Properties

Label 1232.2.q.m.177.3
Level $1232$
Weight $2$
Character 1232.177
Analytic conductor $9.838$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1232,2,Mod(177,1232)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1232.177"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1232, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1232 = 2^{4} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1232.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.83756952902\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 177.3
Root \(-0.766044 - 0.642788i\) of defining polynomial
Character \(\chi\) \(=\) 1232.177
Dual form 1232.2.q.m.529.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.43969 + 2.49362i) q^{3} +(-1.17365 + 2.03282i) q^{5} +(-2.05303 + 1.66885i) q^{7} +(-2.64543 + 4.58202i) q^{9} +(0.500000 + 0.866025i) q^{11} -0.184793 q^{13} -6.75877 q^{15} +(1.96064 + 3.39592i) q^{17} +(0.386659 - 0.669713i) q^{19} +(-7.11721 - 2.71686i) q^{21} +(4.17752 - 7.23567i) q^{23} +(-0.254900 - 0.441500i) q^{25} -6.59627 q^{27} -8.17024 q^{29} +(1.32635 + 2.29731i) q^{31} +(-1.43969 + 2.49362i) q^{33} +(-0.982926 - 6.13208i) q^{35} +(3.41147 - 5.90885i) q^{37} +(-0.266044 - 0.460802i) q^{39} +0.426022 q^{41} -1.18479 q^{43} +(-6.20961 - 10.7554i) q^{45} +(-3.84002 + 6.65111i) q^{47} +(1.42989 - 6.85240i) q^{49} +(-5.64543 + 9.77817i) q^{51} +(-3.27719 - 5.67626i) q^{53} -2.34730 q^{55} +2.22668 q^{57} +(0.102196 + 0.177009i) q^{59} +(-7.29086 + 12.6281i) q^{61} +(-2.21554 - 13.8219i) q^{63} +(0.216881 - 0.375650i) q^{65} +(1.87939 + 3.25519i) q^{67} +24.0574 q^{69} +9.96585 q^{71} +(-0.0603074 - 0.104455i) q^{73} +(0.733956 - 1.27125i) q^{75} +(-2.47178 - 0.943555i) q^{77} +(0.163848 - 0.283793i) q^{79} +(-1.56031 - 2.70253i) q^{81} -3.35504 q^{83} -9.20439 q^{85} +(-11.7626 - 20.3735i) q^{87} +(2.32635 - 4.02936i) q^{89} +(0.379385 - 0.308391i) q^{91} +(-3.81908 + 6.61484i) q^{93} +(0.907604 + 1.57202i) q^{95} +13.1206 q^{97} -5.29086 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 6 q^{5} + 3 q^{11} + 6 q^{13} - 18 q^{15} + 3 q^{17} + 9 q^{19} - 12 q^{21} - 3 q^{25} - 12 q^{27} - 6 q^{29} + 9 q^{31} - 3 q^{33} + 15 q^{35} + 3 q^{39} + 18 q^{41} - 3 q^{45} - 3 q^{47}+ \cdots + 90 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1232\mathbb{Z}\right)^\times\).

\(n\) \(309\) \(353\) \(463\) \(673\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.43969 + 2.49362i 0.831207 + 1.43969i 0.897082 + 0.441865i \(0.145683\pi\)
−0.0658748 + 0.997828i \(0.520984\pi\)
\(4\) 0 0
\(5\) −1.17365 + 2.03282i −0.524871 + 0.909104i 0.474709 + 0.880143i \(0.342553\pi\)
−0.999581 + 0.0289612i \(0.990780\pi\)
\(6\) 0 0
\(7\) −2.05303 + 1.66885i −0.775974 + 0.630765i
\(8\) 0 0
\(9\) −2.64543 + 4.58202i −0.881810 + 1.52734i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) 0 0
\(13\) −0.184793 −0.0512522 −0.0256261 0.999672i \(-0.508158\pi\)
−0.0256261 + 0.999672i \(0.508158\pi\)
\(14\) 0 0
\(15\) −6.75877 −1.74511
\(16\) 0 0
\(17\) 1.96064 + 3.39592i 0.475524 + 0.823632i 0.999607 0.0280351i \(-0.00892502\pi\)
−0.524083 + 0.851667i \(0.675592\pi\)
\(18\) 0 0
\(19\) 0.386659 0.669713i 0.0887057 0.153643i −0.818259 0.574850i \(-0.805060\pi\)
0.906964 + 0.421208i \(0.138394\pi\)
\(20\) 0 0
\(21\) −7.11721 2.71686i −1.55310 0.592867i
\(22\) 0 0
\(23\) 4.17752 7.23567i 0.871073 1.50874i 0.0101847 0.999948i \(-0.496758\pi\)
0.860888 0.508794i \(-0.169909\pi\)
\(24\) 0 0
\(25\) −0.254900 0.441500i −0.0509800 0.0883000i
\(26\) 0 0
\(27\) −6.59627 −1.26945
\(28\) 0 0
\(29\) −8.17024 −1.51718 −0.758588 0.651570i \(-0.774111\pi\)
−0.758588 + 0.651570i \(0.774111\pi\)
\(30\) 0 0
\(31\) 1.32635 + 2.29731i 0.238220 + 0.412609i 0.960204 0.279301i \(-0.0901028\pi\)
−0.721984 + 0.691910i \(0.756769\pi\)
\(32\) 0 0
\(33\) −1.43969 + 2.49362i −0.250618 + 0.434084i
\(34\) 0 0
\(35\) −0.982926 6.13208i −0.166145 1.03651i
\(36\) 0 0
\(37\) 3.41147 5.90885i 0.560843 0.971408i −0.436580 0.899665i \(-0.643811\pi\)
0.997423 0.0717431i \(-0.0228562\pi\)
\(38\) 0 0
\(39\) −0.266044 0.460802i −0.0426012 0.0737875i
\(40\) 0 0
\(41\) 0.426022 0.0665335 0.0332667 0.999447i \(-0.489409\pi\)
0.0332667 + 0.999447i \(0.489409\pi\)
\(42\) 0 0
\(43\) −1.18479 −0.180679 −0.0903396 0.995911i \(-0.528795\pi\)
−0.0903396 + 0.995911i \(0.528795\pi\)
\(44\) 0 0
\(45\) −6.20961 10.7554i −0.925674 1.60331i
\(46\) 0 0
\(47\) −3.84002 + 6.65111i −0.560125 + 0.970165i 0.437360 + 0.899286i \(0.355914\pi\)
−0.997485 + 0.0708782i \(0.977420\pi\)
\(48\) 0 0
\(49\) 1.42989 6.85240i 0.204270 0.978915i
\(50\) 0 0
\(51\) −5.64543 + 9.77817i −0.790518 + 1.36922i
\(52\) 0 0
\(53\) −3.27719 5.67626i −0.450157 0.779694i 0.548239 0.836322i \(-0.315298\pi\)
−0.998395 + 0.0566279i \(0.981965\pi\)
\(54\) 0 0
\(55\) −2.34730 −0.316509
\(56\) 0 0
\(57\) 2.22668 0.294931
\(58\) 0 0
\(59\) 0.102196 + 0.177009i 0.0133048 + 0.0230447i 0.872601 0.488433i \(-0.162431\pi\)
−0.859296 + 0.511478i \(0.829098\pi\)
\(60\) 0 0
\(61\) −7.29086 + 12.6281i −0.933499 + 1.61687i −0.156210 + 0.987724i \(0.549928\pi\)
−0.777289 + 0.629144i \(0.783406\pi\)
\(62\) 0 0
\(63\) −2.21554 13.8219i −0.279131 1.74139i
\(64\) 0 0
\(65\) 0.216881 0.375650i 0.0269008 0.0465936i
\(66\) 0 0
\(67\) 1.87939 + 3.25519i 0.229603 + 0.397685i 0.957691 0.287800i \(-0.0929237\pi\)
−0.728087 + 0.685485i \(0.759590\pi\)
\(68\) 0 0
\(69\) 24.0574 2.89617
\(70\) 0 0
\(71\) 9.96585 1.18273 0.591365 0.806404i \(-0.298589\pi\)
