Properties

 Label 245.2.a.a Level $245$ Weight $2$ Character orbit 245.a Self dual yes Analytic conductor $1.956$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [245,2,Mod(1,245)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(245, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("245.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$245 = 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 245.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.95633484952$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - 2 q^{2} - 3 q^{3} + 2 q^{4} + q^{5} + 6 q^{6} + 6 q^{9}+O(q^{10})$$ q - 2 * q^2 - 3 * q^3 + 2 * q^4 + q^5 + 6 * q^6 + 6 * q^9 $$q - 2 q^{2} - 3 q^{3} + 2 q^{4} + q^{5} + 6 q^{6} + 6 q^{9} - 2 q^{10} + q^{11} - 6 q^{12} - 3 q^{13} - 3 q^{15} - 4 q^{16} + 3 q^{17} - 12 q^{18} - 6 q^{19} + 2 q^{20} - 2 q^{22} - 4 q^{23} + q^{25} + 6 q^{26} - 9 q^{27} - q^{29} + 6 q^{30} - 6 q^{31} + 8 q^{32} - 3 q^{33} - 6 q^{34} + 12 q^{36} + 12 q^{38} + 9 q^{39} - 6 q^{41} - 6 q^{43} + 2 q^{44} + 6 q^{45} + 8 q^{46} + 9 q^{47} + 12 q^{48} - 2 q^{50} - 9 q^{51} - 6 q^{52} - 10 q^{53} + 18 q^{54} + q^{55} + 18 q^{57} + 2 q^{58} + 6 q^{59} - 6 q^{60} + 12 q^{62} - 8 q^{64} - 3 q^{65} + 6 q^{66} - 14 q^{67} + 6 q^{68} + 12 q^{69} - 8 q^{71} - 6 q^{73} - 3 q^{75} - 12 q^{76} - 18 q^{78} - q^{79} - 4 q^{80} + 9 q^{81} + 12 q^{82} - 12 q^{83} + 3 q^{85} + 12 q^{86} + 3 q^{87} - 12 q^{89} - 12 q^{90} - 8 q^{92} + 18 q^{93} - 18 q^{94} - 6 q^{95} - 24 q^{96} + 15 q^{97} + 6 q^{99}+O(q^{100})$$ q - 2 * q^2 - 3 * q^3 + 2 * q^4 + q^5 + 6 * q^6 + 6 * q^9 - 2 * q^10 + q^11 - 6 * q^12 - 3 * q^13 - 3 * q^15 - 4 * q^16 + 3 * q^17 - 12 * q^18 - 6 * q^19 + 2 * q^20 - 2 * q^22 - 4 * q^23 + q^25 + 6 * q^26 - 9 * q^27 - q^29 + 6 * q^30 - 6 * q^31 + 8 * q^32 - 3 * q^33 - 6 * q^34 + 12 * q^36 + 12 * q^38 + 9 * q^39 - 6 * q^41 - 6 * q^43 + 2 * q^44 + 6 * q^45 + 8 * q^46 + 9 * q^47 + 12 * q^48 - 2 * q^50 - 9 * q^51 - 6 * q^52 - 10 * q^53 + 18 * q^54 + q^55 + 18 * q^57 + 2 * q^58 + 6 * q^59 - 6 * q^60 + 12 * q^62 - 8 * q^64 - 3 * q^65 + 6 * q^66 - 14 * q^67 + 6 * q^68 + 12 * q^69 - 8 * q^71 - 6 * q^73 - 3 * q^75 - 12 * q^76 - 18 * q^78 - q^79 - 4 * q^80 + 9 * q^81 + 12 * q^82 - 12 * q^83 + 3 * q^85 + 12 * q^86 + 3 * q^87 - 12 * q^89 - 12 * q^90 - 8 * q^92 + 18 * q^93 - 18 * q^94 - 6 * q^95 - 24 * q^96 + 15 * q^97 + 6 * q^99

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−2.00000 −3.00000 2.00000 1.00000 6.00000 0 0 6.00000 −2.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$5$$ $$-1$$
$$7$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.2.a.a 1
3.b odd 2 1 2205.2.a.j 1
4.b odd 2 1 3920.2.a.bj 1
5.b even 2 1 1225.2.a.j 1
5.c odd 4 2 1225.2.b.b 2
7.b odd 2 1 245.2.a.b yes 1
7.c even 3 2 245.2.e.d 2
7.d odd 6 2 245.2.e.c 2
21.c even 2 1 2205.2.a.l 1
28.d even 2 1 3920.2.a.a 1
35.c odd 2 1 1225.2.a.h 1
35.f even 4 2 1225.2.b.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
245.2.a.a 1 1.a even 1 1 trivial
245.2.a.b yes 1 7.b odd 2 1
245.2.e.c 2 7.d odd 6 2
245.2.e.d 2 7.c even 3 2
1225.2.a.h 1 35.c odd 2 1
1225.2.a.j 1 5.b even 2 1
1225.2.b.a 2 35.f even 4 2
1225.2.b.b 2 5.c odd 4 2
2205.2.a.j 1 3.b odd 2 1
2205.2.a.l 1 21.c even 2 1
3920.2.a.a 1 28.d even 2 1
3920.2.a.bj 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(245))$$:

 $$T_{2} + 2$$ T2 + 2 $$T_{3} + 3$$ T3 + 3

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 2$$
$3$ $$T + 3$$
$5$ $$T - 1$$
$7$ $$T$$
$11$ $$T - 1$$
$13$ $$T + 3$$
$17$ $$T - 3$$
$19$ $$T + 6$$
$23$ $$T + 4$$
$29$ $$T + 1$$
$31$ $$T + 6$$
$37$ $$T$$
$41$ $$T + 6$$
$43$ $$T + 6$$
$47$ $$T - 9$$
$53$ $$T + 10$$
$59$ $$T - 6$$
$61$ $$T$$
$67$ $$T + 14$$
$71$ $$T + 8$$
$73$ $$T + 6$$
$79$ $$T + 1$$
$83$ $$T + 12$$
$89$ $$T + 12$$
$97$ $$T - 15$$