Properties

Label 1240.2.a.m.1.5
Level $1240$
Weight $2$
Character 1240.1
Self dual yes
Analytic conductor $9.901$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1240,2,Mod(1,1240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1240.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1240 = 2^{3} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1240.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-1,0,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.90144985064\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 19x^{4} + 15x^{3} + 98x^{2} - 44x - 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.36730\) of defining polynomial
Character \(\chi\) \(=\) 1240.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.36730 q^{3} +1.00000 q^{5} +0.985130 q^{7} +2.60412 q^{9} +5.54333 q^{11} -4.06881 q^{13} +2.36730 q^{15} -1.17603 q^{17} +7.21627 q^{19} +2.33210 q^{21} -7.30978 q^{23} +1.00000 q^{25} -0.937162 q^{27} +5.10364 q^{29} +1.00000 q^{31} +13.1228 q^{33} +0.985130 q^{35} -5.43822 q^{37} -9.63211 q^{39} +0.0935165 q^{41} +2.25971 q^{43} +2.60412 q^{45} -3.31723 q^{47} -6.02952 q^{49} -2.78402 q^{51} +1.60296 q^{53} +5.54333 q^{55} +17.0831 q^{57} +0.294339 q^{59} +12.1703 q^{61} +2.56540 q^{63} -4.06881 q^{65} +6.27495 q^{67} -17.3045 q^{69} +6.48166 q^{71} -1.42124 q^{73} +2.36730 q^{75} +5.46090 q^{77} -9.03697 q^{79} -10.0309 q^{81} -16.9074 q^{83} -1.17603 q^{85} +12.0819 q^{87} -12.5401 q^{89} -4.00831 q^{91} +2.36730 q^{93} +7.21627 q^{95} +9.58240 q^{97} +14.4355 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{3} + 6 q^{5} - 2 q^{7} + 21 q^{9} + 8 q^{11} + 4 q^{13} - q^{15} + 3 q^{17} - 5 q^{19} + 8 q^{21} - 12 q^{23} + 6 q^{25} - 7 q^{27} - 4 q^{29} + 6 q^{31} + 14 q^{33} - 2 q^{35} + 3 q^{37} + 10 q^{39}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.36730 1.36676 0.683381 0.730061i \(-0.260509\pi\)
0.683381 + 0.730061i \(0.260509\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.985130 0.372344 0.186172 0.982517i \(-0.440392\pi\)
0.186172 + 0.982517i \(0.440392\pi\)
\(8\) 0 0
\(9\) 2.60412 0.868041
\(10\) 0 0
\(11\) 5.54333 1.67138 0.835689 0.549203i \(-0.185069\pi\)
0.835689 + 0.549203i \(0.185069\pi\)
\(12\) 0 0
\(13\) −4.06881 −1.12848 −0.564242 0.825609i \(-0.690832\pi\)
−0.564242 + 0.825609i \(0.690832\pi\)
\(14\) 0 0
\(15\) 2.36730 0.611235
\(16\) 0 0
\(17\) −1.17603 −0.285229 −0.142615 0.989778i \(-0.545551\pi\)
−0.142615 + 0.989778i \(0.545551\pi\)
\(18\) 0 0
\(19\) 7.21627 1.65553 0.827763 0.561079i \(-0.189613\pi\)
0.827763 + 0.561079i \(0.189613\pi\)
\(20\) 0 0
\(21\) 2.33210 0.508906
\(22\) 0 0
\(23\) −7.30978 −1.52420 −0.762098 0.647462i \(-0.775830\pi\)
−0.762098 + 0.647462i \(0.775830\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −0.937162 −0.180357
\(28\) 0 0
\(29\) 5.10364 0.947722 0.473861 0.880600i \(-0.342860\pi\)
0.473861 + 0.880600i \(0.342860\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 0 0
\(33\) 13.1228 2.28438
\(34\) 0 0
\(35\) 0.985130 0.166517
\(36\) 0 0
\(37\) −5.43822 −0.894037 −0.447019 0.894525i \(-0.647514\pi\)
−0.447019 + 0.894525i \(0.647514\pi\)
\(38\) 0 0
\(39\) −9.63211 −1.54237
\(40\) 0 0
\(41\) 0.0935165 0.0146048 0.00730241 0.999973i \(-0.497676\pi\)
0.00730241 + 0.999973i \(0.497676\pi\)
\(42\) 0 0
\(43\) 2.25971 0.344603 0.172301 0.985044i \(-0.444880\pi\)
0.172301 + 0.985044i \(0.444880\pi\)
\(44\) 0 0
\(45\) 2.60412 0.388200
\(46\) 0 0
\(47\) −3.31723 −0.483868 −0.241934 0.970293i \(-0.577782\pi\)
−0.241934 + 0.970293i \(0.577782\pi\)
\(48\) 0 0
\(49\) −6.02952 −0.861360
\(50\) 0 0
\(51\) −2.78402 −0.389841
\(52\) 0 0
\(53\) 1.60296 0.220183 0.110092 0.993921i \(-0.464886\pi\)
0.110092 + 0.993921i \(0.464886\pi\)
\(54\) 0 0
\(55\) 5.54333 0.747463
\(56\) 0 0
\(57\) 17.0831 2.26271
\(58\) 0 0
\(59\) 0.294339 0.0383197 0.0191599 0.999816i \(-0.493901\pi\)
0.0191599 + 0.999816i \(0.493901\pi\)
\(60\) 0 0
\(61\) 12.1703 1.55825 0.779127 0.626866i \(-0.215663\pi\)
0.779127 + 0.626866i \(0.215663\pi\)
\(62\) 0 0
\(63\) 2.56540 0.323210
\(64\) 0 0
\(65\) −4.06881 −0.504674
\(66\) 0 0
\(67\) 6.27495 0.766607 0.383304 0.923622i \(-0.374786\pi\)
0.383304 + 0.923622i \(0.374786\pi\)