0.591365 + 0.806404i \(0.298589\pi\)
\(72\) 0 0
\(73\) −0.0603074 0.104455i −0.00705844 0.0122256i 0.862475 0.506100i \(-0.168913\pi\)
−0.869533 + 0.493875i \(0.835580\pi\)
\(74\) 0 0
\(75\) 0.733956 1.27125i 0.0847499 0.146791i
\(76\) 0 0
\(77\) −2.47178 0.943555i −0.281686 0.107528i
\(78\) 0 0
\(79\) 0.163848 0.283793i 0.0184343 0.0319292i −0.856661 0.515880i \(-0.827465\pi\)
0.875095 + 0.483950i \(0.160799\pi\)
\(80\) 0 0
\(81\) −1.56031 2.70253i −0.173367 0.300281i
\(82\) 0 0
\(83\) −3.35504 −0.368263 −0.184132 0.982902i \(-0.558947\pi\)
−0.184132 + 0.982902i \(0.558947\pi\)
\(84\) 0 0
\(85\) −9.20439 −0.998357
\(86\) 0 0
\(87\) −11.7626 20.3735i −1.26109 2.18427i
\(88\) 0 0
\(89\) 2.32635 4.02936i 0.246593 0.427111i −0.715985 0.698115i \(-0.754022\pi\)
0.962578 + 0.271004i \(0.0873557\pi\)
\(90\) 0 0
\(91\) 0.379385 0.308391i 0.0397704 0.0323281i
\(92\) 0 0
\(93\) −3.81908 + 6.61484i −0.396020 + 0.685927i
\(94\) 0 0
\(95\) 0.907604 + 1.57202i 0.0931182 + 0.161285i
\(96\) 0 0
\(97\) 13.1206 1.33220 0.666098 0.745864i \(-0.267963\pi\)
0.666098 + 0.745864i \(0.267963\pi\)
\(98\) 0 0
\(99\) −5.29086 −0.531751
\(100\) 0 0
\(101\) 2.95084 + 5.11100i 0.293619 + 0.508563i 0.974663 0.223679i \(-0.0718069\pi\)
−0.681044 + 0.732243i \(0.738474\pi\)
\(102\) 0 0
\(103\) 0.460637 0.797847i 0.0453879 0.0786142i −0.842439 0.538792i \(-0.818881\pi\)
0.887827 + 0.460178i \(0.152214\pi\)
\(104\) 0 0
\(105\) 13.8760 11.2794i 1.35416 1.10075i
\(106\) 0 0
\(107\) −5.17365 + 8.96102i −0.500155 + 0.866295i 0.499845 + 0.866115i \(0.333390\pi\)
−1.00000 0.000179505i \(0.999943\pi\)
\(108\) 0 0
\(109\) −0.237826 0.411927i −0.0227796 0.0394554i 0.854411 0.519598i \(-0.173918\pi\)
−0.877190 + 0.480143i \(0.840585\pi\)
\(110\) 0 0
\(111\) 19.6459 1.86471
\(112\) 0 0
\(113\) −3.14290 −0.295659 −0.147830 0.989013i \(-0.547229\pi\)
−0.147830 + 0.989013i \(0.547229\pi\)
\(114\) 0 0
\(115\) 9.80587 + 16.9843i 0.914402 + 1.58379i
\(116\) 0 0
\(117\) 0.488856 0.846723i 0.0451947 0.0782796i
\(118\) 0 0
\(119\) −9.69253 3.69994i −0.888513 0.339173i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 0.613341 + 1.06234i 0.0553031 + 0.0957877i
\(124\) 0 0
\(125\) −10.5398 −0.942711
\(126\) 0 0
\(127\) 0.445622 0.0395426 0.0197713 0.999805i \(-0.493706\pi\)
0.0197713 + 0.999805i \(0.493706\pi\)
\(128\) 0 0
\(129\) −1.70574 2.95442i −0.150182 0.260122i
\(130\) 0 0
\(131\) −6.04323 + 10.4672i −0.528000 + 0.914522i 0.471467 + 0.881883i \(0.343724\pi\)
−0.999467 + 0.0326389i \(0.989609\pi\)
\(132\) 0 0
\(133\) 0.323826 + 2.02022i 0.0280792 + 0.175175i
\(134\) 0 0
\(135\) 7.74170 13.4090i 0.666299 1.15406i
\(136\) 0 0
\(137\) 8.17412 + 14.1580i 0.698362 + 1.20960i 0.969034 + 0.246927i \(0.0794206\pi\)
−0.270672 + 0.962672i \(0.587246\pi\)
\(138\) 0 0
\(139\) 20.7297 1.75827 0.879134 0.476575i \(-0.158122\pi\)
0.879134 + 0.476575i \(0.158122\pi\)
\(140\) 0 0
\(141\) −22.1138 −1.86232
\(142\) 0 0
\(143\) −0.0923963 0.160035i −0.00772656 0.0133828i
\(144\) 0 0
\(145\) 9.58899 16.6086i 0.796322 1.37927i
\(146\) 0 0
\(147\) 19.1459 6.29974i 1.57913 0.519594i
\(148\) 0 0
\(149\) 0.357097 0.618509i 0.0292545 0.0506703i −0.851027 0.525121i \(-0.824020\pi\)
0.880282 + 0.474451i \(0.157353\pi\)
\(150\) 0 0
\(151\) −4.77244 8.26611i −0.388376 0.672687i 0.603855 0.797094i \(-0.293630\pi\)
−0.992231 + 0.124407i \(0.960297\pi\)
\(152\) 0 0
\(153\) −20.7469 −1.67729
\(154\) 0 0
\(155\) −6.22668 −0.500139
\(156\) 0 0
\(157\) −4.62061 8.00314i −0.368765 0.638720i 0.620608 0.784121i \(-0.286886\pi\)
−0.989373 + 0.145401i \(0.953553\pi\)
\(158\) 0 0
\(159\) 9.43629 16.3441i 0.748346 1.29617i
\(160\) 0 0
\(161\) 3.49866 + 21.8267i 0.275733 + 1.72019i
\(162\) 0 0
\(163\) −4.40167 + 7.62392i −0.344766 + 0.597152i −0.985311 0.170769i \(-0.945375\pi\)
0.640545 + 0.767920i \(0.278708\pi\)
\(164\) 0 0
\(165\) −3.37939 5.85327i −0.263085 0.455676i
\(166\) 0 0
\(167\) −8.38238 −0.648648 −0.324324 0.945946i \(-0.605137\pi\)
−0.324324 + 0.945946i \(0.605137\pi\)
\(168\) 0 0
\(169\) −12.9659 −0.997373
\(170\) 0 0
\(171\) 2.04576 + 3.54336i 0.156443 + 0.270967i
\(172\) 0 0
\(173\) −2.72281 + 4.71605i −0.207012 + 0.358554i −0.950772 0.309892i \(-0.899707\pi\)
0.743760 + 0.668446i \(0.233040\pi\)
\(174\) 0 0
\(175\) 1.26011 + 0.481025i 0.0952557 + 0.0363620i
\(176\) 0 0
\(177\) −0.294263 + 0.509678i −0.0221182 + 0.0383098i
\(178\) 0 0
\(179\) −5.04576 8.73951i −0.377138 0.653222i 0.613507 0.789689i \(-0.289758\pi\)
−0.990645 + 0.136468i \(0.956425\pi\)
\(180\) 0 0
\(181\) 19.8794 1.47762 0.738812 0.673912i \(-0.235387\pi\)
0.738812 + 0.673912i \(0.235387\pi\)
\(182\) 0 0
\(183\) −41.9864 −3.10372
\(184\) 0 0
\(185\) 8.00774 + 13.8698i 0.588741 + 1.01973i
\(186\) 0 0
\(187\) −1.96064 + 3.39592i −0.143376 + 0.248334i
\(188\) 0 0
\(189\) 13.5424 11.0082i 0.985061 0.800726i
\(190\) 0 0
\(191\) −12.6925 + 21.9841i −0.918399 + 1.59071i −0.116553 + 0.993184i \(0.537184\pi\)
−0.801846 + 0.597530i \(0.796149\pi\)
\(192\) 0 0
\(193\) 3.86571 + 6.69561i 0.278260 + 0.481961i 0.970952 0.239272i \(-0.0769089\pi\)
−0.692692 + 0.721233i \(0.743576\pi\)
\(194\) 0 0
\(195\) 1.24897 0.0894406
\(196\) 0 0
\(197\) −5.37464 −0.382927 −0.191464 0.981500i \(-0.561323\pi\)
−0.191464 + 0.981500i \(0.561323\pi\)
\(198\) 0 0
\(199\) 4.39053 + 7.60462i 0.311236 + 0.539077i 0.978630 0.205628i \(-0.0659236\pi\)
−0.667394 + 0.744705i \(0.732590\pi\)
\(200\) 0 0
\(201\) −5.41147 + 9.37295i −0.381696 + 0.661117i
\(202\) 0 0
