Properties

Label 1218.2.m.b.307.7
Level $1218$
Weight $2$
Character 1218.307
Analytic conductor $9.726$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(307,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.7
Character \(\chi\) \(=\) 1218.307
Dual form 1218.2.m.b.853.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +2.17708 q^{5} +1.00000 q^{6} +(-0.0332084 + 2.64554i) q^{7} +(0.707107 + 0.707107i) q^{8} +1.00000i q^{9} +(-1.53943 + 1.53943i) q^{10} +(-3.07581 + 3.07581i) q^{11} +(-0.707107 + 0.707107i) q^{12} -3.05148 q^{13} +(-1.84720 - 1.89416i) q^{14} +(-1.53943 - 1.53943i) q^{15} -1.00000 q^{16} +(-2.01832 - 2.01832i) q^{17} +(-0.707107 - 0.707107i) q^{18} +(-2.09893 - 2.09893i) q^{19} -2.17708i q^{20} +(1.89416 - 1.84720i) q^{21} -4.34986i q^{22} -1.96734 q^{23} -1.00000i q^{24} -0.260314 q^{25} +(2.15772 - 2.15772i) q^{26} +(0.707107 - 0.707107i) q^{27} +(2.64554 + 0.0332084i) q^{28} +(-3.12402 - 4.38640i) q^{29} +2.17708 q^{30} +(1.89326 + 1.89326i) q^{31} +(0.707107 - 0.707107i) q^{32} +4.34986 q^{33} +2.85434 q^{34} +(-0.0722973 + 5.75956i) q^{35} +1.00000 q^{36} +(-5.99454 - 5.99454i) q^{37} +2.96834 q^{38} +(2.15772 + 2.15772i) q^{39} +(1.53943 + 1.53943i) q^{40} +(3.37850 - 3.37850i) q^{41} +(-0.0332084 + 2.64554i) q^{42} +(-2.06975 + 2.06975i) q^{43} +(3.07581 + 3.07581i) q^{44} +2.17708i q^{45} +(1.39112 - 1.39112i) q^{46} +(8.60874 - 8.60874i) q^{47} +(0.707107 + 0.707107i) q^{48} +(-6.99779 - 0.175708i) q^{49} +(0.184070 - 0.184070i) q^{50} +2.85434i q^{51} +3.05148i q^{52} -10.9788 q^{53} +1.00000i q^{54} +(-6.69630 + 6.69630i) q^{55} +(-1.89416 + 1.84720i) q^{56} +2.96834i q^{57} +(5.31067 + 0.892636i) q^{58} +11.1746i q^{59} +(-1.53943 + 1.53943i) q^{60} +(3.08688 + 3.08688i) q^{61} -2.67747 q^{62} +(-2.64554 - 0.0332084i) q^{63} +1.00000i q^{64} -6.64333 q^{65} +(-3.07581 + 3.07581i) q^{66} +8.49928i q^{67} +(-2.01832 + 2.01832i) q^{68} +(1.39112 + 1.39112i) q^{69} +(-4.02150 - 4.12375i) q^{70} -13.7545i q^{71} +(-0.707107 + 0.707107i) q^{72} +(6.46121 - 6.46121i) q^{73} +8.47756 q^{74} +(0.184070 + 0.184070i) q^{75} +(-2.09893 + 2.09893i) q^{76} +(-8.03505 - 8.23934i) q^{77} -3.05148 q^{78} +(-10.6504 + 10.6504i) q^{79} -2.17708 q^{80} -1.00000 q^{81} +4.77792i q^{82} -7.41216i q^{83} +(-1.84720 - 1.89416i) q^{84} +(-4.39405 - 4.39405i) q^{85} -2.92707i q^{86} +(-0.892636 + 5.31067i) q^{87} -4.34986 q^{88} +(-12.7095 - 12.7095i) q^{89} +(-1.53943 - 1.53943i) q^{90} +(0.101335 - 8.07283i) q^{91} +1.96734i q^{92} -2.67747i q^{93} +12.1746i q^{94} +(-4.56955 - 4.56955i) q^{95} -1.00000 q^{96} +(-7.25077 + 7.25077i) q^{97} +(5.07243 - 4.82394i) q^{98} +(-3.07581 - 3.07581i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 40 q^{6} - 4 q^{10} + 4 q^{14} - 4 q^{15} - 40 q^{16} - 8 q^{19} + 4 q^{21} + 24 q^{25} + 12 q^{28} + 8 q^{29} + 24 q^{31} + 12 q^{35} + 40 q^{36} - 16 q^{37} + 4 q^{40} - 16 q^{41} - 20 q^{43} + 4 q^{46}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 2.17708 0.973621 0.486810 0.873508i \(-0.338160\pi\)
0.486810 + 0.873508i \(0.338160\pi\)
\(6\) 1.00000 0.408248
\(7\) −0.0332084 + 2.64554i −0.0125516 + 0.999921i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −1.53943 + 1.53943i −0.486810 + 0.486810i
\(11\) −3.07581 + 3.07581i −0.927393 + 0.927393i −0.997537 0.0701443i \(-0.977654\pi\)
0.0701443 + 0.997537i \(0.477654\pi\)
\(12\) −0.707107 + 0.707107i −0.204124 + 0.204124i
\(13\) −3.05148 −0.846329 −0.423165 0.906053i \(-0.639081\pi\)
−0.423165 + 0.906053i \(0.639081\pi\)
\(14\) −1.84720 1.89416i −0.493685 0.506236i
\(15\) −1.53943 1.53943i −0.397479 0.397479i
\(16\) −1.00000 −0.250000
\(17\) −2.01832 2.01832i −0.489515 0.489515i 0.418638 0.908153i \(-0.362508\pi\)
−0.908153 + 0.418638i \(0.862508\pi\)
\(18\) −0.707107 0.707107i −0.166667 0.166667i
\(19\) −2.09893 2.09893i −0.481528 0.481528i 0.424091 0.905620i \(-0.360594\pi\)
−0.905620 + 0.424091i \(0.860594\pi\)
\(20\) 2.17708i 0.486810i
\(21\) 1.89416 1.84720i 0.413340 0.403092i
\(22\) 4.34986i 0.927393i
\(23\) −1.96734 −0.410219 −0.205110 0.978739i \(-0.565755\pi\)
−0.205110 + 0.978739i \(0.565755\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −0.260314 −0.0520627
\(26\) 2.15772 2.15772i 0.423165 0.423165i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 2.64554 + 0.0332084i 0.499961 + 0.00627579i
\(29\) −3.12402 4.38640i −0.580116 0.814534i
\(30\) 2.17708 0.397479
\(31\) 1.89326 + 1.89326i 0.340040 + 0.340040i 0.856382 0.516343i \(-0.172707\pi\)
−0.516343 + 0.856382i \(0.672707\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 4.34986 0.757213
\(34\) 2.85434 0.489515
\(35\) −0.0722973 + 5.75956i −0.0122205 + 0.973544i
\(36\) 1.00000 0.166667
\(37\) −5.99454 5.99454i −0.985496 0.985496i 0.0144003 0.999896i \(-0.495416\pi\)
−0.999896 + 0.0144003i \(0.995416\pi\)
\(38\) 2.96834 0.481528
\(39\) 2.15772 + 2.15772i 0.345512 + 0.345512i
\(40\) 1.53943 + 1.53943i 0.243405 + 0.243405i
\(41\) 3.37850 3.37850i 0.527633 0.527633i −0.392233 0.919866i \(-0.628297\pi\)
0.919866 + 0.392233i \(0.128297\pi\)
\(42\) −0.0332084 + 2.64554i −0.00512416 + 0.408216i
\(43\) −2.06975 + 2.06975i −0.315634 + 0.315634i −0.847088 0.531453i \(-0.821646\pi\)
0.531453 + 0.847088i \(0.321646\pi\)
\(44\) 3.07581 + 3.07581i 0.463696 + 0.463696i
\(45\) 2.17708i 0.324540i
\(46\) 1.39112 1.39112i 0.205110 0.205110i
\(47\) 8.60874 8.60874i 1.25571 1.25571i 0.302595 0.953119i \(-0.402147\pi\)
0.953119 0.302595i \(-0.0978529\pi\)
\(48\) 0.707107 + 0.707107i 0.102062 + 0.102062i
\(49\) −6.99779 0.175708i −0.999685 0.0251012i
\(50\) 0.184070 0.184070i 0.0260314 0.0260314i
\(51\) 2.85434i 0.399687i
\(52\) 3.05148i 0.423165i
\(53\) −10.9788 −1.50806 −0.754029 0.656841i \(-0.771892\pi\)
−0.754029 + 0.656841i \(0.771892\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −6.69630 + 6.69630i −0.902929 + 0.902929i
\(56\) −1.89416 + 1.84720i −0.253118 + 0.246842i
\(57\) 2.96834i 0.393166i
\(58\) 5.31067 + 0.892636i 0.697325 + 0.117209i
\(59\) 11.1746i 1.45481i 0.686208 + 0.727406i \(0.259274\pi\)
−0.686208 + 0.727406i \(0.740726\pi\)
\(60\) −1.53943 + 1.53943i −0.198739 + 0.198739i
\(61\) 3.08688 + 3.08688i 0.395234 + 0.395234i 0.876548 0.481314i \(-0.159840\pi\)