\(68\) 0 0
\(69\) −17.3045 −2.08321
\(70\) 0 0
\(71\) 6.48166 0.769232 0.384616 0.923077i \(-0.374334\pi\)
0.384616 + 0.923077i \(0.374334\pi\)
\(72\) 0 0
\(73\) −1.42124 −0.166344 −0.0831720 0.996535i \(-0.526505\pi\)
−0.0831720 + 0.996535i \(0.526505\pi\)
\(74\) 0 0
\(75\) 2.36730 0.273353
\(76\) 0 0
\(77\) 5.46090 0.622328
\(78\) 0 0
\(79\) −9.03697 −1.01674 −0.508369 0.861139i \(-0.669751\pi\)
−0.508369 + 0.861139i \(0.669751\pi\)
\(80\) 0 0
\(81\) −10.0309 −1.11455
\(82\) 0 0
\(83\) −16.9074 −1.85583 −0.927916 0.372790i \(-0.878401\pi\)
−0.927916 + 0.372790i \(0.878401\pi\)
\(84\) 0 0
\(85\) −1.17603 −0.127558
\(86\) 0 0
\(87\) 12.0819 1.29531
\(88\) 0 0
\(89\) −12.5401 −1.32925 −0.664625 0.747177i \(-0.731409\pi\)
−0.664625 + 0.747177i \(0.731409\pi\)
\(90\) 0 0
\(91\) −4.00831 −0.420185
\(92\) 0 0
\(93\) 2.36730 0.245478
\(94\) 0 0
\(95\) 7.21627 0.740373
\(96\) 0 0
\(97\) 9.58240 0.972946 0.486473 0.873696i \(-0.338283\pi\)
0.486473 + 0.873696i \(0.338283\pi\)
\(98\) 0 0
\(99\) 14.4355 1.45082
\(100\) 0 0
\(101\) 6.45192 0.641990 0.320995 0.947081i \(-0.395983\pi\)
0.320995 + 0.947081i \(0.395983\pi\)
\(102\) 0 0
\(103\) −7.02952 −0.692639 −0.346320 0.938117i \(-0.612569\pi\)
−0.346320 + 0.938117i \(0.612569\pi\)
\(104\) 0 0
\(105\) 2.33210 0.227590
\(106\) 0 0
\(107\) 9.85101 0.952333 0.476167 0.879355i \(-0.342026\pi\)
0.476167 + 0.879355i \(0.342026\pi\)
\(108\) 0 0
\(109\) −14.0080 −1.34173 −0.670863 0.741582i \(-0.734076\pi\)
−0.670863 + 0.741582i \(0.734076\pi\)
\(110\) 0 0
\(111\) −12.8739 −1.22194
\(112\) 0 0
\(113\) 8.77069 0.825077 0.412538 0.910940i \(-0.364642\pi\)
0.412538 + 0.910940i \(0.364642\pi\)
\(114\) 0 0
\(115\) −7.30978 −0.681641
\(116\) 0 0
\(117\) −10.5957 −0.979571
\(118\) 0 0
\(119\) −1.15854 −0.106204
\(120\) 0 0
\(121\) 19.7286 1.79350
\(122\) 0 0
\(123\) 0.221382 0.0199613
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −17.8871 −1.58722 −0.793612 0.608425i \(-0.791802\pi\)
−0.793612 + 0.608425i \(0.791802\pi\)
\(128\) 0 0
\(129\) 5.34942 0.470990
\(130\) 0 0
\(131\) −4.86420 −0.424988 −0.212494 0.977162i \(-0.568159\pi\)
−0.212494 + 0.977162i \(0.568159\pi\)
\(132\) 0 0
\(133\) 7.10896 0.616425
\(134\) 0 0
\(135\) −0.937162 −0.0806580
\(136\) 0 0
\(137\) 3.12633 0.267100 0.133550 0.991042i \(-0.457362\pi\)
0.133550 + 0.991042i \(0.457362\pi\)
\(138\) 0 0
\(139\) −6.26963 −0.531783 −0.265892 0.964003i \(-0.585666\pi\)
−0.265892 + 0.964003i \(0.585666\pi\)
\(140\) 0 0
\(141\) −7.85289 −0.661333
\(142\) 0 0
\(143\) −22.5548 −1.88612
\(144\) 0 0
\(145\) 5.10364 0.423834
\(146\) 0 0
\(147\) −14.2737 −1.17727
\(148\) 0 0
\(149\) −8.91391 −0.730256 −0.365128 0.930957i \(-0.618975\pi\)
−0.365128 + 0.930957i \(0.618975\pi\)
\(150\) 0 0
\(151\) 6.59727 0.536879 0.268439 0.963297i \(-0.413492\pi\)
0.268439 + 0.963297i \(0.413492\pi\)
\(152\) 0 0
\(153\) −3.06253 −0.247591
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) 18.8922 1.50776 0.753880 0.657012i \(-0.228180\pi\)
0.753880 + 0.657012i \(0.228180\pi\)
\(158\) 0 0
\(159\) 3.79468 0.300938
\(160\) 0 0
\(161\) −7.20109 −0.567525
\(162\) 0 0
\(163\) −20.5476 −1.60941 −0.804705 0.593675i \(-0.797677\pi\)
−0.804705 + 0.593675i \(0.797677\pi\)
\(164\) 0 0
\(165\) 13.1228 1.02160
\(166\) 0 0
\(167\) −23.7319 −1.83643 −0.918215 0.396082i \(-0.870370\pi\)
−0.918215 + 0.396082i \(0.870370\pi\)
\(168\) 0 0
\(169\) 3.55522 0.273478
\(170\) 0 0
\(171\) 18.7920 1.43706
\(172\) 0 0
\(173\) 16.9219 1.28655 0.643275 0.765635i \(-0.277575\pi\)
0.643275 + 0.765635i \(0.277575\pi\)
\(174\) 0 0
\(175\) 0.985130 0.0744688
\(176\) 0 0
\(177\) 0.696790 0.0523740
\(178\) 0 0
\(179\) 17.4267 1.30253 0.651267 0.758849i \(-0.274238\pi\)
0.651267 + 0.758849i \(0.274238\pi\)
\(180\) 0 0
\(181\) 4.75903 0.353736 0.176868 0.984235i \(-0.443403\pi\)
0.176868 + 0.984235i \(0.443403\pi\)
\(182\) 0 0
\(183\) 28.8109 2.12976
\(184\) 0 0
\(185\) −5.43822 −0.399826
\(186\) 0 0
\(187\) −6.51913 −0.476726
\(188\) 0 0
\(189\) −0.923226 −0.0671548
\(190\) 0 0
\(191\) 12.0286 0.870361 0.435181 0.900343i \(-0.356684\pi\)
0.435181 + 0.900343i \(0.356684\pi\)
\(192\) 0 0
\(193\) −11.9703 −0.861638 −0.430819 0.902438i \(-0.641775\pi\)