\(203\) 16.7738 13.6349i 1.17729 0.956982i
\(204\) 0 0
\(205\) −0.500000 + 0.866025i −0.0349215 + 0.0604858i
\(206\) 0 0
\(207\) 22.1027 + 38.2829i 1.53624 + 2.66085i
\(208\) 0 0
\(209\) 0.773318 0.0534916
\(210\) 0 0
\(211\) −4.24123 −0.291978 −0.145989 0.989286i \(-0.546636\pi\)
−0.145989 + 0.989286i \(0.546636\pi\)
\(212\) 0 0
\(213\) 14.3478 + 24.8511i 0.983093 + 1.70277i
\(214\) 0 0
\(215\) 1.39053 2.40847i 0.0948333 0.164256i
\(216\) 0 0
\(217\) −6.55690 2.50297i −0.445112 0.169913i
\(218\) 0 0
\(219\) 0.173648 0.300767i 0.0117341 0.0203240i
\(220\) 0 0
\(221\) −0.362311 0.627541i −0.0243717 0.0422130i
\(222\) 0 0
\(223\) 18.0351 1.20772 0.603859 0.797091i \(-0.293629\pi\)
0.603859 + 0.797091i \(0.293629\pi\)
\(224\) 0 0
\(225\) 2.69728 0.179819
\(226\) 0 0
\(227\) 9.10266 + 15.7663i 0.604165 + 1.04644i 0.992183 + 0.124793i \(0.0398265\pi\)
−0.388018 + 0.921652i \(0.626840\pi\)
\(228\) 0 0
\(229\) −9.62061 + 16.6634i −0.635748 + 1.10115i 0.350608 + 0.936522i \(0.385975\pi\)
−0.986356 + 0.164626i \(0.947358\pi\)
\(230\) 0 0
\(231\) −1.20574 7.52211i −0.0793317 0.494919i
\(232\) 0 0
\(233\) −4.66250 + 8.07569i −0.305451 + 0.529056i −0.977362 0.211576i \(-0.932140\pi\)
0.671911 + 0.740632i \(0.265474\pi\)
\(234\) 0 0
\(235\) −9.01367 15.6121i −0.587987 1.01842i
\(236\) 0 0
\(237\) 0.943563 0.0612910
\(238\) 0 0
\(239\) −11.1898 −0.723811 −0.361905 0.932215i \(-0.617874\pi\)
−0.361905 + 0.932215i \(0.617874\pi\)
\(240\) 0 0
\(241\) −10.1022 17.4975i −0.650740 1.12711i −0.982944 0.183907i \(-0.941126\pi\)
0.332204 0.943208i \(-0.392208\pi\)
\(242\) 0 0
\(243\) −5.40167 + 9.35597i −0.346518 + 0.600186i
\(244\) 0 0
\(245\) 12.2515 + 10.9490i 0.782719 + 0.699507i
\(246\) 0 0
\(247\) −0.0714517 + 0.123758i −0.00454636 + 0.00787453i
\(248\) 0 0
\(249\) −4.83022 8.36619i −0.306103 0.530186i
\(250\) 0 0
\(251\) 5.89218 0.371911 0.185956 0.982558i \(-0.440462\pi\)
0.185956 + 0.982558i \(0.440462\pi\)
\(252\) 0 0
\(253\) 8.35504 0.525277
\(254\) 0 0
\(255\) −13.2515 22.9523i −0.829841 1.43733i
\(256\) 0 0
\(257\) 1.36824 2.36986i 0.0853485 0.147828i −0.820191 0.572090i \(-0.806133\pi\)
0.905540 + 0.424262i \(0.139466\pi\)
\(258\) 0 0
\(259\) 2.85710 + 17.8243i 0.177531 + 1.10755i
\(260\) 0 0
\(261\) 21.6138 37.4362i 1.33786 2.31724i
\(262\) 0 0
\(263\) 3.09879 + 5.36727i 0.191080 + 0.330960i 0.945608 0.325307i \(-0.105468\pi\)
−0.754529 + 0.656267i \(0.772134\pi\)
\(264\) 0 0
\(265\) 15.3851 0.945097
\(266\) 0 0
\(267\) 13.3969 0.819879
\(268\) 0 0
\(269\) 2.10472 + 3.64549i 0.128327 + 0.222269i 0.923029 0.384731i \(-0.125706\pi\)
−0.794701 + 0.607001i \(0.792373\pi\)
\(270\) 0 0
\(271\) 12.7909 22.1544i 0.776989 1.34579i −0.156680 0.987649i \(-0.550079\pi\)
0.933670 0.358136i \(-0.116587\pi\)
\(272\) 0 0
\(273\) 1.31521 + 0.502055i 0.0796000 + 0.0303858i
\(274\) 0 0
\(275\) 0.254900 0.441500i 0.0153711 0.0266234i
\(276\) 0 0
\(277\) 7.67886 + 13.3002i 0.461378 + 0.799130i 0.999030 0.0440366i \(-0.0140218\pi\)
−0.537652 + 0.843167i \(0.680688\pi\)
\(278\) 0 0
\(279\) −14.0351 −0.840258
\(280\) 0 0
\(281\) 19.2540 1.14860 0.574299 0.818645i \(-0.305275\pi\)
0.574299 + 0.818645i \(0.305275\pi\)
\(282\) 0 0
\(283\) −13.5326 23.4391i −0.804427 1.39331i −0.916677 0.399628i \(-0.869139\pi\)
0.112250 0.993680i \(-0.464194\pi\)
\(284\) 0 0
\(285\) −2.61334 + 4.52644i −0.154801 + 0.268123i
\(286\) 0 0
\(287\) −0.874638 + 0.710966i −0.0516282 + 0.0419670i
\(288\) 0 0
\(289\) 0.811804 1.40609i 0.0477532 0.0827109i
\(290\) 0 0
\(291\) 18.8897 + 32.7178i 1.10733 + 1.91795i
\(292\) 0 0
\(293\) 4.03508 0.235732 0.117866 0.993030i \(-0.462395\pi\)
0.117866 + 0.993030i \(0.462395\pi\)
\(294\) 0 0
\(295\) −0.479771 −0.0279333
\(296\) 0 0
\(297\) −3.29813 5.71253i −0.191377 0.331475i
\(298\) 0 0
\(299\) −0.771974 + 1.33710i −0.0446444 + 0.0773264i
\(300\) 0 0
\(301\) 2.43242 1.97724i 0.140202 0.113966i
\(302\) 0 0
\(303\) −8.49660 + 14.7165i −0.488117 + 0.845443i
\(304\) 0 0
\(305\) −17.1138 29.6420i −0.979934 1.69730i
\(306\) 0 0
\(307\) −2.92902 −0.167168 −0.0835839 0.996501i \(-0.526637\pi\)
−0.0835839 + 0.996501i \(0.526637\pi\)
\(308\) 0 0
\(309\) 2.65270 0.150907
\(310\) 0 0
\(311\) 7.81180 + 13.5304i 0.442967 + 0.767241i 0.997908 0.0646486i \(-0.0205926\pi\)
−0.554941 + 0.831889i \(0.687259\pi\)
\(312\) 0 0
\(313\) 10.9880 19.0317i 0.621077 1.07574i −0.368208 0.929743i \(-0.620029\pi\)
0.989285 0.145994i \(-0.0466380\pi\)
\(314\) 0 0
\(315\) 30.6976 + 11.7182i 1.72961 + 0.660247i
\(316\) 0 0
\(317\) 1.50593 2.60835i 0.0845814 0.146499i −0.820631 0.571458i \(-0.806378\pi\)
0.905213 + 0.424959i \(0.139711\pi\)
\(318\) 0 0
\(319\) −4.08512 7.07564i −0.228723 0.396160i
\(320\) 0 0
\(321\) −29.7939 −1.66293
\(322\) 0 0
\(323\) 3.03239 0.168727
\(324\) 0 0
\(325\) 0.0471036 + 0.0815859i 0.00261284 + 0.00452557i
\(326\) 0 0
\(327\) 0.684793 1.18610i 0.0378691 0.0655912i
\(328\) 0 0
\(329\) −3.21600 20.0634i −0.177304 1.10613i
\(330\) 0 0
\(331\) 13.7344 23.7887i 0.754912 1.30755i −0.190506 0.981686i \(-0.561013\pi\)
0.945418 0.325860i \(-0.105654\pi\)
\(332\) 0 0
\(333\) 18.0496 + 31.2629i 0.989114 + 1.71320i
\(334\) 0 0
\(335\) −8.82295 −0.482049
\(336\) 0 0
\(337\) 17.2422 0.939240 0.469620 0.882869i \(-0.344391\pi\)
0.469620 + 0.882869i \(0.344391\pi\)
\(338\) 0 0
\(339\) −4.52481 7.83721i −0.245754 0.425659i
\(340\) 0 0
\(341\) −1.32635 + 2.29731i −0.0718260 + 0.124406i
\(342\) 0 0
\(343\) 8.50000 + 16.4545i 0.458957 + 0.888459i
\(344\) 0 0
