
\(176\) 0 0
\(177\) 1.00000 1.00000i 0.0751646 0.0751646i
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 26.0000i 1.93256i 0.257485 + 0.966282i \(0.417106\pi\)
−0.257485 + 0.966282i \(0.582894\pi\)
\(182\) 0 0
\(183\) 8.00000i 0.591377i
\(184\) 0 0
\(185\) 12.0000 0.882258
\(186\) 0 0
\(187\) −6.00000 + 6.00000i −0.438763 + 0.438763i
\(188\) 0 0
\(189\) 2.00000 2.00000i 0.145479 0.145479i
\(190\) 0 0
\(191\) 16.0000i 1.15772i 0.815427 + 0.578860i \(0.196502\pi\)
−0.815427 + 0.578860i \(0.803498\pi\)
\(192\) 0 0
\(193\) 17.0000 17.0000i 1.22369 1.22369i 0.257375 0.966312i \(-0.417142\pi\)
0.966312 0.257375i \(-0.0828576\pi\)
\(194\) 0 0
\(195\) −2.00000 + 10.0000i −0.143223 + 0.716115i
\(196\) 0 0
\(197\) −14.0000 14.0000i −0.997459 0.997459i 0.00253808 0.999997i \(-0.499192\pi\)
−0.999997 + 0.00253808i \(0.999192\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) −2.00000 2.00000i −0.141069 0.141069i
\(202\) 0 0
\(203\) 12.0000 + 12.0000i 0.842235 + 0.842235i
\(204\) 0 0
\(205\) 32.0000i 2.23498i
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 4.00000i 0.275371i 0.990476 + 0.137686i \(0.0439664\pi\)
−0.990476 + 0.137686i \(0.956034\pi\)
\(212\) 0 0
\(213\) 5.00000 + 5.00000i 0.342594 + 0.342594i
\(214\) 0 0
\(215\) −8.00000 8.00000i −0.545595 0.545595i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3.00000 + 3.00000i 0.202721 + 0.202721i
\(220\) 0 0
\(221\) 4.00000 + 6.00000i 0.269069 + 0.403604i
\(222\) 0 0
\(223\) 4.00000 4.00000i 0.267860 0.267860i −0.560378 0.828237i \(-0.689344\pi\)
0.828237 + 0.560378i \(0.189344\pi\)
\(224\) 0 0
\(225\) 3.00000i 0.200000i
\(226\) 0 0
\(227\) 7.00000 7.00000i 0.464606 0.464606i −0.435556 0.900162i \(-0.643448\pi\)
0.900162 + 0.435556i \(0.143448\pi\)
\(228\) 0 0
\(229\) 15.0000 15.0000i 0.991228 0.991228i −0.00873396 0.999962i \(-0.502780\pi\)
0.999962 + 0.00873396i \(0.00278014\pi\)
\(230\) 0 0
\(231\) 12.0000 0.789542
\(232\) 0 0
\(233\) 22.0000i 1.44127i −0.693316 0.720634i \(-0.743851\pi\)
0.693316 0.720634i \(-0.256149\pi\)
\(234\) 0 0
\(235\) 20.0000i 1.30466i
\(236\) 0 0
\(237\) −12.0000 −0.779484
\(238\) 0 0
\(239\) 1.00000 1.00000i 0.0646846 0.0646846i −0.674024 0.738709i \(-0.735436\pi\)
0.738709 + 0.674024i \(0.235436\pi\)
\(240\) 0 0
\(241\) 15.0000 15.0000i 0.966235 0.966235i −0.0332133 0.999448i \(-0.510574\pi\)
0.999448 + 0.0332133i \(0.0105741\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −2.00000 + 2.00000i −0.127775 + 0.127775i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5.00000 5.00000i −0.316862 0.316862i
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) 18.0000 + 18.0000i 1.13165 + 1.13165i
\(254\) 0 0
\(255\) −4.00000 4.00000i −0.250490 0.250490i
\(256\) 0 0
\(257\) 6.00000i 0.374270i 0.982334 + 0.187135i \(0.0599201\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(258\) 0 0
\(259\) −12.0000 −0.745644
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 6.00000i 0.369976i 0.982741 + 0.184988i \(0.0592246\pi\)
−0.982741 + 0.184988i \(0.940775\pi\)
\(264\) 0 0
\(265\) 12.0000 + 12.0000i 0.737154 + 0.737154i
\(266\) 0 0
\(267\) 10.0000 + 10.0000i 0.611990 + 0.611990i
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) −10.0000 10.0000i −0.607457 0.607457i 0.334824 0.942281i \(-0.391323\pi\)
−0.942281 + 0.334824i \(0.891323\pi\)
\(272\) 0 0
\(273\) 2.00000 10.0000i 0.121046 0.605228i
\(274\) 0 0
\(275\) 9.00000 9.00000i 0.542720 0.542720i
\(276\) 0 0
\(277\) 8.00000i 0.480673i −0.970690 0.240337i \(-0.922742\pi\)