−0.430819 + 0.902438i \(0.641775\pi\)
\(194\) 0 0
\(195\) −9.63211 −0.689769
\(196\) 0 0
\(197\) 8.58050 0.611335 0.305668 0.952138i \(-0.401120\pi\)
0.305668 + 0.952138i \(0.401120\pi\)
\(198\) 0 0
\(199\) −11.8013 −0.836573 −0.418286 0.908315i \(-0.637369\pi\)
−0.418286 + 0.908315i \(0.637369\pi\)
\(200\) 0 0
\(201\) 14.8547 1.04777
\(202\) 0 0
\(203\) 5.02775 0.352879
\(204\) 0 0
\(205\) 0.0935165 0.00653148
\(206\) 0 0
\(207\) −19.0356 −1.32306
\(208\) 0 0
\(209\) 40.0022 2.76701
\(210\) 0 0
\(211\) −14.1650 −0.975161 −0.487580 0.873078i \(-0.662120\pi\)
−0.487580 + 0.873078i \(0.662120\pi\)
\(212\) 0 0
\(213\) 15.3441 1.05136
\(214\) 0 0
\(215\) 2.25971 0.154111
\(216\) 0 0
\(217\) 0.985130 0.0668750
\(218\) 0 0
\(219\) −3.36451 −0.227353
\(220\) 0 0
\(221\) 4.78505 0.321877
\(222\) 0 0
\(223\) −2.37262 −0.158883 −0.0794413 0.996840i \(-0.525314\pi\)
−0.0794413 + 0.996840i \(0.525314\pi\)
\(224\) 0 0
\(225\) 2.60412 0.173608
\(226\) 0 0
\(227\) 29.8943 1.98415 0.992077 0.125630i \(-0.0400954\pi\)
0.992077 + 0.125630i \(0.0400954\pi\)
\(228\) 0 0
\(229\) −20.1903 −1.33421 −0.667107 0.744962i \(-0.732467\pi\)
−0.667107 + 0.744962i \(0.732467\pi\)
\(230\) 0 0
\(231\) 12.9276 0.850575
\(232\) 0 0
\(233\) −9.33952 −0.611853 −0.305926 0.952055i \(-0.598966\pi\)
−0.305926 + 0.952055i \(0.598966\pi\)
\(234\) 0 0
\(235\) −3.31723 −0.216392
\(236\) 0 0
\(237\) −21.3932 −1.38964
\(238\) 0 0
\(239\) −26.5702 −1.71868 −0.859340 0.511404i \(-0.829125\pi\)
−0.859340 + 0.511404i \(0.829125\pi\)
\(240\) 0 0
\(241\) 12.0879 0.778651 0.389326 0.921100i \(-0.372708\pi\)
0.389326 + 0.921100i \(0.372708\pi\)
\(242\) 0 0
\(243\) −20.9347 −1.34296
\(244\) 0 0
\(245\) −6.02952 −0.385212
\(246\) 0 0
\(247\) −29.3616 −1.86824
\(248\) 0 0
\(249\) −40.0250 −2.53648
\(250\) 0 0
\(251\) 17.7604 1.12103 0.560513 0.828146i \(-0.310604\pi\)
0.560513 + 0.828146i \(0.310604\pi\)
\(252\) 0 0
\(253\) −40.5206 −2.54751
\(254\) 0 0
\(255\) −2.78402 −0.174342
\(256\) 0 0
\(257\) −0.631221 −0.0393745 −0.0196873 0.999806i \(-0.506267\pi\)
−0.0196873 + 0.999806i \(0.506267\pi\)
\(258\) 0 0
\(259\) −5.35735 −0.332890
\(260\) 0 0
\(261\) 13.2905 0.822662
\(262\) 0 0
\(263\) 11.8054 0.727951 0.363975 0.931409i \(-0.381419\pi\)
0.363975 + 0.931409i \(0.381419\pi\)
\(264\) 0 0
\(265\) 1.60296 0.0984689
\(266\) 0 0
\(267\) −29.6863 −1.81677
\(268\) 0 0
\(269\) −7.44393 −0.453864 −0.226932 0.973911i \(-0.572870\pi\)
−0.226932 + 0.973911i \(0.572870\pi\)
\(270\) 0 0
\(271\) −6.55308 −0.398071 −0.199036 0.979992i \(-0.563781\pi\)
−0.199036 + 0.979992i \(0.563781\pi\)
\(272\) 0 0
\(273\) −9.48888 −0.574293
\(274\) 0 0
\(275\) 5.54333 0.334276
\(276\) 0 0
\(277\) 6.18448 0.371589 0.185795 0.982589i \(-0.440514\pi\)
0.185795 + 0.982589i \(0.440514\pi\)
\(278\) 0 0
\(279\) 2.60412 0.155905
\(280\) 0 0
\(281\) −5.54092 −0.330544 −0.165272 0.986248i \(-0.552850\pi\)
−0.165272 + 0.986248i \(0.552850\pi\)
\(282\) 0 0
\(283\) 21.6103 1.28460 0.642299 0.766454i \(-0.277981\pi\)
0.642299 + 0.766454i \(0.277981\pi\)
\(284\) 0 0
\(285\) 17.0831 1.01191
\(286\) 0 0
\(287\) 0.0921259 0.00543802
\(288\) 0 0
\(289\) −15.6170 −0.918644
\(290\) 0 0
\(291\) 22.6845 1.32979
\(292\) 0 0
\(293\) −3.82098 −0.223224 −0.111612 0.993752i \(-0.535601\pi\)
−0.111612 + 0.993752i \(0.535601\pi\)
\(294\) 0 0
\(295\) 0.294339 0.0171371
\(296\) 0 0
\(297\) −5.19500 −0.301444
\(298\) 0 0
\(299\) 29.7421 1.72003
\(300\) 0 0
\(301\) 2.22611 0.128311
\(302\) 0 0
\(303\) 15.2737 0.877448
\(304\) 0 0
\(305\) 12.1703 0.696872
\(306\) 0 0
\(307\) −32.6735 −1.86478 −0.932389 0.361457i \(-0.882279\pi\)
−0.932389 + 0.361457i \(0.882279\pi\)
\(308\) 0 0
\(309\) −16.6410 −0.946673
\(310\) 0 0
\(311\) −29.1422 −1.65250 −0.826251 0.563303i \(-0.809531\pi\)
−0.826251 + 0.563303i \(0.809531\pi\)
\(312\) 0 0
\(313\) 6.53765 0.369530 0.184765 0.982783i \(-0.440848\pi\)
0.184765 + 0.982783i \(0.440848\pi\)
\(314\) 0 0
\(315\) 2.56540 0.144544
\(316\) 0 0
\(317\) 13.4685 0.756465 0.378232 0.925711i \(-0.376532\pi\)
0.378232 + 0.925711i \(0.376532\pi\)
\(318\) 0 0
\(319\) 28.2912 1.58400
\(320\) 0 0
\(321\) 23.3203 1.30161
\(322\) 0 0