\(345\) −28.2349 + 48.9043i −1.52012 + 2.63292i
\(346\) 0 0
\(347\) −5.71554 9.89960i −0.306826 0.531438i 0.670840 0.741602i \(-0.265934\pi\)
−0.977666 + 0.210164i \(0.932600\pi\)
\(348\) 0 0
\(349\) 28.3209 1.51598 0.757991 0.652265i \(-0.226181\pi\)
0.757991 + 0.652265i \(0.226181\pi\)
\(350\) 0 0
\(351\) 1.21894 0.0650622
\(352\) 0 0
\(353\) −8.21806 14.2341i −0.437403 0.757605i 0.560085 0.828435i \(-0.310768\pi\)
−0.997488 + 0.0708303i \(0.977435\pi\)
\(354\) 0 0
\(355\) −11.6964 + 20.2588i −0.620781 + 1.07522i
\(356\) 0 0
\(357\) −4.72803 29.4963i −0.250234 1.56111i
\(358\) 0 0
\(359\) 12.4315 21.5321i 0.656112 1.13642i −0.325502 0.945541i \(-0.605533\pi\)
0.981614 0.190877i \(-0.0611333\pi\)
\(360\) 0 0
\(361\) 9.20099 + 15.9366i 0.484263 + 0.838767i
\(362\) 0 0
\(363\) −2.87939 −0.151129
\(364\) 0 0
\(365\) 0.283119 0.0148191
\(366\) 0 0
\(367\) 2.14930 + 3.72270i 0.112193 + 0.194323i 0.916654 0.399682i \(-0.130879\pi\)
−0.804461 + 0.594005i \(0.797546\pi\)
\(368\) 0 0
\(369\) −1.12701 + 1.95204i −0.0586699 + 0.101619i
\(370\) 0 0
\(371\) 16.2010 + 6.18442i 0.841113 + 0.321079i
\(372\) 0 0
\(373\) 1.36484 2.36397i 0.0706686 0.122402i −0.828526 0.559951i \(-0.810820\pi\)
0.899195 + 0.437549i \(0.144153\pi\)
\(374\) 0 0
\(375\) −15.1741 26.2823i −0.783588 1.35721i
\(376\) 0 0
\(377\) 1.50980 0.0777587
\(378\) 0 0
\(379\) 16.4584 0.845412 0.422706 0.906267i \(-0.361080\pi\)
0.422706 + 0.906267i \(0.361080\pi\)
\(380\) 0 0
\(381\) 0.641559 + 1.11121i 0.0328681 + 0.0569292i
\(382\) 0 0
\(383\) −3.92989 + 6.80677i −0.200808 + 0.347810i −0.948789 0.315910i \(-0.897690\pi\)
0.747981 + 0.663720i \(0.231023\pi\)
\(384\) 0 0
\(385\) 4.81908 3.91728i 0.245603 0.199643i
\(386\) 0 0
\(387\) 3.13429 5.42874i 0.159325 0.275958i
\(388\) 0 0
\(389\) −4.82160 8.35126i −0.244465 0.423426i 0.717516 0.696542i \(-0.245279\pi\)
−0.961981 + 0.273116i \(0.911946\pi\)
\(390\) 0 0
\(391\) 32.7624 1.65687
\(392\) 0 0
\(393\) −34.8016 −1.75551
\(394\) 0 0
\(395\) 0.384600 + 0.666146i 0.0193513 + 0.0335175i
\(396\) 0 0
\(397\) 4.71688 8.16988i 0.236733 0.410034i −0.723042 0.690805i \(-0.757257\pi\)
0.959775 + 0.280770i \(0.0905898\pi\)
\(398\) 0 0
\(399\) −4.57145 + 3.71599i −0.228859 + 0.186032i
\(400\) 0 0
\(401\) 9.10994 15.7789i 0.454929 0.787959i −0.543756 0.839244i \(-0.682998\pi\)
0.998684 + 0.0512843i \(0.0163315\pi\)
\(402\) 0 0
\(403\) −0.245100 0.424525i −0.0122093 0.0211471i
\(404\) 0 0
\(405\) 7.32501 0.363983
\(406\) 0 0
\(407\) 6.82295 0.338201
\(408\) 0 0
\(409\) −3.20574 5.55250i −0.158513 0.274553i 0.775819 0.630955i \(-0.217337\pi\)
−0.934333 + 0.356402i \(0.884003\pi\)
\(410\) 0 0
\(411\) −23.5364 + 40.7663i −1.16097 + 2.01085i
\(412\) 0 0
\(413\) −0.505215 0.192856i −0.0248600 0.00948982i
\(414\) 0 0
\(415\) 3.93763 6.82018i 0.193291 0.334790i
\(416\) 0 0
\(417\) 29.8444 + 51.6919i 1.46148 + 2.53137i
\(418\) 0 0
\(419\) −1.62092 −0.0791871 −0.0395935 0.999216i \(-0.512606\pi\)
−0.0395935 + 0.999216i \(0.512606\pi\)
\(420\) 0 0
\(421\) 31.1489 1.51810 0.759052 0.651030i \(-0.225663\pi\)
0.759052 + 0.651030i \(0.225663\pi\)
\(422\) 0 0
\(423\) −20.3170 35.1901i −0.987847 1.71100i
\(424\) 0 0
\(425\) 0.999533 1.73124i 0.0484845 0.0839776i
\(426\) 0 0
\(427\) −6.10607 38.0933i −0.295493 1.84347i
\(428\) 0 0
\(429\) 0.266044 0.460802i 0.0128447 0.0222478i
\(430\) 0 0
\(431\) 17.1040 + 29.6250i 0.823871 + 1.42699i 0.902779 + 0.430105i \(0.141523\pi\)
−0.0789080 + 0.996882i \(0.525143\pi\)
\(432\) 0 0
\(433\) −20.4979 −0.985068 −0.492534 0.870293i \(-0.663929\pi\)
−0.492534 + 0.870293i \(0.663929\pi\)
\(434\) 0 0
\(435\) 55.2208 2.64764
\(436\) 0 0
\(437\) −3.23055 5.59548i −0.154538 0.267668i
\(438\) 0 0
\(439\) 15.6609 27.1255i 0.747455 1.29463i −0.201585 0.979471i \(-0.564609\pi\)
0.949039 0.315158i \(-0.102058\pi\)
\(440\) 0 0
\(441\) 27.6152 + 24.6793i 1.31501 + 1.17521i
\(442\) 0 0
\(443\) −14.6989 + 25.4593i −0.698367 + 1.20961i 0.270665 + 0.962674i \(0.412756\pi\)
−0.969032 + 0.246934i \(0.920577\pi\)
\(444\) 0 0
\(445\) 5.46064 + 9.45810i 0.258859 + 0.448357i
\(446\) 0 0
\(447\) 2.05644 0.0972661
\(448\) 0 0
\(449\) −6.90074 −0.325666 −0.162833 0.986654i \(-0.552063\pi\)
−0.162833 + 0.986654i \(0.552063\pi\)
\(450\) 0 0
\(451\) 0.213011 + 0.368946i 0.0100303 + 0.0173730i
\(452\) 0 0
\(453\) 13.7417 23.8013i 0.645641 1.11828i
\(454\) 0 0
\(455\) 0.181637 + 1.13316i 0.00851529 + 0.0531235i
\(456\) 0 0
\(457\) −6.18732 + 10.7168i −0.289431 + 0.501308i −0.973674 0.227945i \(-0.926799\pi\)
0.684243 + 0.729254i \(0.260133\pi\)
\(458\) 0 0
\(459\) −12.9329 22.4004i −0.603655 1.04556i
\(460\) 0 0
\(461\) 20.0942 0.935881 0.467940 0.883760i \(-0.344996\pi\)
0.467940 + 0.883760i \(0.344996\pi\)
\(462\) 0 0
\(463\) −8.69190 −0.403947 −0.201974 0.979391i \(-0.564735\pi\)
−0.201974 + 0.979391i \(0.564735\pi\)
\(464\) 0 0
\(465\) −8.96451 15.5270i −0.415719 0.720047i
\(466\) 0 0
\(467\) 2.38460 4.13025i 0.110346 0.191125i −0.805564 0.592509i \(-0.798137\pi\)
0.915910 + 0.401384i \(0.131471\pi\)
\(468\) 0 0
\(469\) −9.29086 3.54661i −0.429012 0.163767i
\(470\) 0 0
\(471\) 13.3045 23.0441i 0.613040 1.06182i
\(472\) 0 0
\(473\) −0.592396 1.02606i −0.0272384 0.0471783i
\(474\) 0 0
\(475\) −0.394238 −0.0180889
\(476\) 0 0
\(477\) 34.6783 1.58781
\(478\) 0 0
\(479\) −19.8071 34.3068i −0.905007 1.56752i −0.820907 0.571062i \(-0.806532\pi\)
−0.0841003 0.996457i \(-0.526802\pi\)
\(480\) 0 0
\(481\) −0.630415 + 1.09191i −0.0287444 + 0.0497868i
