Properties

Label 1240.2.a.m.1.6
Level $1240$
Weight $2$
Character 1240.1
Self dual yes
Analytic conductor $9.901$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1240,2,Mod(1,1240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1240.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1240 = 2^{3} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1240.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-1,0,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.90144985064\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 15x^{3} + 98x^{2} - 44x - 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-3.31203\) of defining polynomial
Character \(\chi\) \(=\) 1240.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.31203 q^{3} +1.00000 q^{5} -1.94649 q^{7} +7.96954 q^{9} -2.17597 q^{11} +4.63020 q^{13} +3.31203 q^{15} +7.48800 q^{17} -3.83663 q^{19} -6.44682 q^{21} -5.53362 q^{23} +1.00000 q^{25} +16.4593 q^{27} -9.21290 q^{29} +1.00000 q^{31} -7.20688 q^{33} -1.94649 q^{35} +4.12561 q^{37} +15.3354 q^{39} +9.37025 q^{41} -12.1717 q^{43} +7.96954 q^{45} +8.39330 q^{47} -3.21119 q^{49} +24.8005 q^{51} -5.20500 q^{53} -2.17597 q^{55} -12.7070 q^{57} +7.43592 q^{59} -9.03566 q^{61} -15.5126 q^{63} +4.63020 q^{65} +10.1163 q^{67} -18.3275 q^{69} -6.46069 q^{71} +9.26466 q^{73} +3.31203 q^{75} +4.23550 q^{77} +3.71573 q^{79} +30.6049 q^{81} -11.1225 q^{83} +7.48800 q^{85} -30.5134 q^{87} -5.81048 q^{89} -9.01262 q^{91} +3.31203 q^{93} -3.83663 q^{95} -12.6991 q^{97} -17.3415 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} + 6 q^{5} - 2 q^{7} + 21 q^{9} + 8 q^{11} + 4 q^{13} - q^{15} + 3 q^{17} - 5 q^{19} + 8 q^{21} - 12 q^{23} + 6 q^{25} - 7 q^{27} - 4 q^{29} + 6 q^{31} + 14 q^{33} - 2 q^{35} + 3 q^{37} + 10 q^{39}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.31203 1.91220 0.956101 0.293039i \(-0.0946665\pi\)
0.956101 + 0.293039i \(0.0946665\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.94649 −0.735703 −0.367851 0.929885i \(-0.619906\pi\)
−0.367851 + 0.929885i \(0.619906\pi\)
\(8\) 0 0
\(9\) 7.96954 2.65651
\(10\) 0 0
\(11\) −2.17597 −0.656080 −0.328040 0.944664i \(-0.606388\pi\)
−0.328040 + 0.944664i \(0.606388\pi\)
\(12\) 0 0
\(13\) 4.63020 1.28419 0.642093 0.766627i \(-0.278066\pi\)
0.642093 + 0.766627i \(0.278066\pi\)
\(14\) 0 0
\(15\) 3.31203 0.855162
\(16\) 0 0
\(17\) 7.48800 1.81611 0.908054 0.418854i \(-0.137568\pi\)
0.908054 + 0.418854i \(0.137568\pi\)
\(18\) 0 0
\(19\) −3.83663 −0.880184 −0.440092 0.897953i \(-0.645054\pi\)
−0.440092 + 0.897953i \(0.645054\pi\)
\(20\) 0 0
\(21\) −6.44682 −1.40681
\(22\) 0 0
\(23\) −5.53362 −1.15384 −0.576920 0.816801i \(-0.695745\pi\)
−0.576920 + 0.816801i \(0.695745\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 16.4593 3.16759
\(28\) 0 0
\(29\) −9.21290 −1.71079 −0.855396 0.517974i \(-0.826686\pi\)
−0.855396 + 0.517974i \(0.826686\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) −7.20688 −1.25456
\(34\) 0 0
\(35\) −1.94649 −0.329016
\(36\) 0 0
\(37\) 4.12561 0.678246 0.339123 0.940742i \(-0.389870\pi\)
0.339123 + 0.940742i \(0.389870\pi\)
\(38\) 0 0
\(39\) 15.3354 2.45562
\(40\) 0 0
\(41\) 9.37025 1.46339 0.731694 0.681634i \(-0.238730\pi\)
0.731694 + 0.681634i \(0.238730\pi\)
\(42\) 0 0
\(43\) −12.1717 −1.85617 −0.928085 0.372369i \(-0.878545\pi\)
−0.928085 + 0.372369i \(0.878545\pi\)
\(44\) 0 0
\(45\) 7.96954 1.18803
\(46\) 0 0
\(47\) 8.39330 1.22429 0.612145 0.790746i \(-0.290307\pi\)
0.612145 + 0.790746i \(0.290307\pi\)
\(48\) 0 0
\(49\) −3.21119 −0.458742
\(50\) 0 0
\(51\) 24.8005 3.47276
\(52\) 0 0
\(53\) −5.20500 −0.714962 −0.357481 0.933920i \(-0.616364\pi\)
−0.357481 + 0.933920i \(0.616364\pi\)
\(54\) 0 0
\(55\) −2.17597 −0.293408
\(56\) 0 0
\(57\) −12.7070 −1.68309
\(58\) 0 0
\(59\) 7.43592 0.968074 0.484037 0.875047i \(-0.339170\pi\)
0.484037 + 0.875047i \(0.339170\pi\)
\(60\) 0 0
\(61\) −9.03566 −1.15690 −0.578449 0.815719i \(-0.696342\pi\)
−0.578449 + 0.815719i \(0.696342\pi\)
\(62\) 0 0
\(63\) −15.5126 −1.95440
\(64\) 0 0
\(65\) 4.63020 0.574306
\(66\) 0 0
\(67\) 10.1163 1.23590 0.617952 0.786215i \(-0.287962\pi\)
0.617952 + 0.786215i \(0.287962\pi\)