−0.481314 + 0.876548i \(0.659840\pi\)
\(62\) −2.67747 −0.340040
\(63\) −2.64554 0.0332084i −0.333307 0.00418386i
\(64\) 1.00000i 0.125000i
\(65\) −6.64333 −0.824004
\(66\) −3.07581 + 3.07581i −0.378606 + 0.378606i
\(67\) 8.49928i 1.03835i 0.854667 + 0.519176i \(0.173761\pi\)
−0.854667 + 0.519176i \(0.826239\pi\)
\(68\) −2.01832 + 2.01832i −0.244758 + 0.244758i
\(69\) 1.39112 + 1.39112i 0.167471 + 0.167471i
\(70\) −4.02150 4.12375i −0.480662 0.492882i
\(71\) 13.7545i 1.63236i −0.577798 0.816180i \(-0.696088\pi\)
0.577798 0.816180i \(-0.303912\pi\)
\(72\) −0.707107 + 0.707107i −0.0833333 + 0.0833333i
\(73\) 6.46121 6.46121i 0.756227 0.756227i −0.219406 0.975634i \(-0.570412\pi\)
0.975634 + 0.219406i \(0.0704121\pi\)
\(74\) 8.47756 0.985496
\(75\) 0.184070 + 0.184070i 0.0212545 + 0.0212545i
\(76\) −2.09893 + 2.09893i −0.240764 + 0.240764i
\(77\) −8.03505 8.23934i −0.915679 0.938960i
\(78\) −3.05148 −0.345512
\(79\) −10.6504 + 10.6504i −1.19826 + 1.19826i −0.223575 + 0.974687i \(0.571773\pi\)
−0.974687 + 0.223575i \(0.928227\pi\)
\(80\) −2.17708 −0.243405
\(81\) −1.00000 −0.111111
\(82\) 4.77792i 0.527633i
\(83\) 7.41216i 0.813590i −0.913520 0.406795i \(-0.866646\pi\)
0.913520 0.406795i \(-0.133354\pi\)
\(84\) −1.84720 1.89416i −0.201546 0.206670i
\(85\) −4.39405 4.39405i −0.476602 0.476602i
\(86\) 2.92707i 0.315634i
\(87\) −0.892636 + 5.31067i −0.0957006 + 0.569363i
\(88\) −4.34986 −0.463696
\(89\) −12.7095 12.7095i −1.34720 1.34720i −0.888685 0.458519i \(-0.848380\pi\)
−0.458519 0.888685i \(-0.651620\pi\)
\(90\) −1.53943 1.53943i −0.162270 0.162270i
\(91\) 0.101335 8.07283i 0.0106228 0.846262i
\(92\) 1.96734i 0.205110i
\(93\) 2.67747i 0.277641i
\(94\) 12.1746i 1.25571i
\(95\) −4.56955 4.56955i −0.468826 0.468826i
\(96\) −1.00000 −0.102062
\(97\) −7.25077 + 7.25077i −0.736204 + 0.736204i −0.971841 0.235637i \(-0.924282\pi\)
0.235637 + 0.971841i \(0.424282\pi\)
\(98\) 5.07243 4.82394i 0.512393 0.487292i
\(99\) −3.07581 3.07581i −0.309131 0.309131i
\(100\) 0.260314i 0.0260314i
\(101\) 4.72960 + 4.72960i 0.470612 + 0.470612i 0.902113 0.431500i \(-0.142016\pi\)
−0.431500 + 0.902113i \(0.642016\pi\)
\(102\) −2.01832 2.01832i −0.199844 0.199844i
\(103\) 2.63995i 0.260122i 0.991506 + 0.130061i \(0.0415173\pi\)
−0.991506 + 0.130061i \(0.958483\pi\)
\(104\) −2.15772 2.15772i −0.211582 0.211582i
\(105\) 4.12375 4.02150i 0.402437 0.392459i
\(106\) 7.76320 7.76320i 0.754029 0.754029i
\(107\) −5.12152 −0.495116 −0.247558 0.968873i \(-0.579628\pi\)
−0.247558 + 0.968873i \(0.579628\pi\)
\(108\) −0.707107 0.707107i −0.0680414 0.0680414i
\(109\) 7.14857i 0.684709i 0.939571 + 0.342354i \(0.111224\pi\)
−0.939571 + 0.342354i \(0.888776\pi\)
\(110\) 9.47000i 0.902929i
\(111\) 8.47756i 0.804654i
\(112\) 0.0332084 2.64554i 0.00313790 0.249980i
\(113\) 6.81615 + 6.81615i 0.641209 + 0.641209i 0.950853 0.309644i \(-0.100210\pi\)
−0.309644 + 0.950853i \(0.600210\pi\)
\(114\) −2.09893 2.09893i −0.196583 0.196583i
\(115\) −4.28307 −0.399398
\(116\) −4.38640 + 3.12402i −0.407267 + 0.290058i
\(117\) 3.05148i 0.282110i
\(118\) −7.90165 7.90165i −0.727406 0.727406i
\(119\) 5.40659 5.27253i 0.495621 0.483332i
\(120\) 2.17708i 0.198739i
\(121\) 7.92125i 0.720114i
\(122\) −4.36550 −0.395234
\(123\) −4.77792 −0.430811
\(124\) 1.89326 1.89326i 0.170020 0.170020i
\(125\) −11.4521 −1.02431
\(126\) 1.89416 1.84720i 0.168745 0.164562i
\(127\) 4.97865 4.97865i 0.441783 0.441783i −0.450828 0.892611i \(-0.648871\pi\)
0.892611 + 0.450828i \(0.148871\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 2.92707 0.257714
\(130\) 4.69754 4.69754i 0.412002 0.412002i
\(131\) 5.87709 5.87709i 0.513484 0.513484i −0.402108 0.915592i \(-0.631723\pi\)
0.915592 + 0.402108i \(0.131723\pi\)
\(132\) 4.34986i 0.378606i
\(133\) 5.62252 5.48312i 0.487535 0.475447i
\(134\) −6.00990 6.00990i −0.519176 0.519176i
\(135\) 1.53943 1.53943i 0.132493 0.132493i
\(136\) 2.85434i 0.244758i
\(137\) 4.19336 4.19336i 0.358263 0.358263i −0.504910 0.863172i \(-0.668474\pi\)
0.863172 + 0.504910i \(0.168474\pi\)
\(138\) −1.96734 −0.167471
\(139\) 12.3931i 1.05117i 0.850740 + 0.525587i \(0.176154\pi\)
−0.850740 + 0.525587i \(0.823846\pi\)
\(140\) 5.75956 + 0.0722973i 0.486772 + 0.00611024i
\(141\) −12.1746 −1.02529
\(142\) 9.72590 + 9.72590i 0.816180 + 0.816180i
\(143\) 9.38579 9.38579i 0.784879 0.784879i
\(144\) 1.00000i 0.0833333i
\(145\) −6.80125 9.54955i −0.564813 0.793047i
\(146\) 9.13753i 0.756227i
\(147\) 4.82394 + 5.07243i 0.397872 + 0.418367i
\(148\) −5.99454 + 5.99454i −0.492748 + 0.492748i
\(149\) 0.460829i 0.0377526i −0.999822 0.0188763i \(-0.993991\pi\)
0.999822 0.0188763i \(-0.00600886\pi\)
\(150\) −0.260314 −0.0212545
\(151\) 20.7071i 1.68512i 0.538600 + 0.842562i \(0.318953\pi\)
−0.538600 + 0.842562i \(0.681047\pi\)
\(152\) 2.96834i 0.240764i
\(153\) 2.01832 2.01832i 0.163172 0.163172i
\(154\) 11.5077 + 0.144452i 0.927320 + 0.0116402i
\(155\) 4.12178 + 4.12178i 0.331070 + 0.331070i
\(156\) 2.15772 2.15772i 0.172756 0.172756i
\(157\) −8.66060 + 8.66060i −0.691191 + 0.691191i −0.962494 0.271303i \(-0.912545\pi\)
0.271303 + 0.962494i \(0.412545\pi\)
\(158\) 15.0619i 1.19826i
\(159\) 7.76320 + 7.76320i 0.615662 + 0.615662i
\(160\) 1.53943 1.53943i 0.121703 0.121703i
\(161\) 0.0653322 5.20469i 0.00514890 0.410187i
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) −5.70229 5.70229i −0.446638 0.446638i 0.447597 0.894235i \(-0.352280\pi\)
−0.894235 + 0.447597i \(0.852280\pi\)
\(164\) −3.37850 3.37850i −0.263817 0.263817i
\(165\) 9.47000 0.737238
\(166\) 5.24119 + 5.24119i 0.406795 + 0.406795i
\(167\) −18.4936 −1.43108 −0.715541 0.698571i \(-0.753820\pi\)
−0.715541 + 0.698571i \(0.753820\pi\)
\(168\) 2.64554 + 0.0332084i 0.204108 + 0.00256208i
\(169\) −3.68845 −0.283727
\(170\) 6.21413 0.476602
\(171\) 2.09893 2.09893i 0.160509 0.160509i
\(172\) 2.06975 + 2.06975i 0.157817 + 0.157817i
\(173\) 18.3070 1.39186 0.695928 0.718112i \(-0.254993\pi\)
0.695928 + 0.718112i \(0.254993\pi\)
\(174\) −3.12402 4.38640i −0.236831 0.332532i
\(175\) 0.00864459 0.688671i 0.000653470 0.0520586i
\(176\) 3.07581 3.07581i 0.231848 0.231848i
\(177\) 7.90165 7.90165i 0.593924 0.593924i
\(178\) 17.9739 1.34720
