Properties

Label 1248.2.bc
Level $1248$
Weight $2$
Character orbit 1248.bc
Rep. character $\chi_{1248}(31,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $56$
Newform subspaces $20$
Sturm bound $448$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.bc (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 52 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 20 \)
Sturm bound: \(448\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1248, [\chi])\).

Total New Old
Modular forms 480 56 424
Cusp forms 416 56 360
Eisenstein series 64 0 64

Trace form

\( 56 q + 8 q^{5} - 56 q^{9} + 16 q^{21} - 8 q^{37} + 56 q^{41} - 8 q^{45} - 48 q^{53} + 16 q^{57} + 16 q^{61} - 8 q^{65} - 40 q^{73} + 56 q^{81} + 16 q^{85} + 24 q^{89} - 16 q^{93} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1248, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1248.2.bc.a 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.a \(0\) \(0\) \(-4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}+(-2 i-2)q^{5}+(-2 i-2)q^{7}+\cdots\)
1248.2.bc.b 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.b \(0\) \(0\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}+(-2 i-2)q^{5}+(-i-1)q^{7}+\cdots\)
1248.2.bc.c 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.b \(0\) \(0\) \(-4\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{3}+(-2 i-2)q^{5}+(i+1)q^{7}+\cdots\)
1248.2.bc.d 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.a \(0\) \(0\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{3}+(-2 i-2)q^{5}+(2 i+2)q^{7}+\cdots\)
1248.2.bc.e 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.e \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{3}+(-i-1)q^{5}-q^{9}+(-2 i-2)q^{11}+\cdots\)
1248.2.bc.f 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.e \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}+(-i-1)q^{5}-q^{9}+(2 i+2)q^{11}+\cdots\)
1248.2.bc.g 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.g \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{3}+(-3 i-3)q^{7}-q^{9}+(4 i+4)q^{11}+\cdots\)
1248.2.bc.h 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{3}-q^{9}+(-i-1)q^{11}+(-2 i-3)q^{13}+\cdots\)
1248.2.bc.i 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}-q^{9}+(i+1)q^{11}+(-2 i-3)q^{13}+\cdots\)
1248.2.bc.j 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.g \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}+(3 i+3)q^{7}-q^{9}+(-4 i-4)q^{11}+\cdots\)
1248.2.bc.k 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.k \(0\) \(0\) \(4\) \(-6\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{3}+(2 i+2)q^{5}+(-3 i-3)q^{7}+\cdots\)
1248.2.bc.l 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.l \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}+(2 i+2)q^{5}+(-2 i-2)q^{7}+\cdots\)
1248.2.bc.m 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.l \(0\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+i q^{3}+(2 i+2)q^{5}+(2 i+2)q^{7}+\cdots\)
1248.2.bc.n 1248.bc 52.f $2$ $9.965$ \(\Q(\sqrt{-1}) \) None 1248.2.bc.k \(0\) \(0\) \(4\) \(6\) $\mathrm{SU}(2)[C_{4}]$ \(q-i q^{3}+(2 i+2)q^{5}+(3 i+3)q^{7}+\cdots\)
1248.2.bc.o 1248.bc 52.f $4$ $9.965$ \(\Q(i, \sqrt{17})\) None 1248.2.bc.o \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{1}q^{3}+(-1+\beta _{2})q^{7}-q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots\)
1248.2.bc.p 1248.bc 52.f $4$ $9.965$ \(\Q(i, \sqrt{17})\) None 1248.2.bc.o \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{3}+(1-\beta _{2})q^{7}-q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
1248.2.bc.q 1248.bc 52.f $4$ $9.965$ \(\Q(\zeta_{12})\) None 1248.2.bc.q \(0\) \(0\) \(4\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta_1 q^{3}+(-\beta_{2}+\beta_1+1)q^{5}+\cdots\)
1248.2.bc.r 1248.bc 52.f $4$ $9.965$ \(\Q(\zeta_{12})\) None 1248.2.bc.q \(0\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{3}+(-\beta_{2}+\beta_1+1)q^{5}+\cdots\)
1248.2.bc.s 1248.bc 52.f $6$ $9.965$ 6.0.3182656.1 None 1248.2.bc.s \(0\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{3}-\beta _{5}q^{5}+(-1+\beta _{2}+\beta _{3}+\cdots)q^{7}+\cdots\)
1248.2.bc.t 1248.bc 52.f $6$ $9.965$ 6.0.3182656.1 None 1248.2.bc.s \(0\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{3}-\beta _{5}q^{5}+(1-\beta _{2}-\beta _{3}+\beta _{5})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1248, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1248, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(624, [\chi])\)\(^{\oplus 2}\)