\(68\) 0 0
\(69\) −18.3275 −2.20637
\(70\) 0 0
\(71\) −6.46069 −0.766743 −0.383372 0.923594i \(-0.625237\pi\)
−0.383372 + 0.923594i \(0.625237\pi\)
\(72\) 0 0
\(73\) 9.26466 1.08435 0.542173 0.840267i \(-0.317602\pi\)
0.542173 + 0.840267i \(0.317602\pi\)
\(74\) 0 0
\(75\) 3.31203 0.382440
\(76\) 0 0
\(77\) 4.23550 0.482680
\(78\) 0 0
\(79\) 3.71573 0.418053 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(80\) 0 0
\(81\) 30.6049 3.40055
\(82\) 0 0
\(83\) −11.1225 −1.22085 −0.610427 0.792073i \(-0.709002\pi\)
−0.610427 + 0.792073i \(0.709002\pi\)
\(84\) 0 0
\(85\) 7.48800 0.812188
\(86\) 0 0
\(87\) −30.5134 −3.27138
\(88\) 0 0
\(89\) −5.81048 −0.615910 −0.307955 0.951401i \(-0.599645\pi\)
−0.307955 + 0.951401i \(0.599645\pi\)
\(90\) 0 0
\(91\) −9.01262 −0.944779
\(92\) 0 0
\(93\) 3.31203 0.343441
\(94\) 0 0
\(95\) −3.83663 −0.393630
\(96\) 0 0
\(97\) −12.6991 −1.28940 −0.644701 0.764435i \(-0.723018\pi\)
−0.644701 + 0.764435i \(0.723018\pi\)
\(98\) 0 0
\(99\) −17.3415 −1.74289
\(100\) 0 0
\(101\) −12.3537 −1.22924 −0.614618 0.788825i \(-0.710690\pi\)
−0.614618 + 0.788825i \(0.710690\pi\)
\(102\) 0 0
\(103\) −4.21119 −0.414941 −0.207471 0.978241i \(-0.566523\pi\)
−0.207471 + 0.978241i \(0.566523\pi\)
\(104\) 0 0
\(105\) −6.44682 −0.629145
\(106\) 0 0
\(107\) 2.16509 0.209307 0.104653 0.994509i \(-0.466627\pi\)
0.104653 + 0.994509i \(0.466627\pi\)
\(108\) 0 0
\(109\) 7.77571 0.744778 0.372389 0.928077i \(-0.378539\pi\)
0.372389 + 0.928077i \(0.378539\pi\)
\(110\) 0 0
\(111\) 13.6641 1.29694
\(112\) 0 0
\(113\) 5.76912 0.542713 0.271357 0.962479i \(-0.412528\pi\)
0.271357 + 0.962479i \(0.412528\pi\)
\(114\) 0 0
\(115\) −5.53362 −0.516013
\(116\) 0 0
\(117\) 36.9006 3.41146
\(118\) 0 0
\(119\) −14.5753 −1.33611
\(120\) 0 0
\(121\) −6.26514 −0.569559
\(122\) 0 0
\(123\) 31.0346 2.79829
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −5.31015 −0.471199 −0.235600 0.971850i \(-0.575705\pi\)
−0.235600 + 0.971850i \(0.575705\pi\)
\(128\) 0 0
\(129\) −40.3131 −3.54937
\(130\) 0 0
\(131\) −11.1394 −0.973251 −0.486626 0.873611i \(-0.661772\pi\)
−0.486626 + 0.873611i \(0.661772\pi\)
\(132\) 0 0
\(133\) 7.46795 0.647554
\(134\) 0 0
\(135\) 16.4593 1.41659
\(136\) 0 0
\(137\) −2.85179 −0.243645 −0.121822 0.992552i \(-0.538874\pi\)
−0.121822 + 0.992552i \(0.538874\pi\)
\(138\) 0 0
\(139\) 4.56453 0.387159 0.193579 0.981085i \(-0.437990\pi\)
0.193579 + 0.981085i \(0.437990\pi\)
\(140\) 0 0
\(141\) 27.7989 2.34109
\(142\) 0 0
\(143\) −10.0752 −0.842529
\(144\) 0 0
\(145\) −9.21290 −0.765090
\(146\) 0 0
\(147\) −10.6356 −0.877206
\(148\) 0 0
\(149\) −12.5032 −1.02430 −0.512149 0.858896i \(-0.671151\pi\)
−0.512149 + 0.858896i \(0.671151\pi\)
\(150\) 0 0
\(151\) −12.7527 −1.03780 −0.518898 0.854836i \(-0.673658\pi\)
−0.518898 + 0.854836i \(0.673658\pi\)
\(152\) 0 0
\(153\) 59.6759 4.82451
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) −5.16552 −0.412254 −0.206127 0.978525i \(-0.566086\pi\)
−0.206127 + 0.978525i \(0.566086\pi\)
\(158\) 0 0
\(159\) −17.2391 −1.36715
\(160\) 0 0
\(161\) 10.7711 0.848883
\(162\) 0 0
\(163\) −3.88356 −0.304184 −0.152092 0.988366i \(-0.548601\pi\)
−0.152092 + 0.988366i \(0.548601\pi\)
\(164\) 0 0
\(165\) −7.20688 −0.561055
\(166\) 0 0
\(167\) −3.40817 −0.263732 −0.131866 0.991268i \(-0.542097\pi\)
−0.131866 + 0.991268i \(0.542097\pi\)
\(168\) 0 0
\(169\) 8.43875 0.649134
\(170\) 0 0
\(171\) −30.5762 −2.33822
\(172\) 0 0
\(173\) −1.27255 −0.0967504 −0.0483752 0.998829i \(-0.515404\pi\)
−0.0483752 + 0.998829i \(0.515404\pi\)
\(174\) 0 0
\(175\) −1.94649 −0.147141
\(176\) 0 0
\(177\) 24.6280 1.85115
\(178\) 0 0
\(179\) 10.6012 0.792372 0.396186 0.918170i \(-0.370333\pi\)
0.396186 + 0.918170i \(0.370333\pi\)
\(180\) 0 0
\(181\) −2.16382 −0.160835 −0.0804177 0.996761i \(-0.525625\pi\)
−0.0804177 + 0.996761i \(0.525625\pi\)
\(182\) 0 0
\(183\) −29.9264 −2.21222
\(184\) 0 0
\(185\) 4.12561 0.303321
\(186\) 0 0
\(187\) −16.2937 −1.19151
\(188\) 0 0
\(189\) −32.0377 −2.33040
\(190\) 0 0
\(191\) 17.0720 1.23529 0.617643 0.786459i \(-0.288088\pi\)
0.617643 + 0.786459i \(0.288088\pi\)
\(192\) 0 0
\(193\) −6.10703 −0.439593 −0.219797 0.975546i \(-0.570539\pi\)