\(179\) 8.86359i 0.662496i 0.943544 + 0.331248i \(0.107470\pi\)
−0.943544 + 0.331248i \(0.892530\pi\)
\(180\) 2.17708 0.162270
\(181\) 20.0870i 1.49305i 0.665355 + 0.746527i \(0.268280\pi\)
−0.665355 + 0.746527i \(0.731720\pi\)
\(182\) 5.63670 + 5.78001i 0.417820 + 0.428443i
\(183\) 4.36550i 0.322707i
\(184\) −1.39112 1.39112i −0.102555 0.102555i
\(185\) −13.0506 13.0506i −0.959499 0.959499i
\(186\) 1.89326 + 1.89326i 0.138821 + 0.138821i
\(187\) 12.4160 0.907946
\(188\) −8.60874 8.60874i −0.627857 0.627857i
\(189\) 1.84720 + 1.89416i 0.134364 + 0.137780i
\(190\) 6.46232 0.468826
\(191\) −6.39182 + 6.39182i −0.462496 + 0.462496i −0.899473 0.436977i \(-0.856049\pi\)
0.436977 + 0.899473i \(0.356049\pi\)
\(192\) 0.707107 0.707107i 0.0510310 0.0510310i
\(193\) 0.225289 0.225289i 0.0162166 0.0162166i −0.698952 0.715169i \(-0.746350\pi\)
0.715169 + 0.698952i \(0.246350\pi\)
\(194\) 10.2541i 0.736204i
\(195\) 4.69754 + 4.69754i 0.336398 + 0.336398i
\(196\) −0.175708 + 6.99779i −0.0125506 + 0.499842i
\(197\) −20.6557 −1.47166 −0.735830 0.677166i \(-0.763208\pi\)
−0.735830 + 0.677166i \(0.763208\pi\)
\(198\) 4.34986 0.309131
\(199\) 7.37290i 0.522651i 0.965251 + 0.261326i \(0.0841596\pi\)
−0.965251 + 0.261326i \(0.915840\pi\)
\(200\) −0.184070 0.184070i −0.0130157 0.0130157i
\(201\) 6.00990 6.00990i 0.423906 0.423906i
\(202\) −6.68866 −0.470612
\(203\) 11.7081 8.11907i 0.821751 0.569847i
\(204\) 2.85434 0.199844
\(205\) 7.35528 7.35528i 0.513715 0.513715i
\(206\) −1.86672 1.86672i −0.130061 0.130061i
\(207\) 1.96734i 0.136740i
\(208\) 3.05148 0.211582
\(209\) 12.9119 0.893132
\(210\) −0.0722973 + 5.75956i −0.00498899 + 0.397448i
\(211\) 13.0824 + 13.0824i 0.900632 + 0.900632i 0.995491 0.0948586i \(-0.0302399\pi\)
−0.0948586 + 0.995491i \(0.530240\pi\)
\(212\) 10.9788i 0.754029i
\(213\) −9.72590 + 9.72590i −0.666408 + 0.666408i
\(214\) 3.62146 3.62146i 0.247558 0.247558i
\(215\) −4.50602 + 4.50602i −0.307308 + 0.307308i
\(216\) 1.00000 0.0680414
\(217\) −5.07157 + 4.94583i −0.344281 + 0.335745i
\(218\) −5.05480 5.05480i −0.342354 0.342354i
\(219\) −9.13753 −0.617457
\(220\) 6.69630 + 6.69630i 0.451464 + 0.451464i
\(221\) 6.15888 + 6.15888i 0.414291 + 0.414291i
\(222\) −5.99454 5.99454i −0.402327 0.402327i
\(223\) 7.82250i 0.523834i −0.965090 0.261917i \(-0.915645\pi\)
0.965090 0.261917i \(-0.0843546\pi\)
\(224\) 1.84720 + 1.89416i 0.123421 + 0.126559i
\(225\) 0.260314i 0.0173542i
\(226\) −9.63949 −0.641209
\(227\) 23.3631i 1.55067i 0.631553 + 0.775333i \(0.282418\pi\)
−0.631553 + 0.775333i \(0.717582\pi\)
\(228\) 2.96834 0.196583
\(229\) 4.68182 4.68182i 0.309384 0.309384i −0.535287 0.844670i \(-0.679796\pi\)
0.844670 + 0.535287i \(0.179796\pi\)
\(230\) 3.02859 3.02859i 0.199699 0.199699i
\(231\) −0.144452 + 11.5077i −0.00950422 + 0.757153i
\(232\) 0.892636 5.31067i 0.0586044 0.348662i
\(233\) −0.533098 −0.0349244 −0.0174622 0.999848i \(-0.505559\pi\)
−0.0174622 + 0.999848i \(0.505559\pi\)
\(234\) 2.15772 + 2.15772i 0.141055 + 0.141055i
\(235\) 18.7419 18.7419i 1.22259 1.22259i
\(236\) 11.1746 0.727406
\(237\) 15.0619 0.978376
\(238\) −0.0947880 + 7.55128i −0.00614419 + 0.489477i
\(239\) 22.8814 1.48007 0.740036 0.672567i \(-0.234808\pi\)
0.740036 + 0.672567i \(0.234808\pi\)
\(240\) 1.53943 + 1.53943i 0.0993697 + 0.0993697i
\(241\) −7.01610 −0.451946 −0.225973 0.974134i \(-0.572556\pi\)
−0.225973 + 0.974134i \(0.572556\pi\)
\(242\) 5.60117 + 5.60117i 0.360057 + 0.360057i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 3.08688 3.08688i 0.197617 0.197617i
\(245\) −15.2348 0.382531i −0.973314 0.0244390i
\(246\) 3.37850 3.37850i 0.215405 0.215405i
\(247\) 6.40486 + 6.40486i 0.407532 + 0.407532i
\(248\) 2.67747i 0.170020i
\(249\) −5.24119 + 5.24119i −0.332147 + 0.332147i
\(250\) 8.09788 8.09788i 0.512155 0.512155i
\(251\) −5.57436 5.57436i −0.351851 0.351851i 0.508947 0.860798i \(-0.330035\pi\)
−0.860798 + 0.508947i \(0.830035\pi\)
\(252\) −0.0332084 + 2.64554i −0.00209193 + 0.166654i
\(253\) 6.05118 6.05118i 0.380434 0.380434i
\(254\) 7.04087i 0.441783i
\(255\) 6.21413i 0.389144i
\(256\) 1.00000 0.0625000
\(257\) 0.239239i 0.0149233i 0.999972 + 0.00746167i \(0.00237514\pi\)
−0.999972 + 0.00746167i \(0.997625\pi\)
\(258\) −2.06975 + 2.06975i −0.128857 + 0.128857i
\(259\) 16.0579 15.6597i 0.997788 0.973049i
\(260\) 6.64333i 0.412002i
\(261\) 4.38640 3.12402i 0.271511 0.193372i
\(262\) 8.31146i 0.513484i
\(263\) 5.36523 5.36523i 0.330834 0.330834i −0.522069 0.852903i \(-0.674840\pi\)
0.852903 + 0.522069i \(0.174840\pi\)
\(264\) 3.07581 + 3.07581i 0.189303 + 0.189303i
\(265\) −23.9018 −1.46828
\(266\) −0.0985738 + 7.85287i −0.00604394 + 0.481491i
\(267\) 17.9739i 1.09999i
\(268\) 8.49928 0.519176
\(269\) −1.49797 + 1.49797i −0.0913331 + 0.0913331i −0.751297 0.659964i \(-0.770571\pi\)
0.659964 + 0.751297i \(0.270571\pi\)
\(270\) 2.17708i 0.132493i
\(271\) 1.63211 1.63211i 0.0991433 0.0991433i −0.655795 0.754939i \(-0.727667\pi\)
0.754939 + 0.655795i \(0.227667\pi\)
\(272\) 2.01832 + 2.01832i 0.122379 + 0.122379i
\(273\) −5.78001 + 5.63670i −0.349822 + 0.341148i
\(274\) 5.93030i 0.358263i
\(275\) 0.800676 0.800676i 0.0482826 0.0482826i
\(276\) 1.39112 1.39112i 0.0837357 0.0837357i
\(277\) −16.2682 −0.977459 −0.488730 0.872435i \(-0.662540\pi\)
−0.488730 + 0.872435i \(0.662540\pi\)
\(278\) −8.76328 8.76328i −0.525587 0.525587i
\(279\) −1.89326 + 1.89326i −0.113347 + 0.113347i
\(280\) −4.12375 + 4.02150i −0.246441 + 0.240331i
\(281\) −1.91319 −0.114132 −0.0570658 0.998370i \(-0.518174\pi\)
−0.0570658 + 0.998370i \(0.518174\pi\)
\(282\) 8.60874 8.60874i 0.512643 0.512643i
\(283\) 6.17983 0.367353 0.183676 0.982987i \(-0.441200\pi\)
0.183676 + 0.982987i \(0.441200\pi\)
\(284\) −13.7545 −0.816180
\(285\) 6.46232i 0.382795i
\(286\) 13.2735i 0.784879i
\(287\) 8.82578 + 9.05017i 0.520969 + 0.534214i
\(288\) 0.707107 + 0.707107i 0.0416667 + 0.0416667i
\(289\) 8.85275i 0.520750i
\(290\) 11.5618 + 1.94334i 0.678930 + 0.114117i
\(291\) 10.2541 0.601108
\(292\) −6.46121 6.46121i −0.378114 0.378114i
\(293\) 14.1737 + 14.1737i 0.828037 + 0.828037i 0.987245 0.159208i \(-0.0508940\pi\)
−0.159208 + 0.987245i \(0.550894\pi\)
\(294\) −6.99779 0.175708i −0.408120 0.0102475i
\(295\) 24.3281i 1.41643i
