Defining parameters
| Level: | \( N \) | \(=\) | \( 1225 = 5^{2} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1225.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 29 \) | ||
| Sturm bound: | \(280\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1225))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 164 | 73 | 91 |
| Cusp forms | 117 | 58 | 59 |
| Eisenstein series | 47 | 15 | 32 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(38\) | \(15\) | \(23\) | \(27\) | \(13\) | \(14\) | \(11\) | \(2\) | \(9\) | |||
| \(+\) | \(-\) | \(-\) | \(44\) | \(18\) | \(26\) | \(32\) | \(15\) | \(17\) | \(12\) | \(3\) | \(9\) | |||
| \(-\) | \(+\) | \(-\) | \(42\) | \(21\) | \(21\) | \(30\) | \(17\) | \(13\) | \(12\) | \(4\) | \(8\) | |||
| \(-\) | \(-\) | \(+\) | \(40\) | \(19\) | \(21\) | \(28\) | \(13\) | \(15\) | \(12\) | \(6\) | \(6\) | |||
| Plus space | \(+\) | \(78\) | \(34\) | \(44\) | \(55\) | \(26\) | \(29\) | \(23\) | \(8\) | \(15\) | ||||
| Minus space | \(-\) | \(86\) | \(39\) | \(47\) | \(62\) | \(32\) | \(30\) | \(24\) | \(7\) | \(17\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1225))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1225))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1225)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)