\(323\) −8.48656 −0.472205
\(324\) 0 0
\(325\) −4.06881 −0.225697
\(326\) 0 0
\(327\) −33.1612 −1.83382
\(328\) 0 0
\(329\) −3.26790 −0.180165
\(330\) 0 0
\(331\) −31.4525 −1.72879 −0.864394 0.502816i \(-0.832297\pi\)
−0.864394 + 0.502816i \(0.832297\pi\)
\(332\) 0 0
\(333\) −14.1618 −0.776061
\(334\) 0 0
\(335\) 6.27495 0.342837
\(336\) 0 0
\(337\) −25.7087 −1.40044 −0.700221 0.713926i \(-0.746915\pi\)
−0.700221 + 0.713926i \(0.746915\pi\)
\(338\) 0 0
\(339\) 20.7629 1.12768
\(340\) 0 0
\(341\) 5.54333 0.300188
\(342\) 0 0
\(343\) −12.8358 −0.693066
\(344\) 0 0
\(345\) −17.3045 −0.931641
\(346\) 0 0
\(347\) −23.3800 −1.25510 −0.627552 0.778575i \(-0.715943\pi\)
−0.627552 + 0.778575i \(0.715943\pi\)
\(348\) 0 0
\(349\) −27.3696 −1.46506 −0.732532 0.680733i \(-0.761661\pi\)
−0.732532 + 0.680733i \(0.761661\pi\)
\(350\) 0 0
\(351\) 3.81313 0.203530
\(352\) 0 0
\(353\) −4.35420 −0.231751 −0.115875 0.993264i \(-0.536967\pi\)
−0.115875 + 0.993264i \(0.536967\pi\)
\(354\) 0 0
\(355\) 6.48166 0.344011
\(356\) 0 0
\(357\) −2.74262 −0.145155
\(358\) 0 0
\(359\) 30.7835 1.62469 0.812345 0.583177i \(-0.198191\pi\)
0.812345 + 0.583177i \(0.198191\pi\)
\(360\) 0 0
\(361\) 33.0745 1.74076
\(362\) 0 0
\(363\) 46.7035 2.45130
\(364\) 0 0
\(365\) −1.42124 −0.0743913
\(366\) 0 0
\(367\) 5.35665 0.279615 0.139807 0.990179i \(-0.455352\pi\)
0.139807 + 0.990179i \(0.455352\pi\)
\(368\) 0 0
\(369\) 0.243529 0.0126776
\(370\) 0 0
\(371\) 1.57912 0.0819839
\(372\) 0 0
\(373\) −35.6351 −1.84512 −0.922558 0.385859i \(-0.873905\pi\)
−0.922558 + 0.385859i \(0.873905\pi\)
\(374\) 0 0
\(375\) 2.36730 0.122247
\(376\) 0 0
\(377\) −20.7657 −1.06949
\(378\) 0 0
\(379\) −7.12193 −0.365829 −0.182914 0.983129i \(-0.558553\pi\)
−0.182914 + 0.983129i \(0.558553\pi\)
\(380\) 0 0
\(381\) −42.3442 −2.16936
\(382\) 0 0
\(383\) 21.9837 1.12331 0.561656 0.827371i \(-0.310164\pi\)
0.561656 + 0.827371i \(0.310164\pi\)
\(384\) 0 0
\(385\) 5.46090 0.278313
\(386\) 0 0
\(387\) 5.88457 0.299129
\(388\) 0 0
\(389\) 8.49500 0.430714 0.215357 0.976535i \(-0.430909\pi\)
0.215357 + 0.976535i \(0.430909\pi\)
\(390\) 0 0
\(391\) 8.59653 0.434745
\(392\) 0 0
\(393\) −11.5150 −0.580857
\(394\) 0 0
\(395\) −9.03697 −0.454699
\(396\) 0 0
\(397\) 3.50316 0.175818 0.0879092 0.996128i \(-0.471981\pi\)
0.0879092 + 0.996128i \(0.471981\pi\)
\(398\) 0 0
\(399\) 16.8291 0.842507
\(400\) 0 0
\(401\) 22.1260 1.10492 0.552459 0.833540i \(-0.313690\pi\)
0.552459 + 0.833540i \(0.313690\pi\)
\(402\) 0 0
\(403\) −4.06881 −0.202682
\(404\) 0 0
\(405\) −10.0309 −0.498440
\(406\) 0 0
\(407\) −30.1459 −1.49427
\(408\) 0 0
\(409\) 39.2014 1.93838 0.969192 0.246308i \(-0.0792174\pi\)
0.969192 + 0.246308i \(0.0792174\pi\)
\(410\) 0 0
\(411\) 7.40097 0.365063
\(412\) 0 0
\(413\) 0.289962 0.0142681
\(414\) 0 0
\(415\) −16.9074 −0.829953
\(416\) 0 0
\(417\) −14.8421 −0.726822
\(418\) 0 0
\(419\) −1.07894 −0.0527094 −0.0263547 0.999653i \(-0.508390\pi\)
−0.0263547 + 0.999653i \(0.508390\pi\)
\(420\) 0 0
\(421\) −11.1898 −0.545356 −0.272678 0.962105i \(-0.587909\pi\)
−0.272678 + 0.962105i \(0.587909\pi\)
\(422\) 0 0
\(423\) −8.63848 −0.420017
\(424\) 0 0
\(425\) −1.17603 −0.0570459
\(426\) 0 0
\(427\) 11.9894 0.580207
\(428\) 0 0
\(429\) −53.3940 −2.57789
\(430\) 0 0
\(431\) 0.456098 0.0219695 0.0109847 0.999940i \(-0.496503\pi\)
0.0109847 + 0.999940i \(0.496503\pi\)
\(432\) 0 0
\(433\) 32.4769 1.56074 0.780371 0.625317i \(-0.215030\pi\)
0.780371 + 0.625317i \(0.215030\pi\)
\(434\) 0 0
\(435\) 12.0819 0.579281
\(436\) 0 0
\(437\) −52.7493 −2.52334
\(438\) 0 0
\(439\) 1.14026 0.0544217 0.0272109 0.999630i \(-0.491337\pi\)
0.0272109 + 0.999630i \(0.491337\pi\)
\(440\) 0 0
\(441\) −15.7016 −0.747696
\(442\) 0 0
\(443\) −25.8488 −1.22811 −0.614057 0.789262i \(-0.710463\pi\)
−0.614057 + 0.789262i \(0.710463\pi\)
\(444\) 0 0
\(445\) −12.5401 −0.594459
\(446\) 0 0
\(447\) −21.1019 −0.998086
\(448\) 0 0
\(449\) 19.4353 0.917207 0.458603 0.888641i \(-0.348350\pi\)
0.458603 + 0.888641i \(0.348350\pi\)
\(450\) 0 0
\(451\) 0.518393 0.0244102
\(452\) 0 0
\(453\) 15.6177 0.733786
\(454\) 0 0
\(455\) −4.00831 −0.187912
\(456\) 0 0
\(457\) 14.2862 0.668282 0.334141 0.942523i \(-0.391554\pi\)