\(296\) 8.47756i 0.492748i
\(297\) 4.34986i 0.252404i
\(298\) 0.325855 + 0.325855i 0.0188763 + 0.0188763i
\(299\) 6.00331 0.347181
\(300\) 0.184070 0.184070i 0.0106273 0.0106273i
\(301\) −5.40688 5.54435i −0.311648 0.319571i
\(302\) −14.6422 14.6422i −0.842562 0.842562i
\(303\) 6.68866i 0.384253i
\(304\) 2.09893 + 2.09893i 0.120382 + 0.120382i
\(305\) 6.72038 + 6.72038i 0.384808 + 0.384808i
\(306\) 2.85434i 0.163172i
\(307\) −14.8118 14.8118i −0.845355 0.845355i 0.144194 0.989549i \(-0.453941\pi\)
−0.989549 + 0.144194i \(0.953941\pi\)
\(308\) −8.23934 + 8.03505i −0.469480 + 0.457840i
\(309\) 1.86672 1.86672i 0.106194 0.106194i
\(310\) −5.82908 −0.331070
\(311\) −13.0106 13.0106i −0.737764 0.737764i 0.234381 0.972145i \(-0.424694\pi\)
−0.972145 + 0.234381i \(0.924694\pi\)
\(312\) 3.05148i 0.172756i
\(313\) 5.84368i 0.330305i 0.986268 + 0.165152i \(0.0528116\pi\)
−0.986268 + 0.165152i \(0.947188\pi\)
\(314\) 12.2479i 0.691191i
\(315\) −5.75956 0.0722973i −0.324515 0.00407349i
\(316\) 10.6504 + 10.6504i 0.599131 + 0.599131i
\(317\) 9.59491 + 9.59491i 0.538904 + 0.538904i 0.923207 0.384303i \(-0.125558\pi\)
−0.384303 + 0.923207i \(0.625558\pi\)
\(318\) −10.9788 −0.615662
\(319\) 23.1006 + 3.88284i 1.29339 + 0.217397i
\(320\) 2.17708i 0.121703i
\(321\) 3.62146 + 3.62146i 0.202130 + 0.202130i
\(322\) 3.63407 + 3.72647i 0.202519 + 0.207668i
\(323\) 8.47265i 0.471431i
\(324\) 1.00000i 0.0555556i
\(325\) 0.794342 0.0440622
\(326\) 8.06426 0.446638
\(327\) 5.05480 5.05480i 0.279531 0.279531i
\(328\) 4.77792 0.263817
\(329\) 22.4889 + 23.0607i 1.23985 + 1.27138i
\(330\) −6.69630 + 6.69630i −0.368619 + 0.368619i
\(331\) 22.4637 + 22.4637i 1.23472 + 1.23472i 0.962132 + 0.272584i \(0.0878781\pi\)
0.272584 + 0.962132i \(0.412122\pi\)
\(332\) −7.41216 −0.406795
\(333\) 5.99454 5.99454i 0.328499 0.328499i
\(334\) 13.0770 13.0770i 0.715541 0.715541i
\(335\) 18.5036i 1.01096i
\(336\) −1.89416 + 1.84720i −0.103335 + 0.100773i
\(337\) −0.981989 0.981989i −0.0534923 0.0534923i 0.679855 0.733347i \(-0.262043\pi\)
−0.733347 + 0.679855i \(0.762043\pi\)
\(338\) 2.60813 2.60813i 0.141864 0.141864i
\(339\) 9.63949i 0.523545i
\(340\) −4.39405 + 4.39405i −0.238301 + 0.238301i
\(341\) −11.6466 −0.630700
\(342\) 2.96834i 0.160509i
\(343\) 0.697229 18.5071i 0.0376468 0.999291i
\(344\) −2.92707 −0.157817
\(345\) 3.02859 + 3.02859i 0.163054 + 0.163054i
\(346\) −12.9450 + 12.9450i −0.695928 + 0.695928i
\(347\) 2.91380i 0.156421i 0.996937 + 0.0782104i \(0.0249206\pi\)
−0.996937 + 0.0782104i \(0.975079\pi\)
\(348\) 5.31067 + 0.892636i 0.284682 + 0.0478503i
\(349\) 2.07742i 0.111202i 0.998453 + 0.0556010i \(0.0177075\pi\)
−0.998453 + 0.0556010i \(0.982293\pi\)
\(350\) 0.480851 + 0.493076i 0.0257026 + 0.0263560i
\(351\) −2.15772 + 2.15772i −0.115171 + 0.115171i
\(352\) 4.34986i 0.231848i
\(353\) −9.78791 −0.520958 −0.260479 0.965480i \(-0.583880\pi\)
−0.260479 + 0.965480i \(0.583880\pi\)
\(354\) 11.1746i 0.593924i
\(355\) 29.9447i 1.58930i
\(356\) −12.7095 + 12.7095i −0.673602 + 0.673602i
\(357\) −7.55128 0.0947880i −0.399656 0.00501671i
\(358\) −6.26751 6.26751i −0.331248 0.331248i
\(359\) −21.9678 + 21.9678i −1.15942 + 1.15942i −0.174814 + 0.984602i \(0.555932\pi\)
−0.984602 + 0.174814i \(0.944068\pi\)
\(360\) −1.53943 + 1.53943i −0.0811351 + 0.0811351i
\(361\) 10.1890i 0.536261i
\(362\) −14.2037 14.2037i −0.746527 0.746527i
\(363\) −5.60117 + 5.60117i −0.293985 + 0.293985i
\(364\) −8.07283 0.101335i −0.423131 0.00531138i
\(365\) 14.0666 14.0666i 0.736278 0.736278i
\(366\) 3.08688 + 3.08688i 0.161354 + 0.161354i
\(367\) −20.6384 20.6384i −1.07732 1.07732i −0.996749 0.0805659i \(-0.974327\pi\)
−0.0805659 0.996749i \(-0.525673\pi\)
\(368\) 1.96734 0.102555
\(369\) 3.37850 + 3.37850i 0.175878 + 0.175878i
\(370\) 18.4563 0.959499
\(371\) 0.364589 29.0450i 0.0189285 1.50794i
\(372\) −2.67747 −0.138821
\(373\) 26.7165 1.38333 0.691664 0.722219i \(-0.256878\pi\)
0.691664 + 0.722219i \(0.256878\pi\)
\(374\) −8.77942 + 8.77942i −0.453973 + 0.453973i
\(375\) 8.09788 + 8.09788i 0.418173 + 0.418173i
\(376\) 12.1746 0.627857
\(377\) 9.53290 + 13.3850i 0.490969 + 0.689364i
\(378\) −2.64554 0.0332084i −0.136072 0.00170805i
\(379\) −14.3234 + 14.3234i −0.735745 + 0.735745i −0.971751 0.236007i \(-0.924161\pi\)
0.236007 + 0.971751i \(0.424161\pi\)
\(380\) −4.56955 + 4.56955i −0.234413 + 0.234413i
\(381\) −7.04087 −0.360715
\(382\) 9.03940i 0.462496i
\(383\) 4.46904 0.228357 0.114179 0.993460i \(-0.463576\pi\)
0.114179 + 0.993460i \(0.463576\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −17.4930 17.9377i −0.891524 0.914191i
\(386\) 0.318606i 0.0162166i
\(387\) −2.06975 2.06975i −0.105211 0.105211i
\(388\) 7.25077 + 7.25077i 0.368102 + 0.368102i
\(389\) −15.4546 15.4546i −0.783578 0.783578i 0.196855 0.980433i \(-0.436927\pi\)
−0.980433 + 0.196855i \(0.936927\pi\)
\(390\) −6.64333 −0.336398
\(391\) 3.97073 + 3.97073i 0.200809 + 0.200809i
\(392\) −4.82394 5.07243i −0.243646 0.256197i
\(393\) −8.31146 −0.419258
\(394\) 14.6058 14.6058i 0.735830 0.735830i
\(395\) −23.1868 + 23.1868i −1.16665 + 1.16665i
\(396\) −3.07581 + 3.07581i −0.154565 + 0.154565i
\(397\) 9.25690i 0.464591i −0.972645 0.232295i \(-0.925376\pi\)
0.972645 0.232295i \(-0.0746236\pi\)
\(398\) −5.21343 5.21343i −0.261326 0.261326i
\(399\) −7.85287 0.0985738i −0.393135 0.00493486i
\(400\) 0.260314 0.0130157
\(401\) 29.0745 1.45191 0.725956 0.687741i \(-0.241397\pi\)
0.725956 + 0.687741i \(0.241397\pi\)
\(402\) 8.49928i 0.423906i
\(403\) −5.77725 5.77725i −0.287785 0.287785i
\(404\) 4.72960 4.72960i 0.235306 0.235306i
\(405\) −2.17708 −0.108180
\(406\) −2.53786 + 14.0200i −0.125952 + 0.695799i
\(407\) 36.8762 1.82788
\(408\) −2.01832 + 2.01832i −0.0999219 + 0.0999219i
\(409\) −0.236472 0.236472i −0.0116928 0.0116928i 0.701236 0.712929i \(-0.252632\pi\)
−0.712929 + 0.701236i \(0.752632\pi\)
\(410\) 10.4019i 0.513715i
\(411\) −5.93030 −0.292520
\(412\) 2.63995 0.130061
\(413\) −29.5629 0.371091i −1.45470 0.0182602i
\(414\) 1.39112 + 1.39112i 0.0683699 + 0.0683699i
\(415\) 16.1369i 0.792128i
\(416\) −2.15772 + 2.15772i −0.105791 + 0.105791i
\(417\) 8.76328 8.76328i 0.429140 0.429140i
\(418\) −9.13006 + 9.13006i −0.446566 + 0.446566i