\(482\) 0 0
\(483\) −49.3906 + 40.1481i −2.24735 + 1.82680i
\(484\) 0 0
\(485\) −15.3990 + 26.6718i −0.699232 + 1.21111i
\(486\) 0 0
\(487\) 2.57785 + 4.46496i 0.116813 + 0.202327i 0.918503 0.395414i \(-0.129399\pi\)
−0.801690 + 0.597740i \(0.796065\pi\)
\(488\) 0 0
\(489\) −25.3482 −1.14629
\(490\) 0 0
\(491\) −10.1925 −0.459983 −0.229991 0.973193i \(-0.573870\pi\)
−0.229991 + 0.973193i \(0.573870\pi\)
\(492\) 0 0
\(493\) −16.0189 27.7455i −0.721454 1.24960i
\(494\) 0 0
\(495\) 6.20961 10.7554i 0.279101 0.483417i
\(496\) 0 0
\(497\) −20.4602 + 16.6315i −0.917767 + 0.746024i
\(498\) 0 0
\(499\) 2.94491 5.10073i 0.131832 0.228340i −0.792551 0.609806i \(-0.791247\pi\)
0.924383 + 0.381466i \(0.124581\pi\)
\(500\) 0 0
\(501\) −12.0680 20.9025i −0.539161 0.933854i
\(502\) 0 0
\(503\) 12.8348 0.572276 0.286138 0.958188i \(-0.407628\pi\)
0.286138 + 0.958188i \(0.407628\pi\)
\(504\) 0 0
\(505\) −13.8530 −0.616449
\(506\) 0 0
\(507\) −18.6668 32.3319i −0.829024 1.43591i
\(508\) 0 0
\(509\) −16.1065 + 27.8973i −0.713910 + 1.23653i 0.249469 + 0.968383i \(0.419744\pi\)
−0.963379 + 0.268145i \(0.913589\pi\)
\(510\) 0 0
\(511\) 0.298133 + 0.113807i 0.0131886 + 0.00503451i
\(512\) 0 0
\(513\) −2.55051 + 4.41761i −0.112608 + 0.195042i
\(514\) 0 0
\(515\) 1.08125 + 1.87278i 0.0476457 + 0.0825247i
\(516\) 0 0
\(517\) −7.68004 −0.337768
\(518\) 0 0
\(519\) −15.6800 −0.688278
\(520\) 0 0
\(521\) −9.26399 16.0457i −0.405863 0.702975i 0.588559 0.808454i \(-0.299696\pi\)
−0.994421 + 0.105480i \(0.966362\pi\)
\(522\) 0 0
\(523\) −18.6211 + 32.2527i −0.814243 + 1.41031i 0.0956271 + 0.995417i \(0.469514\pi\)
−0.909870 + 0.414893i \(0.863819\pi\)
\(524\) 0 0
\(525\) 0.614685 + 3.83478i 0.0268271 + 0.167363i
\(526\) 0 0
\(527\) −5.20099 + 9.00838i −0.226559 + 0.392411i
\(528\) 0 0
\(529\) −23.4033 40.5357i −1.01754 1.76242i
\(530\) 0 0
\(531\) −1.08141 −0.0469294
\(532\) 0 0
\(533\) −0.0787257 −0.00340999
\(534\) 0 0
\(535\) −12.1441 21.0342i −0.525035 0.909387i
\(536\) 0 0
\(537\) 14.5287 25.1644i 0.626959 1.08592i
\(538\) 0 0
\(539\) 6.64930 2.18788i 0.286406 0.0942386i
\(540\) 0 0
\(541\) −18.0783 + 31.3126i −0.777247 + 1.34623i 0.156275 + 0.987714i \(0.450051\pi\)
−0.933523 + 0.358519i \(0.883282\pi\)
\(542\) 0 0
\(543\) 28.6202 + 49.5716i 1.22821 + 2.12732i
\(544\) 0 0
\(545\) 1.11650 0.0478254
\(546\) 0 0
\(547\) −12.7980 −0.547202 −0.273601 0.961843i \(-0.588215\pi\)
−0.273601 + 0.961843i \(0.588215\pi\)
\(548\) 0 0
\(549\) −38.5749 66.8137i −1.64634 2.85154i
\(550\) 0 0
\(551\) −3.15910 + 5.47172i −0.134582 + 0.233103i
\(552\) 0 0
\(553\) 0.137222 + 0.856074i 0.00583528 + 0.0364040i
\(554\) 0 0
\(555\) −23.0574 + 39.9365i −0.978731 + 1.69521i
\(556\) 0 0
\(557\) 15.3293 + 26.5512i 0.649525 + 1.12501i 0.983236 + 0.182335i \(0.0583656\pi\)
−0.333711 + 0.942675i \(0.608301\pi\)
\(558\) 0 0
\(559\) 0.218941 0.00926021
\(560\) 0 0
\(561\) −11.2909 −0.476700
\(562\) 0 0
\(563\) −7.25237 12.5615i −0.305651 0.529403i 0.671755 0.740773i \(-0.265541\pi\)
−0.977406 + 0.211370i \(0.932207\pi\)
\(564\) 0 0
\(565\) 3.68866 6.38895i 0.155183 0.268785i
\(566\) 0 0
\(567\) 7.71348 + 2.94447i 0.323936 + 0.123656i
\(568\) 0 0
\(569\) −9.50253 + 16.4589i −0.398367 + 0.689991i −0.993525 0.113618i \(-0.963756\pi\)
0.595158 + 0.803609i \(0.297089\pi\)
\(570\) 0 0
\(571\) −10.5005 18.1873i −0.439431 0.761117i 0.558215 0.829696i \(-0.311487\pi\)
−0.997646 + 0.0685799i \(0.978153\pi\)
\(572\) 0 0
\(573\) −73.0934 −3.05352
\(574\) 0 0
\(575\) −4.25940 −0.177629
\(576\) 0 0
\(577\) 2.59374 + 4.49249i 0.107979 + 0.187025i 0.914951 0.403564i \(-0.132229\pi\)
−0.806973 + 0.590589i \(0.798895\pi\)
\(578\) 0 0
\(579\) −11.1309 + 19.2793i −0.462584 + 0.801218i
\(580\) 0 0
\(581\) 6.88800 5.59905i 0.285763 0.232288i
\(582\) 0 0
\(583\) 3.27719 5.67626i 0.135727 0.235087i
\(584\) 0 0
\(585\) 1.14749 + 1.98751i 0.0474428 + 0.0821734i
\(586\) 0 0
\(587\) −8.33813 −0.344151 −0.172076 0.985084i \(-0.555047\pi\)
−0.172076 + 0.985084i \(0.555047\pi\)
\(588\) 0 0
\(589\) 2.05138 0.0845258
\(590\) 0 0
\(591\) −7.73783 13.4023i −0.318292 0.551297i
\(592\) 0 0
\(593\) −3.05097 + 5.28444i −0.125288 + 0.217006i −0.921846 0.387557i \(-0.873319\pi\)
0.796557 + 0.604563i \(0.206652\pi\)
\(594\) 0 0
\(595\) 18.8969 15.3607i 0.774698 0.629729i
\(596\) 0 0
\(597\) −12.6420 + 21.8966i −0.517404 + 0.896169i
\(598\) 0 0
\(599\) −6.92514 11.9947i −0.282954 0.490090i 0.689157 0.724612i \(-0.257981\pi\)
−0.972111 + 0.234522i \(0.924648\pi\)
\(600\) 0 0
\(601\) 31.2695 1.27551 0.637755 0.770239i \(-0.279863\pi\)
0.637755 + 0.770239i \(0.279863\pi\)
\(602\) 0 0
\(603\) −19.8871 −0.809866
\(604\) 0 0
\(605\) −1.17365 2.03282i −0.0477156 0.0826458i
\(606\) 0 0
\(607\) 18.8981 32.7325i 0.767051 1.32857i −0.172105 0.985079i \(-0.555057\pi\)
0.939156 0.343492i \(-0.111610\pi\)
\(608\) 0 0
\(609\) 58.1494 + 22.1974i 2.35633 + 0.899484i
\(610\) 0 0
\(611\) 0.709607 1.22908i 0.0287076 0.0497231i
\(612\) 0 0
\(613\) −10.5672 18.3029i −0.426804 0.739246i 0.569783 0.821795i \(-0.307027\pi\)
−0.996587 + 0.0825490i \(0.973694\pi\)
\(614\) 0 0
\(615\) −2.87939 −0.116108
\(616\) 0 0
\(617\) 23.7743 0.957115 0.478558 0.878056i \(-0.341160\pi\)
0.478558 + 0.878056i \(0.341160\pi\)
\(618\) 0 0
\(619\) 6.75103 + 11.6931i 0.271347 + 0.469986i 0.969207 0.246248i \(-0.0791976\pi\)
−0.697860 + 0.716234i \(0.745864\pi\)
\(620\) 0 0
\(621\) −27.5560 + 47.7284i −1.10579 + 1.91528i
\(622\) 0 0
\(623\) 1.94831 + 12.1547i 0.0780574 + 0.486969i