0.970690 0.240337i \(-0.0772579\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.00000 4.00000i 0.238620 0.238620i −0.577659 0.816279i \(-0.696033\pi\)
0.816279 + 0.577659i \(0.196033\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.0000i 1.88890i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −11.0000 + 11.0000i −0.644831 + 0.644831i
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 4.00000i 0.232889i
\(296\) 0 0
\(297\) 3.00000 3.00000i 0.174078 0.174078i
\(298\) 0 0
\(299\) 18.0000 12.0000i 1.04097 0.693978i
\(300\) 0 0
\(301\) 8.00000 + 8.00000i 0.461112 + 0.461112i
\(302\) 0 0
\(303\) 2.00000 0.114897
\(304\) 0 0
\(305\) 16.0000 + 16.0000i 0.916157 + 0.916157i
\(306\) 0 0
\(307\) −2.00000 2.00000i −0.114146 0.114146i 0.647727 0.761873i \(-0.275720\pi\)
−0.761873 + 0.647727i \(0.775720\pi\)
\(308\) 0 0
\(309\) 20.0000i 1.13776i
\(310\) 0 0
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 0 0
\(315\) 8.00000i 0.450749i
\(316\) 0 0
\(317\) −18.0000 18.0000i −1.01098 1.01098i −0.999939 0.0110417i \(-0.996485\pi\)
−0.0110417 0.999939i \(-0.503515\pi\)
\(318\) 0 0
\(319\) 18.0000 + 18.0000i 1.00781 + 1.00781i
\(320\) 0 0
\(321\) −14.0000 −0.781404
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −6.00000 9.00000i −0.332820 0.499230i
\(326\) 0 0
\(327\) 3.00000 3.00000i 0.165900 0.165900i
\(328\) 0 0
\(329\) 20.0000i 1.10264i
\(330\) 0 0
\(331\) 14.0000 14.0000i 0.769510 0.769510i −0.208511 0.978020i \(-0.566862\pi\)
0.978020 + 0.208511i \(0.0668616\pi\)
\(332\) 0 0
\(333\) −3.00000 + 3.00000i −0.164399 + 0.164399i
\(334\) 0 0
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 16.0000i 0.871576i 0.900049 + 0.435788i \(0.143530\pi\)
−0.900049 + 0.435788i \(0.856470\pi\)
\(338\) 0 0
\(339\) 2.00000i 0.108625i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 0 0
\(345\) −12.0000 + 12.0000i −0.646058 + 0.646058i
\(346\) 0 0
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −3.00000 + 3.00000i −0.160586 + 0.160586i −0.782826 0.622240i \(-0.786223\pi\)
0.622240 + 0.782826i \(0.286223\pi\)
\(350\) 0 0
\(351\) −2.00000 3.00000i −0.106752 0.160128i
\(352\) 0 0
\(353\) −16.0000 16.0000i −0.851594 0.851594i 0.138735 0.990329i \(-0.455696\pi\)
−0.990329 + 0.138735i \(0.955696\pi\)
\(354\) 0 0
\(355\) −20.0000 −1.06149
\(356\) 0 0
\(357\) 4.00000 + 4.00000i 0.211702 + 0.211702i
\(358\) 0 0
\(359\) −17.0000 17.0000i −0.897226 0.897226i 0.0979643 0.995190i \(-0.468767\pi\)
−0.995190 + 0.0979643i \(0.968767\pi\)
\(360\) 0 0
\(361\) 19.0000i 1.00000i
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) 28.0000i 1.46159i 0.682598 + 0.730794i \(0.260850\pi\)
−0.682598 + 0.730794i \(0.739150\pi\)
\(368\) 0 0
\(369\) 8.00000 + 8.00000i 0.416463 + 0.416463i
\(370\) 0 0
\(371\) −12.0000 12.0000i −0.623009 0.623009i
\(372\) 0 0
\(373\) −38.0000 −1.96757 −0.983783 0.179364i \(-0.942596\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) 0 0
\(375\) −4.00000 4.00000i −0.206559 0.206559i
\(376\) 0 0
\(377\) 18.0000 12.0000i 0.927047 0.618031i
\(378\) 0 0
\(379\) 4.00000 4.00000i 0.205466 0.205466i −0.596871 0.802337i \(-0.703590\pi\)
0.802337 + 0.596871i \(0.203590\pi\)
\(380\) 0 0
\(381\) 8.00000i 0.409852i
\(382\) 0 0
\(383\) −21.0000 + 21.0000i −1.07305 + 1.07305i −0.0759373 + 0.997113i \(0.524195\pi\)
−0.997113 + 0.0759373i \(0.975805\pi\)
\(384\) 0 0
\(385\) −24.0000 + 24.0000i −1.22315 + 1.22315i