−0.219797 + 0.975546i \(0.570539\pi\)
\(194\) 0 0
\(195\) 15.3354 1.09819
\(196\) 0 0
\(197\) 19.5904 1.39576 0.697879 0.716215i \(-0.254127\pi\)
0.697879 + 0.716215i \(0.254127\pi\)
\(198\) 0 0
\(199\) −6.80130 −0.482131 −0.241066 0.970509i \(-0.577497\pi\)
−0.241066 + 0.970509i \(0.577497\pi\)
\(200\) 0 0
\(201\) 33.5055 2.36330
\(202\) 0 0
\(203\) 17.9328 1.25863
\(204\) 0 0
\(205\) 9.37025 0.654447
\(206\) 0 0
\(207\) −44.1004 −3.06519
\(208\) 0 0
\(209\) 8.34841 0.577471
\(210\) 0 0
\(211\) 21.7165 1.49503 0.747513 0.664247i \(-0.231248\pi\)
0.747513 + 0.664247i \(0.231248\pi\)
\(212\) 0 0
\(213\) −21.3980 −1.46617
\(214\) 0 0
\(215\) −12.1717 −0.830104
\(216\) 0 0
\(217\) −1.94649 −0.132136
\(218\) 0 0
\(219\) 30.6848 2.07349
\(220\) 0 0
\(221\) 34.6709 2.33222
\(222\) 0 0
\(223\) −17.9929 −1.20489 −0.602446 0.798160i \(-0.705807\pi\)
−0.602446 + 0.798160i \(0.705807\pi\)
\(224\) 0 0
\(225\) 7.96954 0.531303
\(226\) 0 0
\(227\) 21.5018 1.42712 0.713562 0.700593i \(-0.247081\pi\)
0.713562 + 0.700593i \(0.247081\pi\)
\(228\) 0 0
\(229\) 9.56484 0.632063 0.316031 0.948749i \(-0.397650\pi\)
0.316031 + 0.948749i \(0.397650\pi\)
\(230\) 0 0
\(231\) 14.0281 0.922981
\(232\) 0 0
\(233\) −13.4266 −0.879605 −0.439803 0.898094i \(-0.644952\pi\)
−0.439803 + 0.898094i \(0.644952\pi\)
\(234\) 0 0
\(235\) 8.39330 0.547519
\(236\) 0 0
\(237\) 12.3066 0.799400
\(238\) 0 0
\(239\) 12.9337 0.836609 0.418305 0.908307i \(-0.362624\pi\)
0.418305 + 0.908307i \(0.362624\pi\)
\(240\) 0 0
\(241\) −2.62419 −0.169039 −0.0845193 0.996422i \(-0.526935\pi\)
−0.0845193 + 0.996422i \(0.526935\pi\)
\(242\) 0 0
\(243\) 51.9867 3.33495
\(244\) 0 0
\(245\) −3.21119 −0.205156
\(246\) 0 0
\(247\) −17.7644 −1.13032
\(248\) 0 0
\(249\) −36.8381 −2.33452
\(250\) 0 0
\(251\) −4.17961 −0.263815 −0.131907 0.991262i \(-0.542110\pi\)
−0.131907 + 0.991262i \(0.542110\pi\)
\(252\) 0 0
\(253\) 12.0410 0.757011
\(254\) 0 0
\(255\) 24.8005 1.55307
\(256\) 0 0
\(257\) 16.4746 1.02766 0.513828 0.857894i \(-0.328227\pi\)
0.513828 + 0.857894i \(0.328227\pi\)
\(258\) 0 0
\(259\) −8.03044 −0.498987
\(260\) 0 0
\(261\) −73.4225 −4.54474
\(262\) 0 0
\(263\) 14.0014 0.863363 0.431681 0.902026i \(-0.357920\pi\)
0.431681 + 0.902026i \(0.357920\pi\)
\(264\) 0 0
\(265\) −5.20500 −0.319741
\(266\) 0 0
\(267\) −19.2445 −1.17774
\(268\) 0 0
\(269\) −5.09645 −0.310736 −0.155368 0.987857i \(-0.549656\pi\)
−0.155368 + 0.987857i \(0.549656\pi\)
\(270\) 0 0
\(271\) −18.5718 −1.12816 −0.564078 0.825722i \(-0.690768\pi\)
−0.564078 + 0.825722i \(0.690768\pi\)
\(272\) 0 0
\(273\) −29.8501 −1.80661
\(274\) 0 0
\(275\) −2.17597 −0.131216
\(276\) 0 0
\(277\) −15.0434 −0.903867 −0.451934 0.892052i \(-0.649266\pi\)
−0.451934 + 0.892052i \(0.649266\pi\)
\(278\) 0 0
\(279\) 7.96954 0.477124
\(280\) 0 0
\(281\) 4.35653 0.259889 0.129944 0.991521i \(-0.458520\pi\)
0.129944 + 0.991521i \(0.458520\pi\)
\(282\) 0 0
\(283\) −26.3103 −1.56398 −0.781991 0.623290i \(-0.785796\pi\)
−0.781991 + 0.623290i \(0.785796\pi\)
\(284\) 0 0
\(285\) −12.7070 −0.752700
\(286\) 0 0
\(287\) −18.2391 −1.07662
\(288\) 0 0
\(289\) 39.0702 2.29825
\(290\) 0 0
\(291\) −42.0599 −2.46560
\(292\) 0 0
\(293\) −28.9092 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(294\) 0 0
\(295\) 7.43592 0.432936
\(296\) 0 0
\(297\) −35.8149 −2.07819
\(298\) 0 0
\(299\) −25.6218 −1.48174
\(300\) 0 0
\(301\) 23.6921 1.36559
\(302\) 0 0
\(303\) −40.9157 −2.35055
\(304\) 0 0
\(305\) −9.03566 −0.517380
\(306\) 0 0
\(307\) −12.1650 −0.694291 −0.347145 0.937811i \(-0.612849\pi\)
−0.347145 + 0.937811i \(0.612849\pi\)
\(308\) 0 0
\(309\) −13.9476 −0.793451
\(310\) 0 0
\(311\) 12.4058 0.703471 0.351735 0.936099i \(-0.385592\pi\)
0.351735 + 0.936099i \(0.385592\pi\)
\(312\) 0 0
\(313\) −13.7236 −0.775705 −0.387853 0.921721i \(-0.626783\pi\)
−0.387853 + 0.921721i \(0.626783\pi\)
\(314\) 0 0
\(315\) −15.5126 −0.874036
\(316\) 0 0
\(317\) −13.4350 −0.754583 −0.377292 0.926094i \(-0.623145\pi\)
−0.377292 + 0.926094i \(0.623145\pi\)
\(318\) 0 0
\(319\) 20.0470 1.12242
\(320\) 0 0
\(321\) 7.17083 0.400237
\(322\) 0 0
\(323\) −28.7287 −1.59851
\(324\) 0 0