\(624\) 0 0
\(625\) 13.6446 23.6331i 0.545782 0.945322i
\(626\) 0 0
\(627\) 1.11334 + 1.92836i 0.0444625 + 0.0770114i
\(628\) 0 0
\(629\) 26.7547 1.06678
\(630\) 0 0
\(631\) 38.2354 1.52213 0.761063 0.648678i \(-0.224678\pi\)
0.761063 + 0.648678i \(0.224678\pi\)
\(632\) 0 0
\(633\) −6.10607 10.5760i −0.242694 0.420359i
\(634\) 0 0
\(635\) −0.523004 + 0.905869i −0.0207548 + 0.0359483i
\(636\) 0 0
\(637\) −0.264233 + 1.26627i −0.0104693 + 0.0501715i
\(638\) 0 0
\(639\) −26.3640 + 45.6637i −1.04294 + 1.80643i
\(640\) 0 0
\(641\) −19.2777 33.3899i −0.761422 1.31882i −0.942118 0.335282i \(-0.891168\pi\)
0.180696 0.983539i \(-0.442165\pi\)
\(642\) 0 0
\(643\) −19.2627 −0.759647 −0.379823 0.925059i \(-0.624015\pi\)
−0.379823 + 0.925059i \(0.624015\pi\)
\(644\) 0 0
\(645\) 8.00774 0.315304
\(646\) 0 0
\(647\) 19.8922 + 34.4543i 0.782042 + 1.35454i 0.930750 + 0.365656i \(0.119155\pi\)
−0.148708 + 0.988881i \(0.547511\pi\)
\(648\) 0 0
\(649\) −0.102196 + 0.177009i −0.00401156 + 0.00694823i
\(650\) 0 0
\(651\) −3.19846 19.9539i −0.125358 0.782057i
\(652\) 0 0
\(653\) −2.38326 + 4.12792i −0.0932640 + 0.161538i −0.908883 0.417052i \(-0.863063\pi\)
0.815619 + 0.578590i \(0.196397\pi\)
\(654\) 0 0
\(655\) −14.1853 24.5696i −0.554264 0.960013i
\(656\) 0 0
\(657\) 0.638156 0.0248968
\(658\) 0 0
\(659\) 38.3550 1.49410 0.747050 0.664768i \(-0.231470\pi\)
0.747050 + 0.664768i \(0.231470\pi\)
\(660\) 0 0
\(661\) 5.18139 + 8.97443i 0.201533 + 0.349065i 0.949022 0.315208i \(-0.102074\pi\)
−0.747490 + 0.664273i \(0.768741\pi\)
\(662\) 0 0
\(663\) 1.04323 1.80693i 0.0405158 0.0701755i
\(664\) 0 0
\(665\) −4.48680 1.71275i −0.173990 0.0664175i
\(666\) 0 0
\(667\) −34.1313 + 59.1172i −1.32157 + 2.28903i
\(668\) 0 0
\(669\) 25.9650 + 44.9727i 1.00386 + 1.73874i
\(670\) 0 0
\(671\) −14.5817 −0.562921
\(672\) 0 0
\(673\) −25.6168 −0.987455 −0.493728 0.869617i \(-0.664366\pi\)
−0.493728 + 0.869617i \(0.664366\pi\)
\(674\) 0 0
\(675\) 1.68139 + 2.91225i 0.0647167 + 0.112093i
\(676\) 0 0
\(677\) −20.9187 + 36.2323i −0.803973 + 1.39252i 0.113010 + 0.993594i \(0.463951\pi\)
−0.916982 + 0.398928i \(0.869382\pi\)
\(678\) 0 0
\(679\) −26.9371 + 21.8963i −1.03375 + 0.840303i
\(680\) 0 0
\(681\) −26.2101 + 45.3972i −1.00437 + 1.73962i
\(682\) 0 0
\(683\) −23.0214 39.8743i −0.880890 1.52575i −0.850353 0.526212i \(-0.823612\pi\)
−0.0305366 0.999534i \(-0.509722\pi\)
\(684\) 0 0
\(685\) −38.3741 −1.46620
\(686\) 0 0
\(687\) −55.4029 −2.11375
\(688\) 0 0
\(689\) 0.605600 + 1.04893i 0.0230715 + 0.0399611i
\(690\) 0 0
\(691\) 4.00000 6.92820i 0.152167 0.263561i −0.779857 0.625958i \(-0.784708\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 0 0
\(693\) 10.8623 8.82964i 0.412625 0.335410i
\(694\) 0 0
\(695\) −24.3293 + 42.1397i −0.922865 + 1.59845i
\(696\) 0 0
\(697\) 0.835275 + 1.44674i 0.0316383 + 0.0547991i
\(698\) 0 0
\(699\) −26.8503 −1.01557
\(700\) 0 0
\(701\) −32.8144 −1.23938 −0.619691 0.784846i \(-0.712742\pi\)
−0.619691 + 0.784846i \(0.712742\pi\)
\(702\) 0 0
\(703\) −2.63816 4.56942i −0.0994999 0.172339i
\(704\) 0 0
\(705\) 25.9538 44.9534i 0.977478 1.69304i
\(706\) 0 0
\(707\) −14.5876 5.56855i −0.548625 0.209427i
\(708\) 0 0
\(709\) −3.70099 + 6.41030i −0.138994 + 0.240744i −0.927116 0.374775i \(-0.877720\pi\)
0.788122 + 0.615519i \(0.211053\pi\)
\(710\) 0 0
\(711\) 0.866897 + 1.50151i 0.0325112 + 0.0563110i
\(712\) 0 0
\(713\) 22.1634 0.830027
\(714\) 0 0
\(715\) 0.433763 0.0162218
\(716\) 0 0
\(717\) −16.1099 27.9032i −0.601637 1.04207i
\(718\) 0 0
\(719\) −7.06851 + 12.2430i −0.263611 + 0.456588i −0.967199 0.254021i \(-0.918247\pi\)
0.703588 + 0.710608i \(0.251580\pi\)
\(720\) 0 0
\(721\) 0.385782 + 2.40674i 0.0143673 + 0.0896317i
\(722\) 0 0
\(723\) 29.0881 50.3821i 1.08180 1.87373i
\(724\) 0 0
\(725\) 2.08260 + 3.60716i 0.0773457 + 0.133967i
\(726\) 0 0
\(727\) −15.2790 −0.566667 −0.283333 0.959021i \(-0.591440\pi\)
−0.283333 + 0.959021i \(0.591440\pi\)
\(728\) 0 0
\(729\) −40.4688 −1.49885
\(730\) 0 0
\(731\) −2.32295 4.02346i −0.0859173 0.148813i
\(732\) 0 0
\(733\) −0.672466 + 1.16475i −0.0248381 + 0.0430209i −0.878177 0.478335i \(-0.841240\pi\)
0.853339 + 0.521356i \(0.174574\pi\)
\(734\) 0 0
\(735\) −9.66431 + 46.3138i −0.356474 + 1.70831i
\(736\) 0 0
\(737\) −1.87939 + 3.25519i −0.0692280 + 0.119906i
\(738\) 0 0
\(739\) −12.8268 22.2167i −0.471842 0.817255i 0.527639 0.849469i \(-0.323077\pi\)
−0.999481 + 0.0322142i \(0.989744\pi\)
\(740\) 0 0
\(741\) −0.411474 −0.0151159
\(742\) 0 0
\(743\) 6.08109 0.223094 0.111547 0.993759i \(-0.464420\pi\)
0.111547 + 0.993759i \(0.464420\pi\)
\(744\) 0 0
\(745\) 0.838211 + 1.45182i 0.0307097 + 0.0531907i
\(746\) 0 0
\(747\) 8.87551 15.3728i 0.324738 0.562463i
\(748\) 0 0
\(749\) −4.33291 27.0313i −0.158321 0.987703i
\(750\) 0 0
\(751\) 10.4054 18.0227i 0.379698 0.657656i −0.611320 0.791383i \(-0.709361\pi\)
0.991018 + 0.133727i \(0.0426946\pi\)
\(752\) 0 0
\(753\) 8.48293 + 14.6929i 0.309135 + 0.535438i
\(754\) 0 0
\(755\) 22.4047 0.815389
\(756\) 0 0
\(757\) −5.25402 −0.190961 −0.0954804 0.995431i \(-0.530439\pi\)
−0.0954804 + 0.995431i \(0.530439\pi\)
\(758\) 0 0
\(759\) 12.0287 + 20.8343i 0.436614 + 0.756237i
\(760\) 0 0
\(761\) 20.4907 35.4909i 0.742786 1.28654i −0.208436 0.978036i \(-0.566837\pi\)
0.951222 0.308507i \(-0.0998294\pi\)
\(762\) 0 0
\(763\) 1.17571 + 0.448804i 0.0425635 + 0.0162478i
\(764\) 0 0
\(765\) 24.3496 42.1747i 0.880361 1.52483i
\(766\) 0 0