\(419\) 35.3605 1.72747 0.863737 0.503943i \(-0.168118\pi\)
0.863737 + 0.503943i \(0.168118\pi\)
\(420\) −4.02150 4.12375i −0.196229 0.201218i
\(421\) 14.1791 + 14.1791i 0.691048 + 0.691048i 0.962463 0.271414i \(-0.0874914\pi\)
−0.271414 + 0.962463i \(0.587491\pi\)
\(422\) −18.5014 −0.900632
\(423\) 8.60874 + 8.60874i 0.418571 + 0.418571i
\(424\) −7.76320 7.76320i −0.377015 0.377015i
\(425\) 0.525397 + 0.525397i 0.0254855 + 0.0254855i
\(426\) 13.7545i 0.666408i
\(427\) −8.26897 + 8.06395i −0.400164 + 0.390242i
\(428\) 5.12152i 0.247558i
\(429\) −13.2735 −0.640851
\(430\) 6.37247i 0.307308i
\(431\) 25.4595 1.22634 0.613172 0.789950i \(-0.289893\pi\)
0.613172 + 0.789950i \(0.289893\pi\)
\(432\) −0.707107 + 0.707107i −0.0340207 + 0.0340207i
\(433\) 16.9332 16.9332i 0.813756 0.813756i −0.171438 0.985195i \(-0.554841\pi\)
0.985195 + 0.171438i \(0.0548415\pi\)
\(434\) 0.0889146 7.08337i 0.00426804 0.340013i
\(435\) −1.94334 + 11.5618i −0.0931761 + 0.554344i
\(436\) 7.14857 0.342354
\(437\) 4.12932 + 4.12932i 0.197532 + 0.197532i
\(438\) 6.46121 6.46121i 0.308728 0.308728i
\(439\) −4.61793 −0.220402 −0.110201 0.993909i \(-0.535149\pi\)
−0.110201 + 0.993909i \(0.535149\pi\)
\(440\) −9.47000 −0.451464
\(441\) 0.175708 6.99779i 0.00836706 0.333228i
\(442\) −8.70997 −0.414291
\(443\) −28.5522 28.5522i −1.35656 1.35656i −0.878124 0.478433i \(-0.841205\pi\)
−0.478433 0.878124i \(-0.658795\pi\)
\(444\) 8.47756 0.402327
\(445\) −27.6696 27.6696i −1.31167 1.31167i
\(446\) 5.53135 + 5.53135i 0.261917 + 0.261917i
\(447\) −0.325855 + 0.325855i −0.0154124 + 0.0154124i
\(448\) −2.64554 0.0332084i −0.124990 0.00156895i
\(449\) 17.6925 17.6925i 0.834961 0.834961i −0.153230 0.988191i \(-0.548967\pi\)
0.988191 + 0.153230i \(0.0489675\pi\)
\(450\) 0.184070 + 0.184070i 0.00867712 + 0.00867712i
\(451\) 20.7833i 0.978647i
\(452\) 6.81615 6.81615i 0.320605 0.320605i
\(453\) 14.6422 14.6422i 0.687949 0.687949i
\(454\) −16.5202 16.5202i −0.775333 0.775333i
\(455\) 0.220614 17.5752i 0.0103425 0.823939i
\(456\) −2.09893 + 2.09893i −0.0982916 + 0.0982916i
\(457\) 32.0817i 1.50072i −0.661031 0.750358i \(-0.729881\pi\)
0.661031 0.750358i \(-0.270119\pi\)
\(458\) 6.62110i 0.309384i
\(459\) −2.85434 −0.133229
\(460\) 4.28307i 0.199699i
\(461\) 22.2104 22.2104i 1.03444 1.03444i 0.0350568 0.999385i \(-0.488839\pi\)
0.999385 0.0350568i \(-0.0111612\pi\)
\(462\) −8.03505 8.23934i −0.373825 0.383329i
\(463\) 19.9358i 0.926494i −0.886229 0.463247i \(-0.846684\pi\)
0.886229 0.463247i \(-0.153316\pi\)
\(464\) 3.12402 + 4.38640i 0.145029 + 0.203633i
\(465\) 5.82908i 0.270317i
\(466\) 0.376957 0.376957i 0.0174622 0.0174622i
\(467\) 12.1462 + 12.1462i 0.562058 + 0.562058i 0.929892 0.367834i \(-0.119900\pi\)
−0.367834 + 0.929892i \(0.619900\pi\)
\(468\) −3.05148 −0.141055
\(469\) −22.4852 0.282247i −1.03827 0.0130330i
\(470\) 26.5051i 1.22259i
\(471\) 12.2479 0.564355
\(472\) −7.90165 + 7.90165i −0.363703 + 0.363703i
\(473\) 12.7323i 0.585433i
\(474\) −10.6504 + 10.6504i −0.489188 + 0.489188i
\(475\) 0.546381 + 0.546381i 0.0250697 + 0.0250697i
\(476\) −5.27253 5.40659i −0.241666 0.247810i
\(477\) 10.9788i 0.502686i
\(478\) −16.1796 + 16.1796i −0.740036 + 0.740036i
\(479\) −7.66087 + 7.66087i −0.350034 + 0.350034i −0.860122 0.510088i \(-0.829613\pi\)
0.510088 + 0.860122i \(0.329613\pi\)
\(480\) −2.17708 −0.0993697
\(481\) 18.2922 + 18.2922i 0.834054 + 0.834054i
\(482\) 4.96113 4.96113i 0.225973 0.225973i
\(483\) −3.72647 + 3.63407i −0.169560 + 0.165356i
\(484\) −7.92125 −0.360057
\(485\) −15.7855 + 15.7855i −0.716783 + 0.716783i
\(486\) −1.00000 −0.0453609
\(487\) −42.8321 −1.94091 −0.970454 0.241288i \(-0.922430\pi\)
−0.970454 + 0.241288i \(0.922430\pi\)
\(488\) 4.36550i 0.197617i
\(489\) 8.06426i 0.364679i
\(490\) 11.0431 10.5021i 0.498876 0.474437i
\(491\) 4.27185 + 4.27185i 0.192786 + 0.192786i 0.796899 0.604113i \(-0.206472\pi\)
−0.604113 + 0.796899i \(0.706472\pi\)
\(492\) 4.77792i 0.215405i
\(493\) −2.54789 + 15.1585i −0.114751 + 0.682702i
\(494\) −9.05784 −0.407532
\(495\) −6.69630 6.69630i −0.300976 0.300976i
\(496\) −1.89326 1.89326i −0.0850099 0.0850099i
\(497\) 36.3881 + 0.456765i 1.63223 + 0.0204887i
\(498\) 7.41216i 0.332147i
\(499\) 10.2732i 0.459892i 0.973203 + 0.229946i \(0.0738550\pi\)
−0.973203 + 0.229946i \(0.926145\pi\)
\(500\) 11.4521i 0.512155i
\(501\) 13.0770 + 13.0770i 0.584237 + 0.584237i
\(502\) 7.88334 0.351851
\(503\) 9.86594 9.86594i 0.439900 0.439900i −0.452078 0.891978i \(-0.649317\pi\)
0.891978 + 0.452078i \(0.149317\pi\)
\(504\) −1.84720 1.89416i −0.0822808 0.0843727i
\(505\) 10.2967 + 10.2967i 0.458198 + 0.458198i
\(506\) 8.55766i 0.380434i
\(507\) 2.60813 + 2.60813i 0.115831 + 0.115831i
\(508\) −4.97865 4.97865i −0.220892 0.220892i
\(509\) 14.1326i 0.626417i 0.949684 + 0.313209i \(0.101404\pi\)
−0.949684 + 0.313209i \(0.898596\pi\)
\(510\) −4.39405 4.39405i −0.194572 0.194572i
\(511\) 16.8788 + 17.3080i 0.746676 + 0.765659i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −2.96834 −0.131055
\(514\) −0.169168 0.169168i −0.00746167 0.00746167i
\(515\) 5.74738i 0.253260i
\(516\) 2.92707i 0.128857i
\(517\) 52.9578i 2.32908i
\(518\) −0.281526 + 22.4277i −0.0123695 + 0.985418i
\(519\) −12.9450 12.9450i −0.568223 0.568223i
\(520\) −4.69754 4.69754i −0.206001 0.206001i
\(521\) 16.4017 0.718569 0.359285 0.933228i \(-0.383021\pi\)
0.359285 + 0.933228i \(0.383021\pi\)
\(522\) −0.892636 + 5.31067i −0.0390696 + 0.232442i
\(523\) 31.8200i 1.39139i −0.718336 0.695696i \(-0.755096\pi\)
0.718336 0.695696i \(-0.244904\pi\)
\(524\) −5.87709 5.87709i −0.256742 0.256742i
\(525\) −0.493076 + 0.480851i −0.0215196 + 0.0209861i
\(526\) 7.58758i 0.330834i
\(527\) 7.64242i 0.332909i
\(528\) −4.34986 −0.189303
\(529\) −19.1296 −0.831720
\(530\) 16.9011 16.9011i 0.734138 0.734138i
\(531\) −11.1746 −0.484937
\(532\) −5.48312 5.62252i −0.237723 0.243767i
\(533\) −10.3094 + 10.3094i −0.446552 + 0.446552i
\(534\) −12.7095 12.7095i −0.549994 0.549994i
\(535\) −11.1500 −0.482055
\(536\) −6.00990 + 6.00990i −0.259588 + 0.259588i
\(537\) 6.26751 6.26751i 0.270463 0.270463i
\(538\) 2.11846i 0.0913331i
\(539\) 22.0644 20.9835i 0.950379 0.903822i
\(540\) −1.53943 1.53943i −0.0662465 0.0662465i