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 10.0000i 0.507020i 0.967333 + 0.253510i \(0.0815851\pi\)
−0.967333 + 0.253510i \(0.918415\pi\)
\(390\) 0 0
\(391\) 12.0000i 0.606866i
\(392\) 0 0
\(393\) 22.0000 1.10975
\(394\) 0 0
\(395\) 24.0000 24.0000i 1.20757 1.20757i
\(396\) 0 0
\(397\) 13.0000 13.0000i 0.652451 0.652451i −0.301131 0.953583i \(-0.597364\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −22.0000 + 22.0000i −1.09863 + 1.09863i −0.104056 + 0.994571i \(0.533182\pi\)
−0.994571 + 0.104056i \(0.966818\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 + 2.00000i 0.0993808 + 0.0993808i
\(406\) 0 0
\(407\) −18.0000 −0.892227
\(408\) 0 0
\(409\) −3.00000 3.00000i −0.148340 0.148340i 0.629036 0.777376i \(-0.283450\pi\)
−0.777376 + 0.629036i \(0.783450\pi\)
\(410\) 0 0
\(411\) 12.0000 + 12.0000i 0.591916 + 0.591916i
\(412\) 0 0
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 20.0000 0.981761
\(416\) 0 0
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 26.0000i 1.27018i 0.772437 + 0.635092i \(0.219038\pi\)
−0.772437 + 0.635092i \(0.780962\pi\)
\(420\) 0 0
\(421\) −3.00000 3.00000i −0.146211 0.146211i 0.630212 0.776423i \(-0.282968\pi\)
−0.776423 + 0.630212i \(0.782968\pi\)
\(422\) 0 0
\(423\) −5.00000 5.00000i −0.243108 0.243108i
\(424\) 0 0
\(425\) 6.00000 0.291043
\(426\) 0 0
\(427\) −16.0000 16.0000i −0.774294 0.774294i
\(428\) 0 0
\(429\) 3.00000 15.0000i 0.144841 0.724207i
\(430\) 0 0
\(431\) −1.00000 + 1.00000i −0.0481683 + 0.0481683i −0.730781 0.682612i \(-0.760844\pi\)
0.682612 + 0.730781i \(0.260844\pi\)
\(432\) 0 0
\(433\) 18.0000i 0.865025i −0.901628 0.432512i \(-0.857627\pi\)
0.901628 0.432512i \(-0.142373\pi\)
\(434\) 0 0
\(435\) −12.0000 + 12.0000i −0.575356 + 0.575356i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) 1.00000i 0.0476190i
\(442\) 0 0
\(443\) 18.0000i 0.855206i 0.903967 + 0.427603i \(0.140642\pi\)
−0.903967 + 0.427603i \(0.859358\pi\)
\(444\) 0 0
\(445\) −40.0000 −1.89618
\(446\) 0 0
\(447\) 8.00000 8.00000i 0.378387 0.378387i
\(448\) 0 0
\(449\) −2.00000 + 2.00000i −0.0943858 + 0.0943858i −0.752723 0.658337i \(-0.771260\pi\)
0.658337 + 0.752723i \(0.271260\pi\)
\(450\) 0 0
\(451\) 48.0000i 2.26023i
\(452\) 0 0
\(453\) −12.0000 + 12.0000i −0.563809 + 0.563809i
\(454\) 0 0
\(455\) 16.0000 + 24.0000i 0.750092 + 1.12514i
\(456\) 0 0
\(457\) −5.00000 5.00000i −0.233890 0.233890i 0.580424 0.814314i \(-0.302887\pi\)
−0.814314 + 0.580424i \(0.802887\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 14.0000 + 14.0000i 0.652045 + 0.652045i 0.953485 0.301440i \(-0.0974673\pi\)
−0.301440 + 0.953485i \(0.597467\pi\)
\(462\) 0 0
\(463\) −22.0000 22.0000i −1.02243 1.02243i −0.999743 0.0226840i \(-0.992779\pi\)
−0.0226840 0.999743i \(-0.507221\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −38.0000 −1.75843 −0.879215 0.476425i \(-0.841932\pi\)
−0.879215 + 0.476425i \(0.841932\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 20.0000i 0.921551i
\(472\) 0 0
\(473\) 12.0000 + 12.0000i 0.551761 + 0.551761i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 13.0000 + 13.0000i 0.593985 + 0.593985i 0.938705 0.344720i \(-0.112026\pi\)
−0.344720 + 0.938705i \(0.612026\pi\)
\(480\) 0 0
\(481\) −3.00000 + 15.0000i −0.136788 + 0.683941i
\(482\) 0 0
\(483\) 12.0000 12.0000i 0.546019 0.546019i
\(484\) 0 0
\(485\) 44.0000i 1.99794i
\(486\) 0 0
\(487\) 8.00000 8.00000i 0.362515 0.362515i −0.502223 0.864738i \(-0.667484\pi\)
0.864738 + 0.502223i \(0.167484\pi\)
\(488\) 0 0