\(325\) 4.63020 0.256837
\(326\) 0 0
\(327\) 25.7534 1.42417
\(328\) 0 0
\(329\) −16.3375 −0.900713
\(330\) 0 0
\(331\) 4.52804 0.248884 0.124442 0.992227i \(-0.460286\pi\)
0.124442 + 0.992227i \(0.460286\pi\)
\(332\) 0 0
\(333\) 32.8792 1.80177
\(334\) 0 0
\(335\) 10.1163 0.552713
\(336\) 0 0
\(337\) −20.2494 −1.10306 −0.551528 0.834157i \(-0.685955\pi\)
−0.551528 + 0.834157i \(0.685955\pi\)
\(338\) 0 0
\(339\) 19.1075 1.03778
\(340\) 0 0
\(341\) −2.17597 −0.117836
\(342\) 0 0
\(343\) 19.8759 1.07320
\(344\) 0 0
\(345\) −18.3275 −0.986720
\(346\) 0 0
\(347\) 24.9127 1.33738 0.668692 0.743539i \(-0.266854\pi\)
0.668692 + 0.743539i \(0.266854\pi\)
\(348\) 0 0
\(349\) 6.01134 0.321780 0.160890 0.986972i \(-0.448564\pi\)
0.160890 + 0.986972i \(0.448564\pi\)
\(350\) 0 0
\(351\) 76.2097 4.06777
\(352\) 0 0
\(353\) 20.1090 1.07030 0.535148 0.844758i \(-0.320256\pi\)
0.535148 + 0.844758i \(0.320256\pi\)
\(354\) 0 0
\(355\) −6.46069 −0.342898
\(356\) 0 0
\(357\) −48.2738 −2.55492
\(358\) 0 0
\(359\) −9.47026 −0.499821 −0.249911 0.968269i \(-0.580401\pi\)
−0.249911 + 0.968269i \(0.580401\pi\)
\(360\) 0 0
\(361\) −4.28025 −0.225276
\(362\) 0 0
\(363\) −20.7503 −1.08911
\(364\) 0 0
\(365\) 9.26466 0.484934
\(366\) 0 0
\(367\) 17.2254 0.899159 0.449579 0.893240i \(-0.351574\pi\)
0.449579 + 0.893240i \(0.351574\pi\)
\(368\) 0 0
\(369\) 74.6766 3.88751
\(370\) 0 0
\(371\) 10.1315 0.525999
\(372\) 0 0
\(373\) −18.4712 −0.956400 −0.478200 0.878251i \(-0.658711\pi\)
−0.478200 + 0.878251i \(0.658711\pi\)
\(374\) 0 0
\(375\) 3.31203 0.171032
\(376\) 0 0
\(377\) −42.6576 −2.19698
\(378\) 0 0
\(379\) −12.7605 −0.655461 −0.327730 0.944771i \(-0.606284\pi\)
−0.327730 + 0.944771i \(0.606284\pi\)
\(380\) 0 0
\(381\) −17.5874 −0.901028
\(382\) 0 0
\(383\) 20.3657 1.04064 0.520320 0.853971i \(-0.325813\pi\)
0.520320 + 0.853971i \(0.325813\pi\)
\(384\) 0 0
\(385\) 4.23550 0.215861
\(386\) 0 0
\(387\) −97.0030 −4.93094
\(388\) 0 0
\(389\) −11.5556 −0.585890 −0.292945 0.956129i \(-0.594635\pi\)
−0.292945 + 0.956129i \(0.594635\pi\)
\(390\) 0 0
\(391\) −41.4358 −2.09550
\(392\) 0 0
\(393\) −36.8939 −1.86105
\(394\) 0 0
\(395\) 3.71573 0.186959
\(396\) 0 0
\(397\) 9.52621 0.478107 0.239053 0.971006i \(-0.423163\pi\)
0.239053 + 0.971006i \(0.423163\pi\)
\(398\) 0 0
\(399\) 24.7341 1.23825
\(400\) 0 0
\(401\) 18.2814 0.912930 0.456465 0.889741i \(-0.349115\pi\)
0.456465 + 0.889741i \(0.349115\pi\)
\(402\) 0 0
\(403\) 4.63020 0.230647
\(404\) 0 0
\(405\) 30.6049 1.52077
\(406\) 0 0
\(407\) −8.97721 −0.444984
\(408\) 0 0
\(409\) −17.4082 −0.860781 −0.430391 0.902643i \(-0.641624\pi\)
−0.430391 + 0.902643i \(0.641624\pi\)
\(410\) 0 0
\(411\) −9.44521 −0.465898
\(412\) 0 0
\(413\) −14.4739 −0.712215
\(414\) 0 0
\(415\) −11.1225 −0.545982
\(416\) 0 0
\(417\) 15.1179 0.740325
\(418\) 0 0
\(419\) 31.2133 1.52487 0.762436 0.647064i \(-0.224003\pi\)
0.762436 + 0.647064i \(0.224003\pi\)
\(420\) 0 0
\(421\) 12.0417 0.586874 0.293437 0.955978i \(-0.405201\pi\)
0.293437 + 0.955978i \(0.405201\pi\)
\(422\) 0 0
\(423\) 66.8908 3.25234
\(424\) 0 0
\(425\) 7.48800 0.363221
\(426\) 0 0
\(427\) 17.5878 0.851132
\(428\) 0 0
\(429\) −33.3693 −1.61109
\(430\) 0 0
\(431\) 37.4995 1.80629 0.903144 0.429338i \(-0.141253\pi\)
0.903144 + 0.429338i \(0.141253\pi\)
\(432\) 0 0
\(433\) 10.4844 0.503849 0.251924 0.967747i \(-0.418937\pi\)
0.251924 + 0.967747i \(0.418937\pi\)
\(434\) 0 0
\(435\) −30.5134 −1.46301
\(436\) 0 0
\(437\) 21.2305 1.01559
\(438\) 0 0
\(439\) 12.0767 0.576388 0.288194 0.957572i \(-0.406945\pi\)
0.288194 + 0.957572i \(0.406945\pi\)
\(440\) 0 0
\(441\) −25.5917 −1.21865
\(442\) 0 0
\(443\) −16.5231 −0.785037 −0.392518 0.919744i \(-0.628396\pi\)
−0.392518 + 0.919744i \(0.628396\pi\)
\(444\) 0 0
\(445\) −5.81048 −0.275443
\(446\) 0 0
\(447\) −41.4108 −1.95866
\(448\) 0 0
\(449\) 20.9700 0.989637 0.494818 0.868996i \(-0.335235\pi\)
0.494818 + 0.868996i \(0.335235\pi\)
\(450\) 0 0
\(451\) −20.3894 −0.960100
\(452\) 0 0
\(453\) −42.2372 −1.98448
\(454\) 0 0
\(455\) −9.01262 −0.422518
\(456\) 0 0
\(457\) −4.01404 −0.187769 −0.0938843 0.995583i \(-0.529928\pi\)
−0.0938843 + 0.995583i \(0.529928\pi\)