0.334141 + 0.942523i \(0.391554\pi\)
\(458\) 0 0
\(459\) 1.10213 0.0514431
\(460\) 0 0
\(461\) −13.4177 −0.624923 −0.312461 0.949930i \(-0.601153\pi\)
−0.312461 + 0.949930i \(0.601153\pi\)
\(462\) 0 0
\(463\) −6.83204 −0.317512 −0.158756 0.987318i \(-0.550748\pi\)
−0.158756 + 0.987318i \(0.550748\pi\)
\(464\) 0 0
\(465\) 2.36730 0.109781
\(466\) 0 0
\(467\) 5.64299 0.261126 0.130563 0.991440i \(-0.458321\pi\)
0.130563 + 0.991440i \(0.458321\pi\)
\(468\) 0 0
\(469\) 6.18164 0.285442
\(470\) 0 0
\(471\) 44.7235 2.06075
\(472\) 0 0
\(473\) 12.5263 0.575962
\(474\) 0 0
\(475\) 7.21627 0.331105
\(476\) 0 0
\(477\) 4.17430 0.191128
\(478\) 0 0
\(479\) −8.17987 −0.373748 −0.186874 0.982384i \(-0.559836\pi\)
−0.186874 + 0.982384i \(0.559836\pi\)
\(480\) 0 0
\(481\) 22.1271 1.00891
\(482\) 0 0
\(483\) −17.0472 −0.775672
\(484\) 0 0
\(485\) 9.58240 0.435115
\(486\) 0 0
\(487\) 35.1782 1.59408 0.797038 0.603929i \(-0.206399\pi\)
0.797038 + 0.603929i \(0.206399\pi\)
\(488\) 0 0
\(489\) −48.6423 −2.19968
\(490\) 0 0
\(491\) 1.43574 0.0647942 0.0323971 0.999475i \(-0.489686\pi\)
0.0323971 + 0.999475i \(0.489686\pi\)
\(492\) 0 0
\(493\) −6.00204 −0.270318
\(494\) 0 0
\(495\) 14.4355 0.648828
\(496\) 0 0
\(497\) 6.38528 0.286419
\(498\) 0 0
\(499\) 39.8021 1.78179 0.890893 0.454213i \(-0.150079\pi\)
0.890893 + 0.454213i \(0.150079\pi\)
\(500\) 0 0
\(501\) −56.1806 −2.50996
\(502\) 0 0
\(503\) 27.1288 1.20961 0.604807 0.796372i \(-0.293250\pi\)
0.604807 + 0.796372i \(0.293250\pi\)
\(504\) 0 0
\(505\) 6.45192 0.287107
\(506\) 0 0
\(507\) 8.41627 0.373780
\(508\) 0 0
\(509\) 11.9357 0.529039 0.264519 0.964380i \(-0.414787\pi\)
0.264519 + 0.964380i \(0.414787\pi\)
\(510\) 0 0
\(511\) −1.40011 −0.0619372
\(512\) 0 0
\(513\) −6.76281 −0.298585
\(514\) 0 0
\(515\) −7.02952 −0.309758
\(516\) 0 0
\(517\) −18.3885 −0.808726
\(518\) 0 0
\(519\) 40.0593 1.75841
\(520\) 0 0
\(521\) 2.94950 0.129220 0.0646100 0.997911i \(-0.479420\pi\)
0.0646100 + 0.997911i \(0.479420\pi\)
\(522\) 0 0
\(523\) −15.7057 −0.686763 −0.343382 0.939196i \(-0.611572\pi\)
−0.343382 + 0.939196i \(0.611572\pi\)
\(524\) 0 0
\(525\) 2.33210 0.101781
\(526\) 0 0
\(527\) −1.17603 −0.0512287
\(528\) 0 0
\(529\) 30.4329 1.32317
\(530\) 0 0
\(531\) 0.766495 0.0332631
\(532\) 0 0
\(533\) −0.380501 −0.0164813
\(534\) 0 0
\(535\) 9.85101 0.425896
\(536\) 0 0
\(537\) 41.2543 1.78025
\(538\) 0 0
\(539\) −33.4236 −1.43966
\(540\) 0 0
\(541\) 8.80080 0.378376 0.189188 0.981941i \(-0.439414\pi\)
0.189188 + 0.981941i \(0.439414\pi\)
\(542\) 0 0
\(543\) 11.2661 0.483473
\(544\) 0 0
\(545\) −14.0080 −0.600038
\(546\) 0 0
\(547\) 14.6926 0.628212 0.314106 0.949388i \(-0.398295\pi\)
0.314106 + 0.949388i \(0.398295\pi\)
\(548\) 0 0
\(549\) 31.6931 1.35263
\(550\) 0 0
\(551\) 36.8292 1.56898
\(552\) 0 0
\(553\) −8.90259 −0.378576
\(554\) 0 0
\(555\) −12.8739 −0.546467
\(556\) 0 0
\(557\) 19.4660 0.824802 0.412401 0.911002i \(-0.364690\pi\)
0.412401 + 0.911002i \(0.364690\pi\)
\(558\) 0 0
\(559\) −9.19434 −0.388879
\(560\) 0 0
\(561\) −15.4328 −0.651572
\(562\) 0 0
\(563\) 24.3805 1.02752 0.513758 0.857935i \(-0.328253\pi\)
0.513758 + 0.857935i \(0.328253\pi\)
\(564\) 0 0
\(565\) 8.77069 0.368986
\(566\) 0 0
\(567\) −9.88175 −0.414995
\(568\) 0 0
\(569\) −27.7112 −1.16171 −0.580857 0.814006i \(-0.697282\pi\)
−0.580857 + 0.814006i \(0.697282\pi\)
\(570\) 0 0
\(571\) −38.1619 −1.59703 −0.798513 0.601978i \(-0.794379\pi\)
−0.798513 + 0.601978i \(0.794379\pi\)
\(572\) 0 0
\(573\) 28.4754 1.18958
\(574\) 0 0
\(575\) −7.30978 −0.304839
\(576\) 0 0
\(577\) 0.287423 0.0119656 0.00598279 0.999982i \(-0.498096\pi\)
0.00598279 + 0.999982i \(0.498096\pi\)
\(578\) 0 0
\(579\) −28.3372 −1.17766
\(580\) 0 0
\(581\) −16.6560 −0.691008
\(582\) 0 0
\(583\) 8.88573 0.368009
\(584\) 0 0
\(585\) −10.5957 −0.438077
\(586\) 0 0
\(587\) 16.1557 0.666817 0.333409 0.942782i \(-0.391801\pi\)
0.333409 + 0.942782i \(0.391801\pi\)
\(588\) 0 0
\(589\) 7.21627 0.297341
\(590\) 0 0
\(591\) 20.3126 0.835550
\(592\) 0 0
\(593\) 31.1709 1.28003 0.640017 0.768361i \(-0.278927\pi\)
0.640017 + 0.768361i \(0.278927\pi\)
\(594\) 0 0
\(595\) −1.15854 −0.0474957
\(596\) 0 0