\(489\) −12.0000 + 12.0000i −0.542659 + 0.542659i
\(490\) 0 0
\(491\) −2.00000 −0.0902587 −0.0451294 0.998981i \(-0.514370\pi\)
−0.0451294 + 0.998981i \(0.514370\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) 0 0
\(495\) 12.0000i 0.539360i
\(496\) 0 0
\(497\) 20.0000 0.897123
\(498\) 0 0
\(499\) 30.0000 30.0000i 1.34298 1.34298i 0.449911 0.893073i \(-0.351456\pi\)
0.893073 0.449911i \(-0.148544\pi\)
\(500\) 0 0
\(501\) 13.0000 13.0000i 0.580797 0.580797i
\(502\) 0 0
\(503\) 26.0000i 1.15928i −0.814872 0.579641i \(-0.803193\pi\)
0.814872 0.579641i \(-0.196807\pi\)
\(504\) 0 0
\(505\) −4.00000 + 4.00000i −0.177998 + 0.177998i
\(506\) 0 0
\(507\) −12.0000 5.00000i −0.532939 0.222058i
\(508\) 0 0
\(509\) 2.00000 + 2.00000i 0.0886484 + 0.0886484i 0.750040 0.661392i \(-0.230034\pi\)
−0.661392 + 0.750040i \(0.730034\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −40.0000 40.0000i −1.76261 1.76261i
\(516\) 0 0
\(517\) 30.0000i 1.31940i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 26.0000 1.13908 0.569540 0.821963i \(-0.307121\pi\)
0.569540 + 0.821963i \(0.307121\pi\)
\(522\) 0 0
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 0 0
\(525\) −6.00000 6.00000i −0.261861 0.261861i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) −1.00000 1.00000i −0.0433963 0.0433963i
\(532\) 0 0
\(533\) 40.0000 + 8.00000i 1.73259 + 0.346518i
\(534\) 0 0
\(535\) 28.0000 28.0000i 1.21055 1.21055i
\(536\) 0 0
\(537\) 4.00000i 0.172613i
\(538\) 0 0
\(539\) 3.00000 3.00000i 0.129219 0.129219i
\(540\) 0 0
\(541\) −25.0000 + 25.0000i −1.07483 + 1.07483i −0.0778705 + 0.996963i \(0.524812\pi\)
−0.996963 + 0.0778705i \(0.975188\pi\)
\(542\) 0 0
\(543\) 26.0000 1.11577
\(544\) 0 0
\(545\) 12.0000i 0.514024i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −24.0000 + 24.0000i −1.02058 + 1.02058i
\(554\) 0 0
\(555\) 12.0000i 0.509372i
\(556\) 0 0
\(557\) −12.0000 + 12.0000i −0.508456 + 0.508456i −0.914052 0.405596i \(-0.867064\pi\)
0.405596 + 0.914052i \(0.367064\pi\)
\(558\) 0 0
\(559\) 12.0000 8.00000i 0.507546 0.338364i
\(560\) 0 0
\(561\) 6.00000 + 6.00000i 0.253320 + 0.253320i
\(562\) 0 0
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) −4.00000 4.00000i −0.168281 0.168281i
\(566\) 0 0
\(567\) −2.00000 2.00000i −0.0839921 0.0839921i
\(568\) 0 0
\(569\) 30.0000i 1.25767i −0.777541 0.628833i \(-0.783533\pi\)
0.777541 0.628833i \(-0.216467\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) 18.0000i 0.750652i
\(576\) 0 0
\(577\) −31.0000 31.0000i −1.29055 1.29055i −0.934448 0.356098i \(-0.884107\pi\)
−0.356098 0.934448i \(-0.615893\pi\)
\(578\) 0 0
\(579\) −17.0000 17.0000i −0.706496 0.706496i
\(580\) 0 0
\(581\) −20.0000 −0.829740
\(582\) 0 0
\(583\) −18.0000 18.0000i −0.745484 0.745484i
\(584\) 0 0
\(585\) 10.0000 + 2.00000i 0.413449 + 0.0826898i
\(586\) 0 0
\(587\) 11.0000 11.0000i 0.454019 0.454019i −0.442667 0.896686i \(-0.645968\pi\)
0.896686 + 0.442667i \(0.145968\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −14.0000 + 14.0000i −0.575883 + 0.575883i
\(592\) 0 0
\(593\) −6.00000 + 6.00000i −0.246390 + 0.246390i −0.819488 0.573097i \(-0.805742\pi\)
0.573097 + 0.819488i \(0.305742\pi\)
\(594\) 0 0
\(595\) −16.0000 −0.655936
\(596\) 0 0
\(597\) 20.0000i 0.818546i
\(598\) 0 0
\(599\) 2.00000i 0.0817178i 0.999165 + 0.0408589i \(0.0130094\pi\)
−0.999165 + 0.0408589i \(0.986991\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) −2.00000 + 2.00000i −0.0814463 + 0.0814463i
\(604\) 0 0