\(458\) 0 0
\(459\) 123.247 5.75268
\(460\) 0 0
\(461\) 29.0945 1.35507 0.677533 0.735493i \(-0.263049\pi\)
0.677533 + 0.735493i \(0.263049\pi\)
\(462\) 0 0
\(463\) 12.4089 0.576690 0.288345 0.957527i \(-0.406895\pi\)
0.288345 + 0.957527i \(0.406895\pi\)
\(464\) 0 0
\(465\) 3.31203 0.153592
\(466\) 0 0
\(467\) −4.09221 −0.189365 −0.0946825 0.995508i \(-0.530184\pi\)
−0.0946825 + 0.995508i \(0.530184\pi\)
\(468\) 0 0
\(469\) −19.6913 −0.909258
\(470\) 0 0
\(471\) −17.1084 −0.788312
\(472\) 0 0
\(473\) 26.4853 1.21780
\(474\) 0 0
\(475\) −3.83663 −0.176037
\(476\) 0 0
\(477\) −41.4815 −1.89931
\(478\) 0 0
\(479\) 1.96969 0.0899973 0.0449986 0.998987i \(-0.485672\pi\)
0.0449986 + 0.998987i \(0.485672\pi\)
\(480\) 0 0
\(481\) 19.1024 0.870994
\(482\) 0 0
\(483\) 35.6742 1.62323
\(484\) 0 0
\(485\) −12.6991 −0.576638
\(486\) 0 0
\(487\) −5.13960 −0.232897 −0.116449 0.993197i \(-0.537151\pi\)
−0.116449 + 0.993197i \(0.537151\pi\)
\(488\) 0 0
\(489\) −12.8624 −0.581660
\(490\) 0 0
\(491\) −21.6597 −0.977489 −0.488745 0.872427i \(-0.662545\pi\)
−0.488745 + 0.872427i \(0.662545\pi\)
\(492\) 0 0
\(493\) −68.9862 −3.10698
\(494\) 0 0
\(495\) −17.3415 −0.779442
\(496\) 0 0
\(497\) 12.5756 0.564095
\(498\) 0 0
\(499\) 23.4911 1.05161 0.525803 0.850606i \(-0.323765\pi\)
0.525803 + 0.850606i \(0.323765\pi\)
\(500\) 0 0
\(501\) −11.2880 −0.504309
\(502\) 0 0
\(503\) 34.6823 1.54641 0.773204 0.634157i \(-0.218653\pi\)
0.773204 + 0.634157i \(0.218653\pi\)
\(504\) 0 0
\(505\) −12.3537 −0.549731
\(506\) 0 0
\(507\) 27.9494 1.24128
\(508\) 0 0
\(509\) 37.8462 1.67751 0.838753 0.544513i \(-0.183285\pi\)
0.838753 + 0.544513i \(0.183285\pi\)
\(510\) 0 0
\(511\) −18.0335 −0.797756
\(512\) 0 0
\(513\) −63.1481 −2.78806
\(514\) 0 0
\(515\) −4.21119 −0.185567
\(516\) 0 0
\(517\) −18.2636 −0.803232
\(518\) 0 0
\(519\) −4.21473 −0.185006
\(520\) 0 0
\(521\) 8.80322 0.385676 0.192838 0.981231i \(-0.438231\pi\)
0.192838 + 0.981231i \(0.438231\pi\)
\(522\) 0 0
\(523\) −19.9176 −0.870937 −0.435469 0.900204i \(-0.643417\pi\)
−0.435469 + 0.900204i \(0.643417\pi\)
\(524\) 0 0
\(525\) −6.44682 −0.281362
\(526\) 0 0
\(527\) 7.48800 0.326182
\(528\) 0 0
\(529\) 7.62094 0.331345
\(530\) 0 0
\(531\) 59.2609 2.57170
\(532\) 0 0
\(533\) 43.3861 1.87926
\(534\) 0 0
\(535\) 2.16509 0.0936048
\(536\) 0 0
\(537\) 35.1116 1.51518
\(538\) 0 0
\(539\) 6.98747 0.300971
\(540\) 0 0
\(541\) 33.7566 1.45131 0.725656 0.688058i \(-0.241537\pi\)
0.725656 + 0.688058i \(0.241537\pi\)
\(542\) 0 0
\(543\) −7.16663 −0.307550
\(544\) 0 0
\(545\) 7.77571 0.333075
\(546\) 0 0
\(547\) −29.3038 −1.25294 −0.626469 0.779446i \(-0.715501\pi\)
−0.626469 + 0.779446i \(0.715501\pi\)
\(548\) 0 0
\(549\) −72.0100 −3.07331
\(550\) 0 0
\(551\) 35.3465 1.50581
\(552\) 0 0
\(553\) −7.23262 −0.307562
\(554\) 0 0
\(555\) 13.6641 0.580010
\(556\) 0 0
\(557\) 1.43423 0.0607705 0.0303852 0.999538i \(-0.490327\pi\)
0.0303852 + 0.999538i \(0.490327\pi\)
\(558\) 0 0
\(559\) −56.3575 −2.38367
\(560\) 0 0
\(561\) −53.9652 −2.27841
\(562\) 0 0
\(563\) −19.3861 −0.817028 −0.408514 0.912752i \(-0.633953\pi\)
−0.408514 + 0.912752i \(0.633953\pi\)
\(564\) 0 0
\(565\) 5.76912 0.242709
\(566\) 0 0
\(567\) −59.5721 −2.50179
\(568\) 0 0
\(569\) −35.7835 −1.50012 −0.750061 0.661368i \(-0.769976\pi\)
−0.750061 + 0.661368i \(0.769976\pi\)
\(570\) 0 0
\(571\) 44.0490 1.84339 0.921696 0.387914i \(-0.126804\pi\)
0.921696 + 0.387914i \(0.126804\pi\)
\(572\) 0 0
\(573\) 56.5429 2.36211
\(574\) 0 0
\(575\) −5.53362 −0.230768
\(576\) 0 0
\(577\) 30.0326 1.25027 0.625137 0.780515i \(-0.285043\pi\)
0.625137 + 0.780515i \(0.285043\pi\)
\(578\) 0 0
\(579\) −20.2267 −0.840591
\(580\) 0 0
\(581\) 21.6498 0.898185
\(582\) 0 0
\(583\) 11.3259 0.469072
\(584\) 0 0
\(585\) 36.9006 1.52565
\(586\) 0 0
\(587\) 0.699636 0.0288771 0.0144385 0.999896i \(-0.495404\pi\)
0.0144385 + 0.999896i \(0.495404\pi\)
\(588\) 0 0
\(589\) −3.83663 −0.158086
\(590\) 0 0
\(591\) 64.8840 2.66897
\(592\) 0 0
\(593\) 14.4909 0.595071 0.297535 0.954711i \(-0.403835\pi\)
0.297535 + 0.954711i \(0.403835\pi\)
\(594\) 0 0
\(595\) −14.5753 −0.597529
\(596\) 0 0
\(597\) −22.5261 −0.921932
\(598\) 0 0