\(541\) 16.5259 16.5259i 0.710505 0.710505i −0.256136 0.966641i \(-0.582450\pi\)
0.966641 + 0.256136i \(0.0824495\pi\)
\(542\) 2.30815i 0.0991433i
\(543\) 14.2037 14.2037i 0.609537 0.609537i
\(544\) −2.85434 −0.122379
\(545\) 15.5630i 0.666647i
\(546\) 0.101335 8.07283i 0.00433673 0.345485i
\(547\) −7.07426 −0.302474 −0.151237 0.988498i \(-0.548326\pi\)
−0.151237 + 0.988498i \(0.548326\pi\)
\(548\) −4.19336 4.19336i −0.179131 0.179131i
\(549\) −3.08688 + 3.08688i −0.131745 + 0.131745i
\(550\) 1.13233i 0.0482826i
\(551\) −2.64965 + 15.7639i −0.112879 + 0.671564i
\(552\) 1.96734i 0.0837357i
\(553\) −27.8224 28.5297i −1.18313 1.21321i
\(554\) 11.5033 11.5033i 0.488730 0.488730i
\(555\) 18.4563i 0.783428i
\(556\) 12.3931 0.525587
\(557\) 31.9269i 1.35279i −0.736541 0.676393i \(-0.763542\pi\)
0.736541 0.676393i \(-0.236458\pi\)
\(558\) 2.67747i 0.113347i
\(559\) 6.31581 6.31581i 0.267130 0.267130i
\(560\) 0.0722973 5.75956i 0.00305512 0.243386i
\(561\) −8.77942 8.77942i −0.370667 0.370667i
\(562\) 1.35283 1.35283i 0.0570658 0.0570658i
\(563\) −25.1072 + 25.1072i −1.05814 + 1.05814i −0.0599417 + 0.998202i \(0.519091\pi\)
−0.998202 + 0.0599417i \(0.980909\pi\)
\(564\) 12.1746i 0.512643i
\(565\) 14.8393 + 14.8393i 0.624294 + 0.624294i
\(566\) −4.36980 + 4.36980i −0.183676 + 0.183676i
\(567\) 0.0332084 2.64554i 0.00139462 0.111102i
\(568\) 9.72590 9.72590i 0.408090 0.408090i
\(569\) −14.1226 14.1226i −0.592049 0.592049i 0.346136 0.938184i \(-0.387494\pi\)
−0.938184 + 0.346136i \(0.887494\pi\)
\(570\) −4.56955 4.56955i −0.191397 0.191397i
\(571\) −27.0344 −1.13135 −0.565676 0.824627i \(-0.691385\pi\)
−0.565676 + 0.824627i \(0.691385\pi\)
\(572\) −9.38579 9.38579i −0.392440 0.392440i
\(573\) 9.03940 0.377626
\(574\) −12.6402 0.158667i −0.527592 0.00662263i
\(575\) 0.512126 0.0213571
\(576\) −1.00000 −0.0416667
\(577\) −8.06421 + 8.06421i −0.335717 + 0.335717i −0.854753 0.519035i \(-0.826291\pi\)
0.519035 + 0.854753i \(0.326291\pi\)
\(578\) 6.25984 + 6.25984i 0.260375 + 0.260375i
\(579\) −0.318606 −0.0132408
\(580\) −9.54955 + 6.80125i −0.396523 + 0.282407i
\(581\) 19.6092 + 0.246146i 0.813526 + 0.0102118i
\(582\) −7.25077 + 7.25077i −0.300554 + 0.300554i
\(583\) 33.7688 33.7688i 1.39856 1.39856i
\(584\) 9.13753 0.378114
\(585\) 6.64333i 0.274668i
\(586\) −20.0447 −0.828037
\(587\) 19.3031i 0.796723i 0.917229 + 0.398361i \(0.130421\pi\)
−0.917229 + 0.398361i \(0.869579\pi\)
\(588\) 5.07243 4.82394i 0.209184 0.198936i
\(589\) 7.94766i 0.327478i
\(590\) −17.2025 17.2025i −0.708217 0.708217i
\(591\) 14.6058 + 14.6058i 0.600803 + 0.600803i
\(592\) 5.99454 + 5.99454i 0.246374 + 0.246374i
\(593\) 4.83702 0.198633 0.0993163 0.995056i \(-0.468334\pi\)
0.0993163 + 0.995056i \(0.468334\pi\)
\(594\) −3.07581 3.07581i −0.126202 0.126202i
\(595\) 11.7706 11.4787i 0.482547 0.470582i
\(596\) −0.460829 −0.0188763
\(597\) 5.21343 5.21343i 0.213371 0.213371i
\(598\) −4.24498 + 4.24498i −0.173590 + 0.173590i
\(599\) −19.8884 + 19.8884i −0.812617 + 0.812617i −0.985025 0.172409i \(-0.944845\pi\)
0.172409 + 0.985025i \(0.444845\pi\)
\(600\) 0.260314i 0.0106273i
\(601\) 2.07799 + 2.07799i 0.0847630 + 0.0847630i 0.748217 0.663454i \(-0.230910\pi\)
−0.663454 + 0.748217i \(0.730910\pi\)
\(602\) 7.74369 + 0.0972032i 0.315609 + 0.00396171i
\(603\) −8.49928 −0.346117
\(604\) 20.7071 0.842562
\(605\) 17.2452i 0.701118i
\(606\) 4.72960 + 4.72960i 0.192127 + 0.192127i
\(607\) 9.83290 9.83290i 0.399105 0.399105i −0.478812 0.877917i \(-0.658933\pi\)
0.877917 + 0.478812i \(0.158933\pi\)
\(608\) −2.96834 −0.120382
\(609\) −14.0200 2.53786i −0.568117 0.102839i
\(610\) −9.50405 −0.384808
\(611\) −26.2694 + 26.2694i −1.06275 + 1.06275i
\(612\) −2.01832 2.01832i −0.0815859 0.0815859i
\(613\) 22.5792i 0.911967i 0.889988 + 0.455984i \(0.150712\pi\)
−0.889988 + 0.455984i \(0.849288\pi\)
\(614\) 20.9471 0.845355
\(615\) −10.4019 −0.419446
\(616\) 0.144452 11.5077i 0.00582012 0.463660i
\(617\) −26.6454 26.6454i −1.07270 1.07270i −0.997141 0.0755633i \(-0.975925\pi\)
−0.0755633 0.997141i \(-0.524075\pi\)
\(618\) 2.63995i 0.106194i
\(619\) 29.9664 29.9664i 1.20445 1.20445i 0.231655 0.972798i \(-0.425586\pi\)
0.972798 0.231655i \(-0.0744141\pi\)
\(620\) 4.12178 4.12178i 0.165535 0.165535i
\(621\) −1.39112 + 1.39112i −0.0558238 + 0.0558238i
\(622\) 18.3998 0.737764
\(623\) 34.0456 33.2014i 1.36401 1.33019i
\(624\) −2.15772 2.15772i −0.0863781 0.0863781i
\(625\) −23.6307 −0.945227
\(626\) −4.13211 4.13211i −0.165152 0.165152i
\(627\) −9.13006 9.13006i −0.364620 0.364620i
\(628\) 8.66060 + 8.66060i 0.345596 + 0.345596i
\(629\) 24.1978i 0.964831i
\(630\) 4.12375 4.02150i 0.164294 0.160221i
\(631\) 38.6813i 1.53988i 0.638117 + 0.769940i \(0.279714\pi\)
−0.638117 + 0.769940i \(0.720286\pi\)
\(632\) −15.0619 −0.599131
\(633\) 18.5014i 0.735363i
\(634\) −13.5692 −0.538904
\(635\) 10.8389 10.8389i 0.430129 0.430129i
\(636\) 7.76320 7.76320i 0.307831 0.307831i
\(637\) 21.3537 + 0.536171i 0.846062 + 0.0212439i
\(638\) −19.0802 + 13.5890i −0.755393 + 0.537995i
\(639\) 13.7545 0.544120
\(640\) −1.53943 1.53943i −0.0608513 0.0608513i
\(641\) 9.68421 9.68421i 0.382503 0.382503i −0.489500 0.872003i \(-0.662821\pi\)
0.872003 + 0.489500i \(0.162821\pi\)
\(642\) −5.12152 −0.202130
\(643\) −12.0757 −0.476221 −0.238111 0.971238i \(-0.576528\pi\)
−0.238111 + 0.971238i \(0.576528\pi\)
\(644\) −5.20469 0.0653322i −0.205094 0.00257445i
\(645\) 6.37247 0.250916
\(646\) −5.99107 5.99107i −0.235716 0.235716i
\(647\) −43.9992 −1.72979 −0.864893 0.501956i \(-0.832614\pi\)
−0.864893 + 0.501956i \(0.832614\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) −34.3710 34.3710i −1.34918 1.34918i
\(650\) −0.561685 + 0.561685i −0.0220311 + 0.0220311i
\(651\) 7.08337 + 0.0889146i 0.277619 + 0.00348484i
\(652\) −5.70229 + 5.70229i −0.223319 + 0.223319i
\(653\) −28.1024 28.1024i −1.09973 1.09973i −0.994442 0.105290i \(-0.966423\pi\)
−0.105290 0.994442i \(-0.533577\pi\)
\(654\) 7.14857i 0.279531i
\(655\) 12.7949 12.7949i 0.499938 0.499938i
\(656\) −3.37850 + 3.37850i −0.131908 + 0.131908i
\(657\) 6.46121 + 6.46121i 0.252076 + 0.252076i
\(658\) −32.2084 0.404299i −1.25562 0.0157612i