\(605\) −14.0000 + 14.0000i −0.569181 + 0.569181i
\(606\) 0 0
\(607\) 36.0000i 1.46119i −0.682808 0.730597i \(-0.739242\pi\)
0.682808 0.730597i \(-0.260758\pi\)
\(608\) 0 0
\(609\) 12.0000 12.0000i 0.486265 0.486265i
\(610\) 0 0
\(611\) −25.0000 5.00000i −1.01139 0.202278i
\(612\) 0 0
\(613\) 21.0000 + 21.0000i 0.848182 + 0.848182i 0.989906 0.141724i \(-0.0452646\pi\)
−0.141724 + 0.989906i \(0.545265\pi\)
\(614\) 0 0
\(615\) −32.0000 −1.29036
\(616\) 0 0
\(617\) −20.0000 20.0000i −0.805170 0.805170i 0.178729 0.983898i \(-0.442802\pi\)
−0.983898 + 0.178729i \(0.942802\pi\)
\(618\) 0 0
\(619\) −18.0000 18.0000i −0.723481 0.723481i 0.245831 0.969313i \(-0.420939\pi\)
−0.969313 + 0.245831i \(0.920939\pi\)
\(620\) 0 0
\(621\) 6.00000i 0.240772i
\(622\) 0 0
\(623\) 40.0000 1.60257
\(624\) 0 0
\(625\) 31.0000 1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.00000 6.00000i −0.239236 0.239236i
\(630\) 0 0
\(631\) −20.0000 20.0000i −0.796187 0.796187i 0.186305 0.982492i \(-0.440349\pi\)
−0.982492 + 0.186305i \(0.940349\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 0 0
\(635\) 16.0000 + 16.0000i 0.634941 + 0.634941i
\(636\) 0 0
\(637\) −2.00000 3.00000i −0.0792429 0.118864i
\(638\) 0 0
\(639\) 5.00000 5.00000i 0.197797 0.197797i
\(640\) 0 0
\(641\) 30.0000i 1.18493i 0.805597 + 0.592464i \(0.201845\pi\)
−0.805597 + 0.592464i \(0.798155\pi\)
\(642\) 0 0
\(643\) −34.0000 + 34.0000i −1.34083 + 1.34083i −0.445594 + 0.895235i \(0.647007\pi\)
−0.895235 + 0.445594i \(0.852993\pi\)
\(644\) 0 0
\(645\) −8.00000 + 8.00000i −0.315000 + 0.315000i
\(646\) 0 0
\(647\) −8.00000 −0.314512 −0.157256 0.987558i \(-0.550265\pi\)
−0.157256 + 0.987558i \(0.550265\pi\)
\(648\) 0 0
\(649\) 6.00000i 0.235521i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.0000 −1.17399 −0.586995 0.809590i \(-0.699689\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(654\) 0 0
\(655\) −44.0000 + 44.0000i −1.71922 + 1.71922i
\(656\) 0 0
\(657\) 3.00000 3.00000i 0.117041 0.117041i
\(658\) 0 0
\(659\) 44.0000i 1.71400i −0.515319 0.856998i \(-0.672327\pi\)
0.515319 0.856998i \(-0.327673\pi\)
\(660\) 0 0
\(661\) −17.0000 + 17.0000i −0.661223 + 0.661223i −0.955668 0.294445i \(-0.904865\pi\)
0.294445 + 0.955668i \(0.404865\pi\)
\(662\) 0 0
\(663\) 6.00000 4.00000i 0.233021 0.155347i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) −4.00000 4.00000i −0.154649 0.154649i
\(670\) 0 0
\(671\) −24.0000 24.0000i −0.926510 0.926510i
\(672\) 0 0
\(673\) 14.0000i 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) 0 0
\(675\) −3.00000 −0.115470
\(676\) 0 0
\(677\) −14.0000 −0.538064 −0.269032 0.963131i \(-0.586704\pi\)
−0.269032 + 0.963131i \(0.586704\pi\)
\(678\) 0 0
\(679\) 44.0000i 1.68857i
\(680\) 0 0
\(681\) −7.00000 7.00000i −0.268241 0.268241i
\(682\) 0 0
\(683\) 7.00000 + 7.00000i 0.267848 + 0.267848i 0.828232 0.560385i \(-0.189347\pi\)
−0.560385 + 0.828232i \(0.689347\pi\)
\(684\) 0 0
\(685\) −48.0000 −1.83399
\(686\) 0 0
\(687\) −15.0000 15.0000i −0.572286 0.572286i
\(688\) 0 0
\(689\) −18.0000 + 12.0000i −0.685745 + 0.457164i
\(690\) 0 0
\(691\) −6.00000 + 6.00000i −0.228251 + 0.228251i −0.811962 0.583711i \(-0.801600\pi\)
0.583711 + 0.811962i \(0.301600\pi\)
\(692\) 0 0
\(693\) 12.0000i 0.455842i
\(694\) 0 0
\(695\) −16.0000 + 16.0000i −0.606915 + 0.606915i
\(696\) 0 0
\(697\) −16.0000 + 16.0000i −0.606043 + 0.606043i
\(698\) 0 0
\(699\) −22.0000 −0.832116
\(700\) 0 0
\(701\) 50.0000i 1.88847i 0.329267 + 0.944237i \(0.393198\pi\)