\(597\) −27.9373 −1.14340
\(598\) 0 0
\(599\) 33.0516 1.35045 0.675226 0.737611i \(-0.264046\pi\)
0.675226 + 0.737611i \(0.264046\pi\)
\(600\) 0 0
\(601\) −1.59108 −0.0649014 −0.0324507 0.999473i \(-0.510331\pi\)
−0.0324507 + 0.999473i \(0.510331\pi\)
\(602\) 0 0
\(603\) 16.3407 0.665447
\(604\) 0 0
\(605\) 19.7286 0.802080
\(606\) 0 0
\(607\) 0.476139 0.0193259 0.00966295 0.999953i \(-0.496924\pi\)
0.00966295 + 0.999953i \(0.496924\pi\)
\(608\) 0 0
\(609\) 11.9022 0.482302
\(610\) 0 0
\(611\) 13.4972 0.546038
\(612\) 0 0
\(613\) −8.06261 −0.325646 −0.162823 0.986655i \(-0.552060\pi\)
−0.162823 + 0.986655i \(0.552060\pi\)
\(614\) 0 0
\(615\) 0.221382 0.00892698
\(616\) 0 0
\(617\) 18.0955 0.728497 0.364248 0.931302i \(-0.381326\pi\)
0.364248 + 0.931302i \(0.381326\pi\)
\(618\) 0 0
\(619\) 33.3665 1.34111 0.670556 0.741859i \(-0.266056\pi\)
0.670556 + 0.741859i \(0.266056\pi\)
\(620\) 0 0
\(621\) 6.85045 0.274899
\(622\) 0 0
\(623\) −12.3537 −0.494939
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 94.6973 3.78184
\(628\) 0 0
\(629\) 6.39551 0.255006
\(630\) 0 0
\(631\) 4.67166 0.185976 0.0929879 0.995667i \(-0.470358\pi\)
0.0929879 + 0.995667i \(0.470358\pi\)
\(632\) 0 0
\(633\) −33.5329 −1.33281
\(634\) 0 0
\(635\) −17.8871 −0.709828
\(636\) 0 0
\(637\) 24.5330 0.972032
\(638\) 0 0
\(639\) 16.8790 0.667725
\(640\) 0 0
\(641\) −9.24646 −0.365213 −0.182607 0.983186i \(-0.558453\pi\)
−0.182607 + 0.983186i \(0.558453\pi\)
\(642\) 0 0
\(643\) 45.0412 1.77625 0.888127 0.459599i \(-0.152007\pi\)
0.888127 + 0.459599i \(0.152007\pi\)
\(644\) 0 0
\(645\) 5.34942 0.210633
\(646\) 0 0
\(647\) 35.4197 1.39249 0.696245 0.717804i \(-0.254853\pi\)
0.696245 + 0.717804i \(0.254853\pi\)
\(648\) 0 0
\(649\) 1.63162 0.0640467
\(650\) 0 0
\(651\) 2.33210 0.0914022
\(652\) 0 0
\(653\) 21.7581 0.851462 0.425731 0.904850i \(-0.360017\pi\)
0.425731 + 0.904850i \(0.360017\pi\)
\(654\) 0 0
\(655\) −4.86420 −0.190060
\(656\) 0 0
\(657\) −3.70109 −0.144393
\(658\) 0 0
\(659\) 12.7766 0.497705 0.248852 0.968541i \(-0.419947\pi\)
0.248852 + 0.968541i \(0.419947\pi\)
\(660\) 0 0
\(661\) −16.4047 −0.638068 −0.319034 0.947743i \(-0.603358\pi\)
−0.319034 + 0.947743i \(0.603358\pi\)
\(662\) 0 0
\(663\) 11.3277 0.439930
\(664\) 0 0
\(665\) 7.10896 0.275674
\(666\) 0 0
\(667\) −37.3065 −1.44451
\(668\) 0 0
\(669\) −5.61671 −0.217155
\(670\) 0 0
\(671\) 67.4643 2.60443
\(672\) 0 0
\(673\) −23.6401 −0.911258 −0.455629 0.890170i \(-0.650586\pi\)
−0.455629 + 0.890170i \(0.650586\pi\)
\(674\) 0 0
\(675\) −0.937162 −0.0360714
\(676\) 0 0
\(677\) −30.6129 −1.17655 −0.588275 0.808661i \(-0.700193\pi\)
−0.588275 + 0.808661i \(0.700193\pi\)
\(678\) 0 0
\(679\) 9.43991 0.362271
\(680\) 0 0
\(681\) 70.7689 2.71187
\(682\) 0 0
\(683\) 12.0562 0.461319 0.230660 0.973035i \(-0.425912\pi\)
0.230660 + 0.973035i \(0.425912\pi\)
\(684\) 0 0
\(685\) 3.12633 0.119451
\(686\) 0 0
\(687\) −47.7966 −1.82355
\(688\) 0 0
\(689\) −6.52213 −0.248473
\(690\) 0 0
\(691\) −8.38794 −0.319092 −0.159546 0.987190i \(-0.551003\pi\)
−0.159546 + 0.987190i \(0.551003\pi\)
\(692\) 0 0
\(693\) 14.2209 0.540206
\(694\) 0 0
\(695\) −6.26963 −0.237821
\(696\) 0 0
\(697\) −0.109978 −0.00416573
\(698\) 0 0
\(699\) −22.1095 −0.836257
\(700\) 0 0
\(701\) 31.0951 1.17445 0.587224 0.809425i \(-0.300221\pi\)
0.587224 + 0.809425i \(0.300221\pi\)
\(702\) 0 0
\(703\) −39.2436 −1.48010
\(704\) 0 0
\(705\) −7.85289 −0.295757
\(706\) 0 0
\(707\) 6.35598 0.239041
\(708\) 0 0
\(709\) 19.3786 0.727778 0.363889 0.931442i \(-0.381449\pi\)
0.363889 + 0.931442i \(0.381449\pi\)
\(710\) 0 0
\(711\) −23.5334 −0.882570
\(712\) 0 0
\(713\) −7.30978 −0.273754
\(714\) 0 0
\(715\) −22.5548 −0.843501
\(716\) 0 0
\(717\) −62.8996 −2.34903
\(718\) 0 0
\(719\) −39.5478 −1.47488 −0.737441 0.675411i \(-0.763966\pi\)
−0.737441 + 0.675411i \(0.763966\pi\)
\(720\) 0 0
\(721\) −6.92499 −0.257900
\(722\) 0 0
\(723\) 28.6158 1.06423
\(724\) 0 0
\(725\) 5.10364 0.189544
\(726\) 0 0
\(727\) 17.5323 0.650238 0.325119 0.945673i \(-0.394596\pi\)
0.325119 + 0.945673i \(0.394596\pi\)
\(728\) 0 0
\(729\) −19.4661 −0.720966
\(730\) 0 0
\(731\) −2.65749 −0.0982909
\(732\) 0 0