\(599\) 14.5490 0.594455 0.297227 0.954807i \(-0.403938\pi\)
0.297227 + 0.954807i \(0.403938\pi\)
\(600\) 0 0
\(601\) 7.09797 0.289532 0.144766 0.989466i \(-0.453757\pi\)
0.144766 + 0.989466i \(0.453757\pi\)
\(602\) 0 0
\(603\) 80.6224 3.28320
\(604\) 0 0
\(605\) −6.26514 −0.254714
\(606\) 0 0
\(607\) −27.6801 −1.12350 −0.561751 0.827307i \(-0.689872\pi\)
−0.561751 + 0.827307i \(0.689872\pi\)
\(608\) 0 0
\(609\) 59.3939 2.40676
\(610\) 0 0
\(611\) 38.8627 1.57222
\(612\) 0 0
\(613\) 0.697261 0.0281621 0.0140810 0.999901i \(-0.495518\pi\)
0.0140810 + 0.999901i \(0.495518\pi\)
\(614\) 0 0
\(615\) 31.0346 1.25143
\(616\) 0 0
\(617\) −22.2947 −0.897549 −0.448775 0.893645i \(-0.648139\pi\)
−0.448775 + 0.893645i \(0.648139\pi\)
\(618\) 0 0
\(619\) −32.8750 −1.32136 −0.660679 0.750669i \(-0.729731\pi\)
−0.660679 + 0.750669i \(0.729731\pi\)
\(620\) 0 0
\(621\) −91.0793 −3.65489
\(622\) 0 0
\(623\) 11.3100 0.453126
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 27.6502 1.10424
\(628\) 0 0
\(629\) 30.8926 1.23177
\(630\) 0 0
\(631\) 29.1361 1.15989 0.579945 0.814656i \(-0.303074\pi\)
0.579945 + 0.814656i \(0.303074\pi\)
\(632\) 0 0
\(633\) 71.9257 2.85879
\(634\) 0 0
\(635\) −5.31015 −0.210727
\(636\) 0 0
\(637\) −14.8685 −0.589110
\(638\) 0 0
\(639\) −51.4887 −2.03686
\(640\) 0 0
\(641\) −7.95110 −0.314050 −0.157025 0.987595i \(-0.550190\pi\)
−0.157025 + 0.987595i \(0.550190\pi\)
\(642\) 0 0
\(643\) −28.9037 −1.13985 −0.569925 0.821697i \(-0.693028\pi\)
−0.569925 + 0.821697i \(0.693028\pi\)
\(644\) 0 0
\(645\) −40.3131 −1.58733
\(646\) 0 0
\(647\) 14.0622 0.552842 0.276421 0.961037i \(-0.410852\pi\)
0.276421 + 0.961037i \(0.410852\pi\)
\(648\) 0 0
\(649\) −16.1804 −0.635135
\(650\) 0 0
\(651\) −6.44682 −0.252671
\(652\) 0 0
\(653\) 40.1717 1.57204 0.786020 0.618201i \(-0.212138\pi\)
0.786020 + 0.618201i \(0.212138\pi\)
\(654\) 0 0
\(655\) −11.1394 −0.435251
\(656\) 0 0
\(657\) 73.8350 2.88058
\(658\) 0 0
\(659\) −4.87356 −0.189847 −0.0949234 0.995485i \(-0.530261\pi\)
−0.0949234 + 0.995485i \(0.530261\pi\)
\(660\) 0 0
\(661\) −8.88808 −0.345706 −0.172853 0.984948i \(-0.555299\pi\)
−0.172853 + 0.984948i \(0.555299\pi\)
\(662\) 0 0
\(663\) 114.831 4.45967
\(664\) 0 0
\(665\) 7.46795 0.289595
\(666\) 0 0
\(667\) 50.9807 1.97398
\(668\) 0 0
\(669\) −59.5929 −2.30400
\(670\) 0 0
\(671\) 19.6613 0.759018
\(672\) 0 0
\(673\) 16.9899 0.654912 0.327456 0.944866i \(-0.393809\pi\)
0.327456 + 0.944866i \(0.393809\pi\)
\(674\) 0 0
\(675\) 16.4593 0.633517
\(676\) 0 0
\(677\) 24.8453 0.954882 0.477441 0.878664i \(-0.341564\pi\)
0.477441 + 0.878664i \(0.341564\pi\)
\(678\) 0 0
\(679\) 24.7187 0.948617
\(680\) 0 0
\(681\) 71.2145 2.72895
\(682\) 0 0
\(683\) 30.0980 1.15167 0.575834 0.817567i \(-0.304678\pi\)
0.575834 + 0.817567i \(0.304678\pi\)
\(684\) 0 0
\(685\) −2.85179 −0.108961
\(686\) 0 0
\(687\) 31.6790 1.20863
\(688\) 0 0
\(689\) −24.1002 −0.918144
\(690\) 0 0
\(691\) −20.1124 −0.765111 −0.382556 0.923932i \(-0.624956\pi\)
−0.382556 + 0.923932i \(0.624956\pi\)
\(692\) 0 0
\(693\) 33.7550 1.28225
\(694\) 0 0
\(695\) 4.56453 0.173143
\(696\) 0 0
\(697\) 70.1645 2.65767
\(698\) 0 0
\(699\) −44.4693 −1.68198
\(700\) 0 0
\(701\) −2.23289 −0.0843351 −0.0421675 0.999111i \(-0.513426\pi\)
−0.0421675 + 0.999111i \(0.513426\pi\)
\(702\) 0 0
\(703\) −15.8284 −0.596981
\(704\) 0 0
\(705\) 27.7989 1.04697
\(706\) 0 0
\(707\) 24.0462 0.904352
\(708\) 0 0
\(709\) 8.90342 0.334375 0.167187 0.985925i \(-0.446531\pi\)
0.167187 + 0.985925i \(0.446531\pi\)
\(710\) 0 0
\(711\) 29.6127 1.11056
\(712\) 0 0
\(713\) −5.53362 −0.207236
\(714\) 0 0
\(715\) −10.0752 −0.376791
\(716\) 0 0
\(717\) 42.8367 1.59976
\(718\) 0 0
\(719\) 40.1789 1.49842 0.749210 0.662333i \(-0.230433\pi\)
0.749210 + 0.662333i \(0.230433\pi\)
\(720\) 0 0
\(721\) 8.19703 0.305273
\(722\) 0 0
\(723\) −8.69138 −0.323236
\(724\) 0 0
\(725\) −9.21290 −0.342158
\(726\) 0 0
\(727\) −10.6515 −0.395042 −0.197521 0.980299i \(-0.563289\pi\)
−0.197521 + 0.980299i \(0.563289\pi\)
\(728\) 0 0
\(729\) 80.3666 2.97654
\(730\) 0 0
\(731\) −91.1418 −3.37100
\(732\) 0 0
\(733\) 7.11588 0.262831 0.131416 0.991327i \(-0.458048\pi\)