\(767\) −0.0188851 0.0327100i −0.000681903 0.00118109i
\(768\) 0 0
\(769\) 47.5580 1.71499 0.857493 0.514496i \(-0.172021\pi\)
0.857493 + 0.514496i \(0.172021\pi\)
\(770\) 0 0
\(771\) 7.87939 0.283769
\(772\) 0 0
\(773\) −10.2464 17.7474i −0.368539 0.638328i 0.620798 0.783970i \(-0.286809\pi\)
−0.989337 + 0.145642i \(0.953475\pi\)
\(774\) 0 0
\(775\) 0.676174 1.17117i 0.0242889 0.0420696i
\(776\) 0 0
\(777\) −40.3337 + 32.7860i −1.44696 + 1.17619i
\(778\) 0 0
\(779\) 0.164725 0.285313i 0.00590190 0.0102224i
\(780\) 0 0
\(781\) 4.98293 + 8.63068i 0.178303 + 0.308830i
\(782\) 0 0
\(783\) 53.8931 1.92598
\(784\) 0 0
\(785\) 21.6919 0.774217
\(786\) 0 0
\(787\) −9.56031 16.5589i −0.340788 0.590262i 0.643791 0.765201i \(-0.277361\pi\)
−0.984579 + 0.174939i \(0.944027\pi\)
\(788\) 0 0
\(789\) −8.92262 + 15.4544i −0.317654 + 0.550192i
\(790\) 0 0
\(791\) 6.45249 5.24503i 0.229424 0.186492i
\(792\) 0 0
\(793\) 1.34730 2.33359i 0.0478439 0.0828681i
\(794\) 0 0
\(795\) 22.1498 + 38.3645i 0.785571 + 1.36065i
\(796\) 0 0
\(797\) −52.5144 −1.86015 −0.930077 0.367365i \(-0.880260\pi\)
−0.930077 + 0.367365i \(0.880260\pi\)
\(798\) 0 0
\(799\) −30.1156 −1.06541
\(800\) 0 0
\(801\) 12.3084 + 21.3188i 0.434896 + 0.753262i
\(802\) 0 0
\(803\) 0.0603074 0.104455i 0.00212820 0.00368615i
\(804\) 0 0
\(805\) −48.4760 18.5048i −1.70855 0.652207i
\(806\) 0 0
\(807\) −6.06031 + 10.4968i −0.213333 + 0.369503i
\(808\) 0 0
\(809\) −20.3357 35.2225i −0.714967 1.23836i −0.962972 0.269600i \(-0.913109\pi\)
0.248006 0.968759i \(-0.420225\pi\)
\(810\) 0 0
\(811\) 20.5648 0.722128 0.361064 0.932541i \(-0.382414\pi\)
0.361064 + 0.932541i \(0.382414\pi\)
\(812\) 0 0
\(813\) 73.6596 2.58336
\(814\) 0 0
\(815\) −10.3320 17.8956i −0.361915 0.626856i
\(816\) 0 0
\(817\) −0.458111 + 0.793471i −0.0160273 + 0.0277601i
\(818\) 0 0
\(819\) 0.409415 + 2.55418i 0.0143061 + 0.0892501i
\(820\) 0 0
\(821\) −3.18139 + 5.51033i −0.111031 + 0.192312i −0.916186 0.400753i \(-0.868749\pi\)
0.805155 + 0.593064i \(0.202082\pi\)
\(822\) 0 0
\(823\) −1.25443 2.17274i −0.0437268 0.0757370i 0.843334 0.537390i \(-0.180590\pi\)
−0.887060 + 0.461653i \(0.847256\pi\)
\(824\) 0 0
\(825\) 1.46791 0.0511061
\(826\) 0 0
\(827\) 41.2645 1.43491 0.717453 0.696607i \(-0.245308\pi\)
0.717453 + 0.696607i \(0.245308\pi\)
\(828\) 0 0
\(829\) 23.3889 + 40.5108i 0.812331 + 1.40700i 0.911228 + 0.411902i \(0.135135\pi\)
−0.0988970 + 0.995098i \(0.531531\pi\)
\(830\) 0 0
\(831\) −22.1104 + 38.2963i −0.767001 + 1.32849i
\(832\) 0 0
\(833\) 26.0737 8.57927i 0.903401 0.297254i
\(834\) 0 0
\(835\) 9.83796 17.0399i 0.340457 0.589688i
\(836\) 0 0
\(837\) −8.74897 15.1537i −0.302409 0.523787i
\(838\) 0 0
\(839\) −16.5439 −0.571161 −0.285580 0.958355i \(-0.592186\pi\)
−0.285580 + 0.958355i \(0.592186\pi\)
\(840\) 0 0
\(841\) 37.7529 1.30182
\(842\) 0 0
\(843\) 27.7199 + 48.0122i 0.954723 + 1.65363i
\(844\) 0 0
\(845\) 15.2173 26.3572i 0.523493 0.906716i
\(846\) 0 0
\(847\) −0.418748 2.61240i −0.0143884 0.0897632i
\(848\) 0 0
\(849\) 38.9654 67.4901i 1.33729 2.31626i
\(850\) 0 0
\(851\) −28.5030 49.3686i −0.977070 1.69233i
\(852\) 0 0
\(853\) 13.2163 0.452516 0.226258 0.974067i \(-0.427351\pi\)
0.226258 + 0.974067i \(0.427351\pi\)
\(854\) 0 0
\(855\) −9.60401 −0.328450
\(856\) 0 0
\(857\) 25.3606 + 43.9258i 0.866300 + 1.50048i 0.865750 + 0.500476i \(0.166842\pi\)
0.000549663 1.00000i \(0.499825\pi\)
\(858\) 0 0
\(859\) 27.5562 47.7287i 0.940205 1.62848i 0.175126 0.984546i \(-0.443967\pi\)
0.765079 0.643937i \(-0.222700\pi\)
\(860\) 0 0
\(861\) −3.03209 1.15744i −0.103333 0.0394455i
\(862\) 0 0
\(863\) 5.26011 9.11079i 0.179056 0.310135i −0.762501 0.646987i \(-0.776029\pi\)
0.941558 + 0.336852i \(0.109362\pi\)
\(864\) 0 0
\(865\) −6.39124 11.0700i −0.217309 0.376390i
\(866\) 0 0
\(867\) 4.67499 0.158771
\(868\) 0 0
\(869\) 0.327696 0.0111163
\(870\) 0 0
\(871\) −0.347296 0.601535i −0.0117677 0.0203822i
\(872\) 0 0
\(873\) −34.7097 + 60.1189i −1.17474 + 2.03472i
\(874\) 0 0
\(875\) 21.6386 17.5894i 0.731519 0.594629i
\(876\) 0 0
\(877\) 19.8268 34.3411i 0.669504 1.15962i −0.308539 0.951212i \(-0.599840\pi\)
0.978043 0.208403i \(-0.0668267\pi\)
\(878\) 0 0
\(879\) 5.80928 + 10.0620i 0.195942 + 0.339382i
\(880\) 0 0
\(881\) 25.0077 0.842532 0.421266 0.906937i \(-0.361586\pi\)
0.421266 + 0.906937i \(0.361586\pi\)
\(882\) 0 0
\(883\) −50.9341 −1.71407 −0.857034 0.515260i \(-0.827695\pi\)
−0.857034 + 0.515260i \(0.827695\pi\)
\(884\) 0 0
\(885\) −0.690722 1.19637i −0.0232184 0.0402154i
\(886\) 0 0
\(887\) 16.0180 27.7440i 0.537832 0.931552i −0.461188 0.887302i \(-0.652577\pi\)
0.999020 0.0442502i \(-0.0140899\pi\)
\(888\) 0 0
\(889\) −0.914878 + 0.743676i −0.0306840 + 0.0249421i
\(890\) 0 0
\(891\) 1.56031 2.70253i 0.0522723 0.0905382i
\(892\) 0 0
\(893\) 2.96956 + 5.14343i 0.0993725 + 0.172118i
\(894\) 0 0
\(895\) 23.6878 0.791795
\(896\) 0 0
\(897\) −4.44562 −0.148435
\(898\) 0 0
\(899\) −10.8366 18.7696i −0.361421 0.626000i
\(900\) 0 0
\(901\) 12.8508 22.2582i 0.428121 0.741527i
\(902\) 0 0
\(903\) 8.43242 + 3.21891i 0.280613 + 0.107119i
\(904\) 0 0
\(905\) −23.3314 + 40.4112i −0.775562 + 1.34331i
\(906\) 0 0
\(907\) −8.23648 14.2660i −0.273488 0.473695i 0.696265 0.717785i \(-0.254844\pi\)
−0.969753 + 0.244090i \(0.921511\pi\)
\(908\) 0 0
\(909\) −31.2249 −1.03567
\(910\) 0 0
\(911\) 45.3979 1.50410 0.752049 0.659107i \(-0.229066\pi\)
0.752049 + 0.659107i \(0.229066\pi\)
\(912\) 0 0
\(913\) −1.67752 2.90555i −0.0555178 0.0961596i