\(733\) 35.0182 1.29342 0.646712 0.762734i \(-0.276143\pi\)
0.646712 + 0.762734i \(0.276143\pi\)
\(734\) 0 0
\(735\) −14.2737 −0.526493
\(736\) 0 0
\(737\) 34.7842 1.28129
\(738\) 0 0
\(739\) 15.8284 0.582255 0.291128 0.956684i \(-0.405970\pi\)
0.291128 + 0.956684i \(0.405970\pi\)
\(740\) 0 0
\(741\) −69.5078 −2.55343
\(742\) 0 0
\(743\) 27.6782 1.01542 0.507708 0.861529i \(-0.330493\pi\)
0.507708 + 0.861529i \(0.330493\pi\)
\(744\) 0 0
\(745\) −8.91391 −0.326580
\(746\) 0 0
\(747\) −44.0290 −1.61094
\(748\) 0 0
\(749\) 9.70453 0.354596
\(750\) 0 0
\(751\) 25.9078 0.945389 0.472694 0.881226i \(-0.343281\pi\)
0.472694 + 0.881226i \(0.343281\pi\)
\(752\) 0 0
\(753\) 42.0442 1.53218
\(754\) 0 0
\(755\) 6.59727 0.240099
\(756\) 0 0
\(757\) 10.0908 0.366755 0.183378 0.983043i \(-0.441297\pi\)
0.183378 + 0.983043i \(0.441297\pi\)
\(758\) 0 0
\(759\) −95.9245 −3.48184
\(760\) 0 0
\(761\) 14.1305 0.512229 0.256114 0.966646i \(-0.417558\pi\)
0.256114 + 0.966646i \(0.417558\pi\)
\(762\) 0 0
\(763\) −13.7997 −0.499583
\(764\) 0 0
\(765\) −3.06253 −0.110726
\(766\) 0 0
\(767\) −1.19761 −0.0432432
\(768\) 0 0
\(769\) 48.1352 1.73580 0.867900 0.496739i \(-0.165469\pi\)
0.867900 + 0.496739i \(0.165469\pi\)
\(770\) 0 0
\(771\) −1.49429 −0.0538156
\(772\) 0 0
\(773\) 15.3836 0.553310 0.276655 0.960969i \(-0.410774\pi\)
0.276655 + 0.960969i \(0.410774\pi\)
\(774\) 0 0
\(775\) 1.00000 0.0359211
\(776\) 0 0
\(777\) −12.6825 −0.454981
\(778\) 0 0
\(779\) 0.674840 0.0241787
\(780\) 0 0
\(781\) 35.9300 1.28568
\(782\) 0 0
\(783\) −4.78294 −0.170928
\(784\) 0 0
\(785\) 18.8922 0.674291
\(786\) 0 0
\(787\) −49.7918 −1.77489 −0.887444 0.460917i \(-0.847521\pi\)
−0.887444 + 0.460917i \(0.847521\pi\)
\(788\) 0 0
\(789\) 27.9469 0.994936
\(790\) 0 0
\(791\) 8.64027 0.307213
\(792\) 0 0
\(793\) −49.5188 −1.75847
\(794\) 0 0
\(795\) 3.79468 0.134584
\(796\) 0 0
\(797\) 49.8424 1.76551 0.882755 0.469834i \(-0.155686\pi\)
0.882755 + 0.469834i \(0.155686\pi\)
\(798\) 0 0
\(799\) 3.90117 0.138013
\(800\) 0 0
\(801\) −32.6560 −1.15384
\(802\) 0 0
\(803\) −7.87842 −0.278024
\(804\) 0 0
\(805\) −7.20109 −0.253805
\(806\) 0 0
\(807\) −17.6220 −0.620325
\(808\) 0 0
\(809\) −6.04065 −0.212378 −0.106189 0.994346i \(-0.533865\pi\)
−0.106189 + 0.994346i \(0.533865\pi\)
\(810\) 0 0
\(811\) −51.5479 −1.81009 −0.905046 0.425313i \(-0.860164\pi\)
−0.905046 + 0.425313i \(0.860164\pi\)
\(812\) 0 0
\(813\) −15.5131 −0.544069
\(814\) 0 0
\(815\) −20.5476 −0.719750
\(816\) 0 0
\(817\) 16.3067 0.570499
\(818\) 0 0
\(819\) −10.4381 −0.364738
\(820\) 0 0
\(821\) 31.9355 1.11456 0.557278 0.830326i \(-0.311846\pi\)
0.557278 + 0.830326i \(0.311846\pi\)
\(822\) 0 0
\(823\) 36.3667 1.26766 0.633831 0.773472i \(-0.281481\pi\)
0.633831 + 0.773472i \(0.281481\pi\)
\(824\) 0 0
\(825\) 13.1228 0.456876
\(826\) 0 0
\(827\) 3.23122 0.112361 0.0561803 0.998421i \(-0.482108\pi\)
0.0561803 + 0.998421i \(0.482108\pi\)
\(828\) 0 0
\(829\) 8.95101 0.310881 0.155441 0.987845i \(-0.450320\pi\)
0.155441 + 0.987845i \(0.450320\pi\)
\(830\) 0 0
\(831\) 14.6405 0.507874
\(832\) 0 0
\(833\) 7.09090 0.245685
\(834\) 0 0
\(835\) −23.7319 −0.821277
\(836\) 0 0
\(837\) −0.937162 −0.0323930
\(838\) 0 0
\(839\) 54.9886 1.89842 0.949209 0.314647i \(-0.101886\pi\)
0.949209 + 0.314647i \(0.101886\pi\)
\(840\) 0 0
\(841\) −2.95284 −0.101822
\(842\) 0 0
\(843\) −13.1170 −0.451775
\(844\) 0 0
\(845\) 3.55522 0.122303
\(846\) 0 0
\(847\) 19.4352 0.667801
\(848\) 0 0
\(849\) 51.1581 1.75574
\(850\) 0 0
\(851\) 39.7522 1.36269
\(852\) 0 0
\(853\) 17.3518 0.594116 0.297058 0.954859i \(-0.403995\pi\)
0.297058 + 0.954859i \(0.403995\pi\)
\(854\) 0 0
\(855\) 18.7920 0.642674
\(856\) 0 0
\(857\) 13.6870 0.467539 0.233770 0.972292i \(-0.424894\pi\)
0.233770 + 0.972292i \(0.424894\pi\)
\(858\) 0 0
\(859\) −50.2602 −1.71485 −0.857427 0.514605i \(-0.827938\pi\)
−0.857427 + 0.514605i \(0.827938\pi\)
\(860\) 0 0
\(861\) 0.218090 0.00743249
\(862\) 0 0
\(863\) 6.65178 0.226429 0.113215 0.993571i \(-0.463885\pi\)
0.113215 + 0.993571i \(0.463885\pi\)
\(864\) 0 0
\(865\) 16.9219 0.575363
\(866\) 0 0
\(867\) −36.9701 −1.25557
\(868\) 0 0
\(869\) −50.0949 −1.69935
\(870\) 0 0
\(871\) −25.5316 −0.865105