−0.329267 + 0.944237i \(0.606802\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 20.0000 0.753244
\(706\) 0 0
\(707\) 4.00000 4.00000i 0.150435 0.150435i
\(708\) 0 0
\(709\) −3.00000 + 3.00000i −0.112667 + 0.112667i −0.761193 0.648526i \(-0.775386\pi\)
0.648526 + 0.761193i \(0.275386\pi\)
\(710\) 0 0
\(711\) 12.0000i 0.450035i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 24.0000 + 36.0000i 0.897549 + 1.34632i
\(716\) 0 0
\(717\) −1.00000 1.00000i −0.0373457 0.0373457i
\(718\) 0 0
\(719\) −10.0000 −0.372937 −0.186469 0.982461i \(-0.559704\pi\)
−0.186469 + 0.982461i \(0.559704\pi\)
\(720\) 0 0
\(721\) 40.0000 + 40.0000i 1.48968 + 1.48968i
\(722\) 0 0
\(723\) −15.0000 15.0000i −0.557856 0.557856i
\(724\) 0 0
\(725\) 18.0000i 0.668503i
\(726\) 0 0
\(727\) −36.0000 −1.33517 −0.667583 0.744535i \(-0.732671\pi\)
−0.667583 + 0.744535i \(0.732671\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 8.00000i 0.295891i
\(732\) 0 0
\(733\) −35.0000 35.0000i −1.29275 1.29275i −0.933076 0.359678i \(-0.882887\pi\)
−0.359678 0.933076i \(-0.617113\pi\)
\(734\) 0 0
\(735\) 2.00000 + 2.00000i 0.0737711 + 0.0737711i
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) 10.0000 + 10.0000i 0.367856 + 0.367856i 0.866695 0.498839i \(-0.166240\pi\)
−0.498839 + 0.866695i \(0.666240\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.00000 5.00000i 0.183432 0.183432i −0.609417 0.792850i \(-0.708597\pi\)
0.792850 + 0.609417i \(0.208597\pi\)
\(744\) 0 0
\(745\) 32.0000i 1.17239i
\(746\) 0 0
\(747\) −5.00000 + 5.00000i −0.182940 + 0.182940i
\(748\) 0 0
\(749\) −28.0000 + 28.0000i −1.02310 + 1.02310i
\(750\) 0 0
\(751\) 12.0000 0.437886 0.218943 0.975738i \(-0.429739\pi\)
0.218943 + 0.975738i \(0.429739\pi\)
\(752\) 0 0
\(753\) 2.00000i 0.0728841i
\(754\) 0 0
\(755\) 48.0000i 1.74690i
\(756\) 0 0
\(757\) −12.0000 −0.436147 −0.218074 0.975932i \(-0.569977\pi\)
−0.218074 + 0.975932i \(0.569977\pi\)
\(758\) 0 0
\(759\) 18.0000 18.0000i 0.653359 0.653359i
\(760\) 0 0
\(761\) 8.00000 8.00000i 0.290000 0.290000i −0.547080 0.837080i \(-0.684261\pi\)
0.837080 + 0.547080i \(0.184261\pi\)
\(762\) 0 0
\(763\) 12.0000i 0.434429i
\(764\) 0 0
\(765\) −4.00000 + 4.00000i −0.144620 + 0.144620i
\(766\) 0 0
\(767\) −5.00000 1.00000i −0.180540 0.0361079i
\(768\) 0 0
\(769\) −31.0000 31.0000i −1.11789 1.11789i −0.992051 0.125838i \(-0.959838\pi\)
−0.125838 0.992051i \(-0.540162\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 0 0
\(773\) −8.00000 8.00000i −0.287740 0.287740i 0.548446 0.836186i \(-0.315220\pi\)
−0.836186 + 0.548446i \(0.815220\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12.0000i 0.430498i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 30.0000 1.07348
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 40.0000 + 40.0000i 1.42766 + 1.42766i
\(786\) 0 0
\(787\) −18.0000 18.0000i −0.641631 0.641631i 0.309326 0.950956i \(-0.399897\pi\)
−0.950956 + 0.309326i \(0.899897\pi\)
\(788\) 0 0
\(789\) 6.00000 0.213606
\(790\) 0 0
\(791\) 4.00000 + 4.00000i 0.142224 + 0.142224i
\(792\) 0 0
\(793\) −24.0000 + 16.0000i −0.852265 + 0.568177i
\(794\) 0 0
\(795\) 12.0000 12.0000i 0.425596 0.425596i
\(796\) 0 0
\(797\) 14.0000i 0.495905i −0.968772 0.247953i \(-0.920242\pi\)
0.968772 0.247953i \(-0.0797578\pi\)
\(798\) 0 0
\(799\) 10.0000 10.0000i 0.353775 0.353775i
\(800\) 0 0
\(801\) 10.0000 10.0000i 0.353333 0.353333i
\(802\) 0 0
\(803\) 18.0000 0.635206
\(804\) 0 0
\(805\) 48.0000i 1.69178i
\(806\) 0 0