\(659\) −7.04998 + 7.04998i −0.274628 + 0.274628i −0.830960 0.556332i \(-0.812208\pi\)
0.556332 + 0.830960i \(0.312208\pi\)
\(660\) 9.47000i 0.368619i
\(661\) 14.7475i 0.573611i −0.957989 0.286805i \(-0.907407\pi\)
0.957989 0.286805i \(-0.0925933\pi\)
\(662\) −31.7684 −1.23472
\(663\) 8.70997i 0.338267i
\(664\) 5.24119 5.24119i 0.203397 0.203397i
\(665\) 12.2407 11.9372i 0.474674 0.462905i
\(666\) 8.47756i 0.328499i
\(667\) 6.14602 + 8.62955i 0.237975 + 0.334138i
\(668\) 18.4936i 0.715541i
\(669\) −5.53135 + 5.53135i −0.213854 + 0.213854i
\(670\) −13.0840 13.0840i −0.505481 0.505481i
\(671\) −18.9893 −0.733074
\(672\) 0.0332084 2.64554i 0.00128104 0.102054i
\(673\) 13.1967i 0.508694i 0.967113 + 0.254347i \(0.0818606\pi\)
−0.967113 + 0.254347i \(0.918139\pi\)
\(674\) 1.38874 0.0534923
\(675\) −0.184070 + 0.184070i −0.00708484 + 0.00708484i
\(676\) 3.68845i 0.141864i
\(677\) −12.1125 + 12.1125i −0.465520 + 0.465520i −0.900460 0.434940i \(-0.856770\pi\)
0.434940 + 0.900460i \(0.356770\pi\)
\(678\) 6.81615 + 6.81615i 0.261772 + 0.261772i
\(679\) −18.9414 19.4230i −0.726905 0.745387i
\(680\) 6.21413i 0.238301i
\(681\) 16.5202 16.5202i 0.633057 0.633057i
\(682\) 8.23541 8.23541i 0.315350 0.315350i
\(683\) −11.3921 −0.435905 −0.217952 0.975959i \(-0.569938\pi\)
−0.217952 + 0.975959i \(0.569938\pi\)
\(684\) −2.09893 2.09893i −0.0802547 0.0802547i
\(685\) 9.12929 9.12929i 0.348812 0.348812i
\(686\) 12.5935 + 13.5795i 0.480822 + 0.518469i
\(687\) −6.62110 −0.252611
\(688\) 2.06975 2.06975i 0.0789085 0.0789085i
\(689\) 33.5017 1.27631
\(690\) −4.28307 −0.163054
\(691\) 27.9978i 1.06509i −0.846403 0.532543i \(-0.821236\pi\)
0.846403 0.532543i \(-0.178764\pi\)
\(692\) 18.3070i 0.695928i
\(693\) 8.23934 8.03505i 0.312987 0.305226i
\(694\) −2.06037 2.06037i −0.0782104 0.0782104i
\(695\) 26.9809i 1.02344i
\(696\) −4.38640 + 3.12402i −0.166266 + 0.118416i
\(697\) −13.6378 −0.516569
\(698\) −1.46896 1.46896i −0.0556010 0.0556010i
\(699\) 0.376957 + 0.376957i 0.0142578 + 0.0142578i
\(700\) −0.688671 0.00864459i −0.0260293 0.000326735i
\(701\) 9.64404i 0.364250i −0.983275 0.182125i \(-0.941702\pi\)
0.983275 0.182125i \(-0.0582976\pi\)
\(702\) 3.05148i 0.115171i
\(703\) 25.1643i 0.949089i
\(704\) −3.07581 3.07581i −0.115924 0.115924i
\(705\) −26.5051 −0.998240
\(706\) 6.92109 6.92109i 0.260479 0.260479i
\(707\) −12.6694 + 12.3553i −0.476482 + 0.464668i
\(708\) −7.90165 7.90165i −0.296962 0.296962i
\(709\) 40.4212i 1.51805i 0.651061 + 0.759026i \(0.274324\pi\)
−0.651061 + 0.759026i \(0.725676\pi\)
\(710\) 21.1741 + 21.1741i 0.794649 + 0.794649i
\(711\) −10.6504 10.6504i −0.399420 0.399420i
\(712\) 17.9739i 0.673602i
\(713\) −3.72469 3.72469i −0.139491 0.139491i
\(714\) 5.40659 5.27253i 0.202336 0.197320i
\(715\) 20.4336 20.4336i 0.764175 0.764175i
\(716\) 8.86359 0.331248
\(717\) −16.1796 16.1796i −0.604237 0.604237i
\(718\) 31.0671i 1.15942i
\(719\) 18.2128i 0.679223i 0.940566 + 0.339612i \(0.110296\pi\)
−0.940566 + 0.339612i \(0.889704\pi\)
\(720\) 2.17708i 0.0811351i
\(721\) −6.98409 0.0876683i −0.260101 0.00326494i
\(722\) 7.20468 + 7.20468i 0.268130 + 0.268130i
\(723\) 4.96113 + 4.96113i 0.184506 + 0.184506i
\(724\) 20.0870 0.746527
\(725\) 0.813225 + 1.14184i 0.0302024 + 0.0424068i
\(726\) 7.92125i 0.293985i
\(727\) −6.35224 6.35224i −0.235592 0.235592i 0.579430 0.815022i \(-0.303275\pi\)
−0.815022 + 0.579430i \(0.803275\pi\)
\(728\) 5.78001 5.63670i 0.214221 0.208910i
\(729\) 1.00000i 0.0370370i
\(730\) 19.8931i 0.736278i
\(731\) 8.35485 0.309015
\(732\) −4.36550 −0.161354
\(733\) −29.8716 + 29.8716i −1.10333 + 1.10333i −0.109326 + 0.994006i \(0.534869\pi\)
−0.994006 + 0.109326i \(0.965131\pi\)
\(734\) 29.1871 1.07732
\(735\) 10.5021 + 11.0431i 0.387377 + 0.407331i
\(736\) −1.39112 + 1.39112i −0.0512774 + 0.0512774i
\(737\) −26.1422 26.1422i −0.962960 0.962960i
\(738\) −4.77792 −0.175878
\(739\) −1.09094 + 1.09094i −0.0401309 + 0.0401309i −0.726887 0.686757i \(-0.759034\pi\)
0.686757 + 0.726887i \(0.259034\pi\)
\(740\) −13.0506 + 13.0506i −0.479750 + 0.479750i
\(741\) 9.05784i 0.332748i
\(742\) 20.2801 + 20.7957i 0.744505 + 0.763434i
\(743\) −6.63382 6.63382i −0.243371 0.243371i 0.574872 0.818243i \(-0.305052\pi\)
−0.818243 + 0.574872i \(0.805052\pi\)
\(744\) 1.89326 1.89326i 0.0694103 0.0694103i
\(745\) 1.00326i 0.0367567i
\(746\) −18.8914 + 18.8914i −0.691664 + 0.691664i
\(747\) 7.41216 0.271197
\(748\) 12.4160i 0.453973i
\(749\) 0.170077 13.5492i 0.00621449 0.495077i
\(750\) −11.4521 −0.418173
\(751\) 23.4865 + 23.4865i 0.857034 + 0.857034i 0.990988 0.133954i \(-0.0427674\pi\)
−0.133954 + 0.990988i \(0.542767\pi\)
\(752\) −8.60874 + 8.60874i −0.313929 + 0.313929i
\(753\) 7.88334i 0.287285i
\(754\) −16.2054 2.72386i −0.590166 0.0991972i
\(755\) 45.0811i 1.64067i
\(756\) 1.89416 1.84720i 0.0688900 0.0671820i
\(757\) 23.5159 23.5159i 0.854699 0.854699i −0.136009 0.990708i \(-0.543427\pi\)
0.990708 + 0.136009i \(0.0434275\pi\)
\(758\) 20.2564i 0.735745i
\(759\) −8.55766 −0.310623
\(760\) 6.46232i 0.234413i
\(761\) 44.2929i 1.60562i −0.596237 0.802809i \(-0.703338\pi\)
0.596237 0.802809i \(-0.296662\pi\)
\(762\) 4.97865 4.97865i 0.180357 0.180357i
\(763\) −18.9118 0.237392i −0.684655 0.00859418i
\(764\) 6.39182 + 6.39182i 0.231248 + 0.231248i
\(765\) 4.39405 4.39405i 0.158867 0.158867i
\(766\) −3.16009 + 3.16009i −0.114179 + 0.114179i
\(767\) 34.0992i 1.23125i
\(768\) −0.707107 0.707107i −0.0255155 0.0255155i
\(769\) −26.2261 + 26.2261i −0.945737 + 0.945737i −0.998602 0.0528650i \(-0.983165\pi\)
0.0528650 + 0.998602i \(0.483165\pi\)
\(770\) 25.0533 + 0.314483i 0.902857 + 0.0113332i
\(771\) 0.169168 0.169168i 0.00609243 0.00609243i
\(772\) −0.225289 0.225289i −0.00810831 0.00810831i
\(773\) 23.6859 + 23.6859i 0.851924 + 0.851924i 0.990370 0.138446i \(-0.0442107\pi\)
−0.138446 + 0.990370i \(0.544211\pi\)
\(774\) 2.92707 0.105211
\(775\) −0.492841 0.492841i −0.0177034 0.0177034i
\(776\) −10.2541 −0.368102
\(777\) −22.4277 0.281526i −0.804591 0.0100997i
\(778\) 21.8561 0.783578
\(779\) −14.1825 −0.508141
\(780\) 4.69754 4.69754i 0.168199 0.168199i
\(781\) 42.3063 + 42.3063i 1.51384 + 1.51384i
\(782\) −5.61546 −0.200809
\(783\) −5.31067 0.892636i −0.189788 0.0319002i
\(784\) 6.99779 + 0.175708i 0.249921 + 0.00627530i