0.131416 + 0.991327i \(0.458048\pi\)
\(734\) 0 0
\(735\) −10.6356 −0.392299
\(736\) 0 0
\(737\) −22.0128 −0.810853
\(738\) 0 0
\(739\) −12.2746 −0.451529 −0.225764 0.974182i \(-0.572488\pi\)
−0.225764 + 0.974182i \(0.572488\pi\)
\(740\) 0 0
\(741\) −58.8361 −2.16140
\(742\) 0 0
\(743\) −14.3267 −0.525594 −0.262797 0.964851i \(-0.584645\pi\)
−0.262797 + 0.964851i \(0.584645\pi\)
\(744\) 0 0
\(745\) −12.5032 −0.458080
\(746\) 0 0
\(747\) −88.6413 −3.24321
\(748\) 0 0
\(749\) −4.21431 −0.153988
\(750\) 0 0
\(751\) 35.4641 1.29410 0.647051 0.762447i \(-0.276002\pi\)
0.647051 + 0.762447i \(0.276002\pi\)
\(752\) 0 0
\(753\) −13.8430 −0.504467
\(754\) 0 0
\(755\) −12.7527 −0.464117
\(756\) 0 0
\(757\) −3.47744 −0.126390 −0.0631949 0.998001i \(-0.520129\pi\)
−0.0631949 + 0.998001i \(0.520129\pi\)
\(758\) 0 0
\(759\) 39.8802 1.44756
\(760\) 0 0
\(761\) −31.9706 −1.15893 −0.579466 0.814996i \(-0.696739\pi\)
−0.579466 + 0.814996i \(0.696739\pi\)
\(762\) 0 0
\(763\) −15.1353 −0.547935
\(764\) 0 0
\(765\) 59.6759 2.15759
\(766\) 0 0
\(767\) 34.4298 1.24319
\(768\) 0 0
\(769\) 46.0338 1.66002 0.830010 0.557748i \(-0.188334\pi\)
0.830010 + 0.557748i \(0.188334\pi\)
\(770\) 0 0
\(771\) 54.5642 1.96508
\(772\) 0 0
\(773\) 40.7466 1.46555 0.732777 0.680468i \(-0.238224\pi\)
0.732777 + 0.680468i \(0.238224\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −26.5971 −0.954164
\(778\) 0 0
\(779\) −35.9502 −1.28805
\(780\) 0 0
\(781\) 14.0583 0.503045
\(782\) 0 0
\(783\) −151.637 −5.41908
\(784\) 0 0
\(785\) −5.16552 −0.184365
\(786\) 0 0
\(787\) −9.21677 −0.328542 −0.164271 0.986415i \(-0.552527\pi\)
−0.164271 + 0.986415i \(0.552527\pi\)
\(788\) 0 0
\(789\) 46.3730 1.65092
\(790\) 0 0
\(791\) −11.2295 −0.399275
\(792\) 0 0
\(793\) −41.8369 −1.48567
\(794\) 0 0
\(795\) −17.2391 −0.611409
\(796\) 0 0
\(797\) −24.0806 −0.852978 −0.426489 0.904493i \(-0.640250\pi\)
−0.426489 + 0.904493i \(0.640250\pi\)
\(798\) 0 0
\(799\) 62.8491 2.22344
\(800\) 0 0
\(801\) −46.3068 −1.63617
\(802\) 0 0
\(803\) −20.1596 −0.711418
\(804\) 0 0
\(805\) 10.7711 0.379632
\(806\) 0 0
\(807\) −16.8796 −0.594190
\(808\) 0 0
\(809\) 32.3319 1.13673 0.568365 0.822777i \(-0.307576\pi\)
0.568365 + 0.822777i \(0.307576\pi\)
\(810\) 0 0
\(811\) −14.3530 −0.504002 −0.252001 0.967727i \(-0.581089\pi\)
−0.252001 + 0.967727i \(0.581089\pi\)
\(812\) 0 0
\(813\) −61.5103 −2.15726
\(814\) 0 0
\(815\) −3.88356 −0.136035
\(816\) 0 0
\(817\) 46.6984 1.63377
\(818\) 0 0
\(819\) −71.8264 −2.50982
\(820\) 0 0
\(821\) 1.84557 0.0644109 0.0322055 0.999481i \(-0.489747\pi\)
0.0322055 + 0.999481i \(0.489747\pi\)
\(822\) 0 0
\(823\) −46.0156 −1.60400 −0.802001 0.597323i \(-0.796231\pi\)
−0.802001 + 0.597323i \(0.796231\pi\)
\(824\) 0 0
\(825\) −7.20688 −0.250912
\(826\) 0 0
\(827\) −16.3369 −0.568091 −0.284045 0.958811i \(-0.591677\pi\)
−0.284045 + 0.958811i \(0.591677\pi\)
\(828\) 0 0
\(829\) 47.6449 1.65478 0.827388 0.561631i \(-0.189826\pi\)
0.827388 + 0.561631i \(0.189826\pi\)
\(830\) 0 0
\(831\) −49.8240 −1.72838
\(832\) 0 0
\(833\) −24.0454 −0.833124
\(834\) 0 0
\(835\) −3.40817 −0.117945
\(836\) 0 0
\(837\) 16.4593 0.568915
\(838\) 0 0
\(839\) −12.7204 −0.439158 −0.219579 0.975595i \(-0.570468\pi\)
−0.219579 + 0.975595i \(0.570468\pi\)
\(840\) 0 0
\(841\) 55.8775 1.92681
\(842\) 0 0
\(843\) 14.4289 0.496959
\(844\) 0 0
\(845\) 8.43875 0.290302
\(846\) 0 0
\(847\) 12.1950 0.419026
\(848\) 0 0
\(849\) −87.1403 −2.99065
\(850\) 0 0
\(851\) −22.8295 −0.782587
\(852\) 0 0
\(853\) −8.65778 −0.296437 −0.148218 0.988955i \(-0.547354\pi\)
−0.148218 + 0.988955i \(0.547354\pi\)
\(854\) 0 0
\(855\) −30.5762 −1.04568
\(856\) 0 0
\(857\) 33.9276 1.15894 0.579472 0.814992i \(-0.303259\pi\)
0.579472 + 0.814992i \(0.303259\pi\)
\(858\) 0 0
\(859\) −21.3257 −0.727623 −0.363811 0.931473i \(-0.618525\pi\)
−0.363811 + 0.931473i \(0.618525\pi\)
\(860\) 0 0
\(861\) −60.4083 −2.05871
\(862\) 0 0
\(863\) 22.4943 0.765716 0.382858 0.923807i \(-0.374940\pi\)
0.382858 + 0.923807i \(0.374940\pi\)
\(864\) 0 0
\(865\) −1.27255 −0.0432681
\(866\) 0 0
\(867\) 129.402 4.39471
\(868\) 0 0
\(869\) −8.08533 −0.274276
\(870\) 0 0
\(871\) 46.8406 1.58713