\(807\) 10.0000i 0.352017i
\(808\) 0 0
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 0 0
\(811\) −12.0000 + 12.0000i −0.421377 + 0.421377i −0.885678 0.464301i \(-0.846306\pi\)
0.464301 + 0.885678i \(0.346306\pi\)
\(812\) 0 0
\(813\) −10.0000 + 10.0000i −0.350715 + 0.350715i
\(814\) 0 0
\(815\) 48.0000i 1.68137i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −10.0000 2.00000i −0.349428 0.0698857i
\(820\) 0 0
\(821\) −24.0000 24.0000i −0.837606 0.837606i 0.150938 0.988543i \(-0.451771\pi\)
−0.988543 + 0.150938i \(0.951771\pi\)
\(822\) 0 0
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 0 0
\(825\) −9.00000 9.00000i −0.313340 0.313340i
\(826\) 0 0
\(827\) −15.0000 15.0000i −0.521601 0.521601i 0.396454 0.918055i \(-0.370241\pi\)
−0.918055 + 0.396454i \(0.870241\pi\)
\(828\) 0 0
\(829\) 2.00000i 0.0694629i 0.999397 + 0.0347314i \(0.0110576\pi\)
−0.999397 + 0.0347314i \(0.988942\pi\)
\(830\) 0 0
\(831\) −8.00000 −0.277517
\(832\) 0 0
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) 52.0000i 1.79953i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.00000 + 1.00000i 0.0345238 + 0.0345238i 0.724158 0.689634i \(-0.242229\pi\)
−0.689634 + 0.724158i \(0.742229\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −4.00000 4.00000i −0.137767 0.137767i
\(844\) 0 0
\(845\) 34.0000 14.0000i 1.16964 0.481615i
\(846\) 0 0
\(847\) 14.0000 14.0000i 0.481046 0.481046i
\(848\) 0 0
\(849\) 16.0000i 0.549119i
\(850\) 0 0
\(851\) −18.0000 + 18.0000i −0.617032 + 0.617032i
\(852\) 0 0
\(853\) −23.0000 + 23.0000i −0.787505 + 0.787505i −0.981085 0.193580i \(-0.937990\pi\)
0.193580 + 0.981085i \(0.437990\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.0000i 1.02478i −0.858753 0.512390i \(-0.828760\pi\)
0.858753 0.512390i \(-0.171240\pi\)
\(858\) 0 0
\(859\) 40.0000i 1.36478i 0.730987 + 0.682391i \(0.239060\pi\)
−0.730987 + 0.682391i \(0.760940\pi\)
\(860\) 0 0
\(861\) 32.0000 1.09056
\(862\) 0 0
\(863\) 5.00000 5.00000i 0.170202 0.170202i −0.616866 0.787068i \(-0.711598\pi\)
0.787068 + 0.616866i \(0.211598\pi\)
\(864\) 0 0
\(865\) 12.0000 12.0000i 0.408012 0.408012i
\(866\) 0 0
\(867\) 13.0000i 0.441503i
\(868\) 0 0
\(869\) −36.0000 + 36.0000i −1.22122 + 1.22122i
\(870\) 0 0
\(871\) −2.00000 + 10.0000i −0.0677674 + 0.338837i
\(872\) 0 0
\(873\) 11.0000 + 11.0000i 0.372294 + 0.372294i
\(874\) 0 0
\(875\) −16.0000 −0.540899
\(876\) 0 0
\(877\) 15.0000 + 15.0000i 0.506514 + 0.506514i 0.913455 0.406941i \(-0.133404\pi\)
−0.406941 + 0.913455i \(0.633404\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.0000i 1.41502i −0.706705 0.707508i \(-0.749819\pi\)
0.706705 0.707508i \(-0.250181\pi\)
\(882\) 0 0
\(883\) 24.0000 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(884\) 0 0
\(885\) 4.00000 0.134459
\(886\) 0 0
\(887\) 24.0000i 0.805841i −0.915235 0.402921i \(-0.867995\pi\)
0.915235 0.402921i \(-0.132005\pi\)
\(888\) 0 0
\(889\) −16.0000 16.0000i −0.536623 0.536623i
\(890\) 0 0
\(891\) −3.00000 3.00000i −0.100504 0.100504i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −8.00000 8.00000i −0.267411 0.267411i
\(896\) 0 0
\(897\) −12.0000 18.0000i −0.400668 0.601003i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 12.0000i 0.399778i
\(902\) 0 0
\(903\) 8.00000 8.00000i 0.266223 0.266223i
\(904\) 0 0
\(905\) −52.0000 + 52.0000i −1.72854 + 1.72854i
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) 0 0
\(909\) 2.00000i 0.0663358i
\(910\) 0 0
\(911\) 32.0000i 1.06021i 0.847933 + 0.530104i \(0.177847\pi\)
