Properties

Label 1225.2.a.i
Level $1225$
Weight $2$
Character orbit 1225.a
Self dual yes
Analytic conductor $9.782$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,2,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.78167424761\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} - q^{3} + 2 q^{4} - 2 q^{6} - 2 q^{9} - 3 q^{11} - 2 q^{12} - q^{13} - 4 q^{16} - 7 q^{17} - 4 q^{18} - 6 q^{22} + 6 q^{23} - 2 q^{26} + 5 q^{27} - 5 q^{29} - 2 q^{31} - 8 q^{32} + 3 q^{33} - 14 q^{34} - 4 q^{36} + 2 q^{37} + q^{39} - 2 q^{41} - 4 q^{43} - 6 q^{44} + 12 q^{46} + 3 q^{47} + 4 q^{48} + 7 q^{51} - 2 q^{52} + 6 q^{53} + 10 q^{54} - 10 q^{58} - 10 q^{59} + 8 q^{61} - 4 q^{62} - 8 q^{64} + 6 q^{66} + 2 q^{67} - 14 q^{68} - 6 q^{69} - 8 q^{71} - 6 q^{73} + 4 q^{74} + 2 q^{78} - 5 q^{79} + q^{81} - 4 q^{82} + 4 q^{83} - 8 q^{86} + 5 q^{87} + 12 q^{92} + 2 q^{93} + 6 q^{94} + 8 q^{96} - 7 q^{97} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −1.00000 2.00000 0 −2.00000 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1225.2.a.i 1
5.b even 2 1 1225.2.a.a 1
5.c odd 4 2 245.2.b.a 2
7.b odd 2 1 175.2.a.c 1
15.e even 4 2 2205.2.d.b 2
21.c even 2 1 1575.2.a.a 1
28.d even 2 1 2800.2.a.l 1
35.c odd 2 1 175.2.a.a 1
35.f even 4 2 35.2.b.a 2
35.k even 12 4 245.2.j.e 4
35.l odd 12 4 245.2.j.d 4
105.g even 2 1 1575.2.a.k 1
105.k odd 4 2 315.2.d.a 2
140.c even 2 1 2800.2.a.w 1
140.j odd 4 2 560.2.g.b 2
280.s even 4 2 2240.2.g.h 2
280.y odd 4 2 2240.2.g.g 2
420.w even 4 2 5040.2.t.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
35.2.b.a 2 35.f even 4 2
175.2.a.a 1 35.c odd 2 1
175.2.a.c 1 7.b odd 2 1
245.2.b.a 2 5.c odd 4 2
245.2.j.d 4 35.l odd 12 4
245.2.j.e 4 35.k even 12 4
315.2.d.a 2 105.k odd 4 2
560.2.g.b 2 140.j odd 4 2
1225.2.a.a 1 5.b even 2 1
1225.2.a.i 1 1.a even 1 1 trivial
1575.2.a.a 1 21.c even 2 1
1575.2.a.k 1 105.g even 2 1
2205.2.d.b 2 15.e even 4 2
2240.2.g.g 2 280.y odd 4 2
2240.2.g.h 2 280.s even 4 2
2800.2.a.l 1 28.d even 2 1
2800.2.a.w 1 140.c even 2 1
5040.2.t.p 2 420.w even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1225))\):

\( T_{2} - 2 \) Copy content Toggle raw display
\( T_{3} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 3 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 7 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T + 5 \) Copy content Toggle raw display
$31$ \( T + 2 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T - 3 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T + 10 \) Copy content Toggle raw display
$61$ \( T - 8 \) Copy content Toggle raw display
$67$ \( T - 2 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 5 \) Copy content Toggle raw display
$83$ \( T - 4 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 7 \) Copy content Toggle raw display
show more
show less