\(872\) 0 0
\(873\) −101.206 −3.42531
\(874\) 0 0
\(875\) −1.94649 −0.0658032
\(876\) 0 0
\(877\) −19.7833 −0.668034 −0.334017 0.942567i \(-0.608404\pi\)
−0.334017 + 0.942567i \(0.608404\pi\)
\(878\) 0 0
\(879\) −95.7482 −3.22951
\(880\) 0 0
\(881\) −23.8028 −0.801938 −0.400969 0.916092i \(-0.631327\pi\)
−0.400969 + 0.916092i \(0.631327\pi\)
\(882\) 0 0
\(883\) 8.23309 0.277066 0.138533 0.990358i \(-0.455761\pi\)
0.138533 + 0.990358i \(0.455761\pi\)
\(884\) 0 0
\(885\) 24.6280 0.827861
\(886\) 0 0
\(887\) 4.30132 0.144424 0.0722121 0.997389i \(-0.476994\pi\)
0.0722121 + 0.997389i \(0.476994\pi\)
\(888\) 0 0
\(889\) 10.3361 0.346663
\(890\) 0 0
\(891\) −66.5955 −2.23103
\(892\) 0 0
\(893\) −32.2020 −1.07760
\(894\) 0 0
\(895\) 10.6012 0.354360
\(896\) 0 0
\(897\) −84.8600 −2.83339
\(898\) 0 0
\(899\) −9.21290 −0.307267
\(900\) 0 0
\(901\) −38.9751 −1.29845
\(902\) 0 0
\(903\) 78.4688 2.61128
\(904\) 0 0
\(905\) −2.16382 −0.0719278
\(906\) 0 0
\(907\) 16.0044 0.531418 0.265709 0.964053i \(-0.414394\pi\)
0.265709 + 0.964053i \(0.414394\pi\)
\(908\) 0 0
\(909\) −98.4530 −3.26548
\(910\) 0 0
\(911\) −3.67017 −0.121598 −0.0607991 0.998150i \(-0.519365\pi\)
−0.0607991 + 0.998150i \(0.519365\pi\)
\(912\) 0 0
\(913\) 24.2023 0.800978
\(914\) 0 0
\(915\) −29.9264 −0.989335
\(916\) 0 0
\(917\) 21.6826 0.716024
\(918\) 0 0
\(919\) 9.58343 0.316128 0.158064 0.987429i \(-0.449475\pi\)
0.158064 + 0.987429i \(0.449475\pi\)
\(920\) 0 0
\(921\) −40.2907 −1.32762
\(922\) 0 0
\(923\) −29.9143 −0.984641
\(924\) 0 0
\(925\) 4.12561 0.135649
\(926\) 0 0
\(927\) −33.5613 −1.10230
\(928\) 0 0
\(929\) 51.4065 1.68659 0.843296 0.537450i \(-0.180612\pi\)
0.843296 + 0.537450i \(0.180612\pi\)
\(930\) 0 0
\(931\) 12.3202 0.403777
\(932\) 0 0
\(933\) 41.0885 1.34518
\(934\) 0 0
\(935\) −16.2937 −0.532860
\(936\) 0 0
\(937\) 55.4143 1.81031 0.905153 0.425085i \(-0.139756\pi\)
0.905153 + 0.425085i \(0.139756\pi\)
\(938\) 0 0
\(939\) −45.4531 −1.48330
\(940\) 0 0
\(941\) −43.2999 −1.41154 −0.705768 0.708443i \(-0.749398\pi\)
−0.705768 + 0.708443i \(0.749398\pi\)
\(942\) 0 0
\(943\) −51.8514 −1.68851
\(944\) 0 0
\(945\) −32.0377 −1.04219
\(946\) 0 0
\(947\) 16.7956 0.545785 0.272893 0.962045i \(-0.412020\pi\)
0.272893 + 0.962045i \(0.412020\pi\)
\(948\) 0 0
\(949\) 42.8972 1.39250
\(950\) 0 0
\(951\) −44.4970 −1.44292
\(952\) 0 0
\(953\) −35.5097 −1.15027 −0.575136 0.818058i \(-0.695051\pi\)
−0.575136 + 0.818058i \(0.695051\pi\)
\(954\) 0 0
\(955\) 17.0720 0.552436
\(956\) 0 0
\(957\) 66.3963 2.14629
\(958\) 0 0
\(959\) 5.55097 0.179250
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 17.2547 0.556026
\(964\) 0 0
\(965\) −6.10703 −0.196592
\(966\) 0 0
\(967\) 5.41717 0.174205 0.0871023 0.996199i \(-0.472239\pi\)
0.0871023 + 0.996199i \(0.472239\pi\)
\(968\) 0 0
\(969\) −95.1503 −3.05667
\(970\) 0 0
\(971\) −15.9776 −0.512746 −0.256373 0.966578i \(-0.582528\pi\)
−0.256373 + 0.966578i \(0.582528\pi\)
\(972\) 0 0
\(973\) −8.88480 −0.284834
\(974\) 0 0
\(975\) 15.3354 0.491124
\(976\) 0 0
\(977\) −27.3287 −0.874323 −0.437162 0.899383i \(-0.644016\pi\)
−0.437162 + 0.899383i \(0.644016\pi\)
\(978\) 0 0
\(979\) 12.6434 0.404086
\(980\) 0 0
\(981\) 61.9688 1.97851
\(982\) 0 0
\(983\) 15.7697 0.502974 0.251487 0.967861i \(-0.419080\pi\)
0.251487 + 0.967861i \(0.419080\pi\)
\(984\) 0 0
\(985\) 19.5904 0.624202
\(986\) 0 0
\(987\) −54.1101 −1.72234
\(988\) 0 0
\(989\) 67.3536 2.14172
\(990\) 0 0
\(991\) −52.1485 −1.65655 −0.828276 0.560320i \(-0.810678\pi\)
−0.828276 + 0.560320i \(0.810678\pi\)
\(992\) 0 0
\(993\) 14.9970 0.475916
\(994\) 0 0
\(995\) −6.80130 −0.215616
\(996\) 0 0
\(997\) −52.3565 −1.65815 −0.829073 0.559141i \(-0.811131\pi\)
−0.829073 + 0.559141i \(0.811131\pi\)
\(998\) 0 0
\(999\) 67.9045 2.14840
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1240.2.a.m.1.6 6
4.3 odd 2 2480.2.a.ba.1.1 6
5.4 even 2 6200.2.a.w.1.1 6
8.3 odd 2 9920.2.a.co.1.6 6
8.5 even 2 9920.2.a.cp.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1240.2.a.m.1.6 6 1.1 even 1 trivial
2480.2.a.ba.1.1 6 4.3 odd 2
6200.2.a.w.1.1 6 5.4 even 2
9920.2.a.co.1.6 6 8.3 odd 2
9920.2.a.cp.1.1 6 8.5 even 2