−0.847933 + 0.530104i \(0.822153\pi\)
\(912\) 0 0
\(913\) −30.0000 −0.992855
\(914\) 0 0
\(915\) 16.0000 16.0000i 0.528944 0.528944i
\(916\) 0 0
\(917\) 44.0000 44.0000i 1.45301 1.45301i
\(918\) 0 0
\(919\) 20.0000i 0.659739i −0.944027 0.329870i \(-0.892995\pi\)
0.944027 0.329870i \(-0.107005\pi\)
\(920\) 0 0
\(921\) −2.00000 + 2.00000i −0.0659022 + 0.0659022i
\(922\) 0 0
\(923\) 5.00000 25.0000i 0.164577 0.822885i
\(924\) 0 0
\(925\) 9.00000 + 9.00000i 0.295918 + 0.295918i
\(926\) 0 0
\(927\) 20.0000 0.656886
\(928\) 0 0
\(929\) 24.0000 + 24.0000i 0.787414 + 0.787414i 0.981070 0.193655i \(-0.0620343\pi\)
−0.193655 + 0.981070i \(0.562034\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 18.0000i 0.589294i
\(934\) 0 0
\(935\) −24.0000 −0.784884
\(936\) 0 0
\(937\) −4.00000 −0.130674 −0.0653372 0.997863i \(-0.520812\pi\)
−0.0653372 + 0.997863i \(0.520812\pi\)
\(938\) 0 0
\(939\) 26.0000i 0.848478i
\(940\) 0 0
\(941\) 8.00000 + 8.00000i 0.260793 + 0.260793i 0.825376 0.564583i \(-0.190963\pi\)
−0.564583 + 0.825376i \(0.690963\pi\)
\(942\) 0 0
\(943\) 48.0000 + 48.0000i 1.56310 + 1.56310i
\(944\) 0 0
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) 13.0000 + 13.0000i 0.422443 + 0.422443i 0.886044 0.463601i \(-0.153443\pi\)
−0.463601 + 0.886044i \(0.653443\pi\)
\(948\) 0 0
\(949\) 3.00000 15.0000i 0.0973841 0.486921i
\(950\) 0 0
\(951\) −18.0000 + 18.0000i −0.583690 + 0.583690i
\(952\) 0 0
\(953\) 6.00000i 0.194359i 0.995267 + 0.0971795i \(0.0309821\pi\)
−0.995267 + 0.0971795i \(0.969018\pi\)
\(954\) 0 0
\(955\) −32.0000 + 32.0000i −1.03550 + 1.03550i
\(956\) 0 0
\(957\) 18.0000 18.0000i 0.581857 0.581857i
\(958\) 0 0
\(959\) 48.0000 1.55000
\(960\) 0 0
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 14.0000i 0.451144i
\(964\) 0 0
\(965\) 68.0000 2.18900
\(966\) 0 0
\(967\) 16.0000 16.0000i 0.514525 0.514525i −0.401384 0.915910i \(-0.631471\pi\)
0.915910 + 0.401384i \(0.131471\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000i 0.385098i 0.981287 + 0.192549i \(0.0616755\pi\)
−0.981287 + 0.192549i \(0.938325\pi\)
\(972\) 0 0
\(973\) 16.0000 16.0000i 0.512936 0.512936i
\(974\) 0 0
\(975\) −9.00000 + 6.00000i −0.288231 + 0.192154i
\(976\) 0 0
\(977\) −22.0000 22.0000i −0.703842 0.703842i 0.261391 0.965233i \(-0.415819\pi\)
−0.965233 + 0.261391i \(0.915819\pi\)
\(978\) 0 0
\(979\) 60.0000 1.91761
\(980\) 0 0
\(981\) −3.00000 3.00000i −0.0957826 0.0957826i
\(982\) 0 0
\(983\) 33.0000 + 33.0000i 1.05254 + 1.05254i 0.998541 + 0.0539954i \(0.0171956\pi\)
0.0539954 + 0.998541i \(0.482804\pi\)
\(984\) 0 0
\(985\) 56.0000i 1.78431i
\(986\) 0 0
\(987\) −20.0000 −0.636607
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) 8.00000i 0.254128i 0.991894 + 0.127064i \(0.0405554\pi\)
−0.991894 + 0.127064i \(0.959445\pi\)
\(992\) 0 0
\(993\) −14.0000 14.0000i −0.444277 0.444277i
\(994\) 0 0
\(995\) 40.0000 + 40.0000i 1.26809 + 1.26809i
\(996\) 0 0
\(997\) 14.0000 0.443384 0.221692 0.975117i \(-0.428842\pi\)
0.221692 + 0.975117i \(0.428842\pi\)
\(998\) 0 0
\(999\) 3.00000 + 3.00000i 0.0949158 + 0.0949158i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.bc.l.1087.1 yes 2
4.3 odd 2 1248.2.bc.m.1087.1 yes 2
13.5 odd 4 1248.2.bc.m.31.1 yes 2
52.31 even 4 inner 1248.2.bc.l.31.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.bc.l.31.1 2 52.31 even 4 inner
1248.2.bc.l.1087.1 yes 2 1.1 even 1 trivial
1248.2.bc.m.31.1 yes 2 13.5 odd 4
1248.2.bc.m.1087.1 yes 2 4.3 odd 2