\(872\) 0 0
\(873\) 24.9538 0.844557
\(874\) 0 0
\(875\) 0.985130 0.0333035
\(876\) 0 0
\(877\) 8.33808 0.281557 0.140778 0.990041i \(-0.455039\pi\)
0.140778 + 0.990041i \(0.455039\pi\)
\(878\) 0 0
\(879\) −9.04543 −0.305095
\(880\) 0 0
\(881\) 46.3790 1.56255 0.781275 0.624187i \(-0.214570\pi\)
0.781275 + 0.624187i \(0.214570\pi\)
\(882\) 0 0
\(883\) −36.5638 −1.23047 −0.615236 0.788343i \(-0.710939\pi\)
−0.615236 + 0.788343i \(0.710939\pi\)
\(884\) 0 0
\(885\) 0.696790 0.0234223
\(886\) 0 0
\(887\) 22.3750 0.751280 0.375640 0.926766i \(-0.377423\pi\)
0.375640 + 0.926766i \(0.377423\pi\)
\(888\) 0 0
\(889\) −17.6211 −0.590993
\(890\) 0 0
\(891\) −55.6047 −1.86283
\(892\) 0 0
\(893\) −23.9380 −0.801055
\(894\) 0 0
\(895\) 17.4267 0.582510
\(896\) 0 0
\(897\) 70.4086 2.35087
\(898\) 0 0
\(899\) 5.10364 0.170216
\(900\) 0 0
\(901\) −1.88513 −0.0628027
\(902\) 0 0
\(903\) 5.26988 0.175370
\(904\) 0 0
\(905\) 4.75903 0.158195
\(906\) 0 0
\(907\) −21.3451 −0.708753 −0.354377 0.935103i \(-0.615307\pi\)
−0.354377 + 0.935103i \(0.615307\pi\)
\(908\) 0 0
\(909\) 16.8016 0.557274
\(910\) 0 0
\(911\) 47.3928 1.57019 0.785097 0.619373i \(-0.212613\pi\)
0.785097 + 0.619373i \(0.212613\pi\)
\(912\) 0 0
\(913\) −93.7235 −3.10180
\(914\) 0 0
\(915\) 28.8109 0.952459
\(916\) 0 0
\(917\) −4.79187 −0.158242
\(918\) 0 0
\(919\) −54.7372 −1.80561 −0.902807 0.430045i \(-0.858498\pi\)
−0.902807 + 0.430045i \(0.858498\pi\)
\(920\) 0 0
\(921\) −77.3482 −2.54871
\(922\) 0 0
\(923\) −26.3726 −0.868066
\(924\) 0 0
\(925\) −5.43822 −0.178807
\(926\) 0 0
\(927\) −18.3057 −0.601239
\(928\) 0 0
\(929\) −57.5495 −1.88814 −0.944069 0.329747i \(-0.893036\pi\)
−0.944069 + 0.329747i \(0.893036\pi\)
\(930\) 0 0
\(931\) −43.5106 −1.42600
\(932\) 0 0
\(933\) −68.9884 −2.25858
\(934\) 0 0
\(935\) −6.51913 −0.213198
\(936\) 0 0
\(937\) 15.8831 0.518878 0.259439 0.965760i \(-0.416462\pi\)
0.259439 + 0.965760i \(0.416462\pi\)
\(938\) 0 0
\(939\) 15.4766 0.505060
\(940\) 0 0
\(941\) −11.9126 −0.388341 −0.194170 0.980968i \(-0.562201\pi\)
−0.194170 + 0.980968i \(0.562201\pi\)
\(942\) 0 0
\(943\) −0.683586 −0.0222606
\(944\) 0 0
\(945\) −0.923226 −0.0300325
\(946\) 0 0
\(947\) 13.2974 0.432108 0.216054 0.976381i \(-0.430681\pi\)
0.216054 + 0.976381i \(0.430681\pi\)
\(948\) 0 0
\(949\) 5.78277 0.187717
\(950\) 0 0
\(951\) 31.8839 1.03391
\(952\) 0 0
\(953\) −36.3936 −1.17890 −0.589452 0.807803i \(-0.700656\pi\)
−0.589452 + 0.807803i \(0.700656\pi\)
\(954\) 0 0
\(955\) 12.0286 0.389237
\(956\) 0 0
\(957\) 66.9738 2.16496
\(958\) 0 0
\(959\) 3.07984 0.0994533
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 25.6532 0.826664
\(964\) 0 0
\(965\) −11.9703 −0.385336
\(966\) 0 0
\(967\) 23.8574 0.767201 0.383600 0.923499i \(-0.374684\pi\)
0.383600 + 0.923499i \(0.374684\pi\)
\(968\) 0 0
\(969\) −20.0902 −0.645392
\(970\) 0 0
\(971\) −6.71681 −0.215553 −0.107776 0.994175i \(-0.534373\pi\)
−0.107776 + 0.994175i \(0.534373\pi\)
\(972\) 0 0
\(973\) −6.17640 −0.198006
\(974\) 0 0
\(975\) −9.63211 −0.308474
\(976\) 0 0
\(977\) 28.5668 0.913933 0.456966 0.889484i \(-0.348936\pi\)
0.456966 + 0.889484i \(0.348936\pi\)
\(978\) 0 0
\(979\) −69.5141 −2.22168
\(980\) 0 0
\(981\) −36.4786 −1.16467
\(982\) 0 0
\(983\) −24.4066 −0.778451 −0.389225 0.921143i \(-0.627257\pi\)
−0.389225 + 0.921143i \(0.627257\pi\)
\(984\) 0 0
\(985\) 8.58050 0.273397
\(986\) 0 0
\(987\) −7.73612 −0.246243
\(988\) 0 0
\(989\) −16.5180 −0.525242
\(990\) 0 0
\(991\) 8.11038 0.257635 0.128817 0.991668i \(-0.458882\pi\)
0.128817 + 0.991668i \(0.458882\pi\)
\(992\) 0 0
\(993\) −74.4577 −2.36284
\(994\) 0 0
\(995\) −11.8013 −0.374127
\(996\) 0 0
\(997\) −32.4400 −1.02738 −0.513692 0.857974i \(-0.671723\pi\)
−0.513692 + 0.857974i \(0.671723\pi\)
\(998\) 0 0
\(999\) 5.09649 0.161246
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1240.2.a.m.1.5 6
4.3 odd 2 2480.2.a.ba.1.2 6
5.4 even 2 6200.2.a.w.1.2 6
8.3 odd 2 9920.2.a.co.1.5 6
8.5 even 2 9920.2.a.cp.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1240.2.a.m.1.5 6 1.1 even 1 trivial
2480.2.a.ba.1.2 6 4.3 odd 2
6200.2.a.w.1.2 6 5.4 even 2
9920.2.a.co.1.5 6 8.3 odd 2
9920.2.a.cp.1.2 6 8.5 even 2