\(914\) 0 0
\(915\) 49.2772 85.3507i 1.62906 2.82161i
\(916\) 0 0
\(917\) −5.06118 31.5747i −0.167135 1.04269i
\(918\) 0 0
\(919\) −6.16044 + 10.6702i −0.203214 + 0.351978i −0.949562 0.313578i \(-0.898472\pi\)
0.746348 + 0.665556i \(0.231805\pi\)
\(920\) 0 0
\(921\) −4.21688 7.30385i −0.138951 0.240670i
\(922\) 0 0
\(923\) −1.84161 −0.0606175
\(924\) 0 0
\(925\) −3.47834 −0.114367
\(926\) 0 0
\(927\) 2.43717 + 4.22130i 0.0800470 + 0.138646i
\(928\) 0 0
\(929\) −2.96657 + 5.13824i −0.0973299 + 0.168580i −0.910579 0.413336i \(-0.864364\pi\)
0.813249 + 0.581916i \(0.197697\pi\)
\(930\) 0 0
\(931\) −4.03626 3.60716i −0.132283 0.118220i
\(932\) 0 0
\(933\) −22.4932 + 38.9594i −0.736394 + 1.27547i
\(934\) 0 0
\(935\) −4.60220 7.97124i −0.150508 0.260687i
\(936\) 0 0
\(937\) −45.0242 −1.47088 −0.735438 0.677593i \(-0.763023\pi\)
−0.735438 + 0.677593i \(0.763023\pi\)
\(938\) 0 0
\(939\) 63.2772 2.06497
\(940\) 0 0
\(941\) 3.03121 + 5.25021i 0.0988147 + 0.171152i 0.911194 0.411977i \(-0.135162\pi\)
−0.812380 + 0.583129i \(0.801828\pi\)
\(942\) 0 0
\(943\) 1.77972 3.08256i 0.0579555 0.100382i
\(944\) 0 0
\(945\) 6.48364 + 40.4489i 0.210913 + 1.31580i
\(946\) 0 0
\(947\) −9.47131 + 16.4048i −0.307776 + 0.533084i −0.977876 0.209187i \(-0.932918\pi\)
0.670099 + 0.742272i \(0.266252\pi\)
\(948\) 0 0
\(949\) 0.0111444 + 0.0193026i 0.000361761 + 0.000626588i
\(950\) 0 0
\(951\) 8.67230 0.281219
\(952\) 0 0
\(953\) −12.4970 −0.404818 −0.202409 0.979301i \(-0.564877\pi\)
−0.202409 + 0.979301i \(0.564877\pi\)
\(954\) 0 0
\(955\) −29.7931 51.6032i −0.964083 1.66984i
\(956\) 0 0
\(957\) 11.7626 20.3735i 0.380232 0.658581i
\(958\) 0 0
\(959\) −40.4093 15.4255i −1.30488 0.498114i
\(960\) 0 0
\(961\) 11.9816 20.7527i 0.386503 0.669442i
\(962\) 0 0
\(963\) −27.3730 47.4115i −0.882084 1.52781i
\(964\) 0 0
\(965\) −18.1480 −0.584203
\(966\) 0 0
\(967\) 18.5294 0.595865 0.297933 0.954587i \(-0.403703\pi\)
0.297933 + 0.954587i \(0.403703\pi\)
\(968\) 0 0
\(969\) 4.36571 + 7.56164i 0.140247 + 0.242915i
\(970\) 0 0
\(971\) 20.7369 35.9174i 0.665480 1.15265i −0.313674 0.949531i \(-0.601560\pi\)
0.979155 0.203115i \(-0.0651066\pi\)
\(972\) 0 0
\(973\) −42.5587 + 34.5947i −1.36437 + 1.10905i
\(974\) 0 0
\(975\) −0.135630 + 0.234917i −0.00434362 + 0.00752337i
\(976\) 0 0
\(977\) 11.1160 + 19.2535i 0.355633 + 0.615975i 0.987226 0.159325i \(-0.0509319\pi\)
−0.631593 + 0.775300i \(0.717599\pi\)
\(978\) 0 0
\(979\) 4.65270 0.148701
\(980\) 0 0
\(981\) 2.51661 0.0803491
\(982\) 0 0
\(983\) 17.7062 + 30.6680i 0.564740 + 0.978159i 0.997074 + 0.0764450i \(0.0243570\pi\)
−0.432334 + 0.901714i \(0.642310\pi\)
\(984\) 0 0
\(985\) 6.30793 10.9257i 0.200987 0.348121i
\(986\) 0 0
\(987\) 45.4004 36.9046i 1.44511 1.17469i
\(988\) 0 0
\(989\) −4.94949 + 8.57277i −0.157385 + 0.272598i
\(990\) 0 0
\(991\) 22.7863 + 39.4670i 0.723830 + 1.25371i 0.959454 + 0.281866i \(0.0909533\pi\)
−0.235624 + 0.971844i \(0.575713\pi\)
\(992\) 0 0
\(993\) 79.0934 2.50995
\(994\) 0 0
\(995\) −20.6117 −0.653436
\(996\) 0 0
\(997\) −11.4183 19.7771i −0.361622 0.626348i 0.626606 0.779336i \(-0.284444\pi\)
−0.988228 + 0.152988i \(0.951110\pi\)
\(998\) 0 0
\(999\) −22.5030 + 38.9763i −0.711963 + 1.23316i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1232.2.q.m.177.3 6
4.3 odd 2 77.2.e.a.23.3 6
7.2 even 3 8624.2.a.ch.1.1 3
7.4 even 3 inner 1232.2.q.m.529.3 6
7.5 odd 6 8624.2.a.co.1.3 3
12.11 even 2 693.2.i.h.100.1 6
28.3 even 6 539.2.e.m.67.3 6
28.11 odd 6 77.2.e.a.67.3 yes 6
28.19 even 6 539.2.a.g.1.1 3
28.23 odd 6 539.2.a.j.1.1 3
28.27 even 2 539.2.e.m.177.3 6
44.3 odd 10 847.2.n.g.9.1 24
44.7 even 10 847.2.n.f.632.1 24
44.15 odd 10 847.2.n.g.632.3 24
44.19 even 10 847.2.n.f.9.3 24
44.27 odd 10 847.2.n.g.366.3 24
44.31 odd 10 847.2.n.g.807.1 24
44.35 even 10 847.2.n.f.807.3 24
44.39 even 10 847.2.n.f.366.1 24
44.43 even 2 847.2.e.c.485.1 6
84.11 even 6 693.2.i.h.298.1 6
84.23 even 6 4851.2.a.bj.1.3 3
84.47 odd 6 4851.2.a.bk.1.3 3
308.39 even 30 847.2.n.f.487.3 24
308.95 even 30 847.2.n.f.753.3 24
308.123 even 30 847.2.n.f.81.1 24
308.131 odd 6 5929.2.a.u.1.3 3
308.151 even 30 847.2.n.f.130.1 24
308.179 odd 30 847.2.n.g.130.3 24
308.207 odd 30 847.2.n.g.81.3 24
308.219 even 6 5929.2.a.x.1.3 3
308.235 odd 30 847.2.n.g.753.1 24
308.263 even 6 847.2.e.c.606.1 6
308.291 odd 30 847.2.n.g.487.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.a.23.3 6 4.3 odd 2
77.2.e.a.67.3 yes 6 28.11 odd 6
539.2.a.g.1.1 3 28.19 even 6
539.2.a.j.1.1 3 28.23 odd 6
539.2.e.m.67.3 6 28.3 even 6
539.2.e.m.177.3 6 28.27 even 2
693.2.i.h.100.1 6 12.11 even 2
693.2.i.h.298.1 6 84.11 even 6
847.2.e.c.485.1 6 44.43 even 2
847.2.e.c.606.1 6 308.263 even 6
847.2.n.f.9.3 24 44.19 even 10
847.2.n.f.81.1 24 308.123 even 30
847.2.n.f.130.1 24 308.151 even 30
847.2.n.f.366.1 24 44.39 even 10
847.2.n.f.487.3 24 308.39 even 30
847.2.n.f.632.1 24 44.7 even 10
847.2.n.f.753.3 24 308.95 even 30
847.2.n.f.807.3 24 44.35 even 10
847.2.n.g.9.1 24 44.3 odd 10
847.2.n.g.81.3 24 308.207 odd 30
847.2.n.g.130.3 24 308.179 odd 30
847.2.n.g.366.3 24 44.27 odd 10
847.2.n.g.487.1 24 308.291 odd 30
847.2.n.g.632.3 24 44.15 odd 10
847.2.n.g.753.1 24 308.235 odd 30
847.2.n.g.807.1 24 44.31 odd 10
1232.2.q.m.177.3 6 1.1 even 1 trivial
1232.2.q.m.529.3 6 7.4 even 3 inner
4851.2.a.bj.1.3 3 84.23 even 6
4851.2.a.bk.1.3 3 84.47 odd 6
5929.2.a.u.1.3 3 308.131 odd 6
5929.2.a.x.1.3 3 308.219 even 6
8624.2.a.ch.1.1 3 7.2 even 3
8624.2.a.co.1.3 3 7.5 odd 6