\(785\) −18.8548 + 18.8548i −0.672958 + 0.672958i
\(786\) 5.87709 5.87709i 0.209629 0.209629i
\(787\) −55.0380 −1.96189 −0.980947 0.194276i \(-0.937764\pi\)
−0.980947 + 0.194276i \(0.937764\pi\)
\(788\) 20.6557i 0.735830i
\(789\) −7.58758 −0.270125
\(790\) 32.7910i 1.16665i
\(791\) −18.2588 + 17.8061i −0.649207 + 0.633110i
\(792\) 4.34986i 0.154565i
\(793\) −9.41955 9.41955i −0.334498 0.334498i
\(794\) 6.54562 + 6.54562i 0.232295 + 0.232295i
\(795\) 16.9011 + 16.9011i 0.599421 + 0.599421i
\(796\) 7.37290 0.261326
\(797\) −18.4450 18.4450i −0.653355 0.653355i 0.300445 0.953799i \(-0.402865\pi\)
−0.953799 + 0.300445i \(0.902865\pi\)
\(798\) 5.62252 5.48312i 0.199035 0.194100i
\(799\) −34.7504 −1.22938
\(800\) −0.184070 + 0.184070i −0.00650784 + 0.00650784i
\(801\) 12.7095 12.7095i 0.449068 0.449068i
\(802\) −20.5588 + 20.5588i −0.725956 + 0.725956i
\(803\) 39.7469i 1.40264i
\(804\) −6.00990 6.00990i −0.211953 0.211953i
\(805\) 0.142234 11.3310i 0.00501308 0.399367i
\(806\) 8.17027 0.287785
\(807\) 2.11846 0.0745732
\(808\) 6.68866i 0.235306i
\(809\) 4.73975 + 4.73975i 0.166641 + 0.166641i 0.785501 0.618860i \(-0.212405\pi\)
−0.618860 + 0.785501i \(0.712405\pi\)
\(810\) 1.53943 1.53943i 0.0540900 0.0540900i
\(811\) −5.13193 −0.180206 −0.0901032 0.995932i \(-0.528720\pi\)
−0.0901032 + 0.995932i \(0.528720\pi\)
\(812\) −8.11907 11.7081i −0.284923 0.410875i
\(813\) −2.30815 −0.0809502
\(814\) −26.0754 + 26.0754i −0.913942 + 0.913942i
\(815\) −12.4144 12.4144i −0.434856 0.434856i
\(816\) 2.85434i 0.0999219i
\(817\) 8.68854 0.303974
\(818\) 0.334422 0.0116928
\(819\) 8.07283 + 0.101335i 0.282087 + 0.00354092i
\(820\) −7.35528 7.35528i −0.256857 0.256857i
\(821\) 33.1076i 1.15546i 0.816227 + 0.577731i \(0.196062\pi\)
−0.816227 + 0.577731i \(0.803938\pi\)
\(822\) 4.19336 4.19336i 0.146260 0.146260i
\(823\) 11.8227 11.8227i 0.412115 0.412115i −0.470360 0.882475i \(-0.655876\pi\)
0.882475 + 0.470360i \(0.155876\pi\)
\(824\) −1.86672 + 1.86672i −0.0650304 + 0.0650304i
\(825\) −1.13233 −0.0394226
\(826\) 21.1666 20.6418i 0.736479 0.718218i
\(827\) 18.9709 + 18.9709i 0.659683 + 0.659683i 0.955305 0.295622i \(-0.0955268\pi\)
−0.295622 + 0.955305i \(0.595527\pi\)
\(828\) −1.96734 −0.0683699
\(829\) −12.3324 12.3324i −0.428323 0.428323i 0.459734 0.888057i \(-0.347945\pi\)
−0.888057 + 0.459734i \(0.847945\pi\)
\(830\) 11.4105 + 11.4105i 0.396064 + 0.396064i
\(831\) 11.5033 + 11.5033i 0.399046 + 0.399046i
\(832\) 3.05148i 0.105791i
\(833\) 13.7692 + 14.4784i 0.477074 + 0.501648i
\(834\) 12.3931i 0.429140i
\(835\) −40.2622 −1.39333
\(836\) 12.9119i 0.446566i
\(837\) 2.67747 0.0925471
\(838\) −25.0036 + 25.0036i −0.863737 + 0.863737i
\(839\) −3.24044 + 3.24044i −0.111872 + 0.111872i −0.760827 0.648955i \(-0.775206\pi\)
0.648955 + 0.760827i \(0.275206\pi\)
\(840\) 5.75956 + 0.0722973i 0.198724 + 0.00249450i
\(841\) −9.48098 + 27.4064i −0.326930 + 0.945048i
\(842\) −20.0523 −0.691048
\(843\) 1.35283 + 1.35283i 0.0465940 + 0.0465940i
\(844\) 13.0824 13.0824i 0.450316 0.450316i
\(845\) −8.03006 −0.276243
\(846\) −12.1746 −0.418571
\(847\) 20.9560 + 0.263052i 0.720057 + 0.00903857i
\(848\) 10.9788 0.377015
\(849\) −4.36980 4.36980i −0.149971 0.149971i
\(850\) −0.743023 −0.0254855
\(851\) 11.7933 + 11.7933i 0.404270 + 0.404270i
\(852\) 9.72590 + 9.72590i 0.333204 + 0.333204i
\(853\) 15.8641 15.8641i 0.543178 0.543178i −0.381281 0.924459i \(-0.624517\pi\)
0.924459 + 0.381281i \(0.124517\pi\)
\(854\) 0.144971 11.5491i 0.00496081 0.395203i
\(855\) 4.56955 4.56955i 0.156275 0.156275i
\(856\) −3.62146 3.62146i −0.123779 0.123779i
\(857\) 21.0071i 0.717589i 0.933417 + 0.358795i \(0.116812\pi\)
−0.933417 + 0.358795i \(0.883188\pi\)
\(858\) 9.38579 9.38579i 0.320426 0.320426i
\(859\) −30.3830 + 30.3830i −1.03665 + 1.03665i −0.0373508 + 0.999302i \(0.511892\pi\)
−0.999302 + 0.0373508i \(0.988108\pi\)
\(860\) 4.50602 + 4.50602i 0.153654 + 0.153654i
\(861\) 0.158667 12.6402i 0.00540736 0.430777i
\(862\) −18.0026 + 18.0026i −0.613172 + 0.613172i
\(863\) 33.7270i 1.14808i 0.818827 + 0.574040i \(0.194625\pi\)
−0.818827 + 0.574040i \(0.805375\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 39.8558 1.35514
\(866\) 23.9471i 0.813756i
\(867\) −6.25984 + 6.25984i −0.212595 + 0.212595i
\(868\) 4.94583 + 5.07157i 0.167872 + 0.172140i
\(869\) 65.5172i 2.22252i
\(870\) −6.80125 9.54955i −0.230584 0.323760i
\(871\) 25.9354i 0.878788i
\(872\) −5.05480 + 5.05480i −0.171177 + 0.171177i
\(873\) −7.25077 7.25077i −0.245401 0.245401i
\(874\) −5.83974 −0.197532
\(875\) 0.380307 30.2971i 0.0128567 1.02423i
\(876\) 9.13753i 0.308728i
\(877\) 38.1967 1.28981 0.644905 0.764263i \(-0.276897\pi\)
0.644905 + 0.764263i \(0.276897\pi\)
\(878\) 3.26537 3.26537i 0.110201 0.110201i
\(879\) 20.0447i 0.676089i
\(880\) 6.69630 6.69630i 0.225732 0.225732i
\(881\) −10.4995 10.4995i −0.353738 0.353738i 0.507760 0.861498i \(-0.330474\pi\)
−0.861498 + 0.507760i \(0.830474\pi\)
\(882\) 4.82394 + 5.07243i 0.162431 + 0.170798i
\(883\) 15.8354i 0.532904i −0.963848 0.266452i \(-0.914149\pi\)
0.963848 0.266452i \(-0.0858514\pi\)
\(884\) 6.15888 6.15888i 0.207145 0.207145i
\(885\) 17.2025 17.2025i 0.578257 0.578257i
\(886\) 40.3789 1.35656
\(887\) −0.0108862 0.0108862i −0.000365523 0.000365523i 0.706924 0.707290i \(-0.250082\pi\)
−0.707290 + 0.706924i \(0.750082\pi\)
\(888\) −5.99454 + 5.99454i −0.201164 + 0.201164i
\(889\) 13.0059 + 13.3366i 0.436203 + 0.447294i
\(890\) 39.1307 1.31167
\(891\) 3.07581 3.07581i 0.103044 0.103044i
\(892\) −7.82250 −0.261917
\(893\) −36.1384 −1.20932
\(894\) 0.460829i 0.0154124i
\(895\) 19.2968i 0.645020i
\(896\) 1.89416 1.84720i 0.0632796 0.0617106i
\(897\) −4.24498 4.24498i −0.141736 0.141736i
\(898\) 25.0210i 0.834961i
\(899\) 2.39001 14.2192i 0.0797113 0.474236i
\(900\) −0.260314 −0.00867712
\(901\) 22.1588 + 22.1588i 0.738217 + 0.738217i
\(902\) −14.6960 14.6960i −0.489323 0.489323i
\(903\) −0.0972032 + 7.74369i −0.00323472 + 0.257694i
\(904\) 9.63949i 0.320605i
\(905\) 43.7310i 1.45367i
\(906\) 20.7071i 0.687949i
\(907\) −29.5935 29.5935i −0.982636 0.982636i 0.0172156 0.999852i \(-0.494520\pi\)
−0.999852 + 0.0172156i \(0.994520\pi\)
\(908\) 23.3631 0.775333
\(909\) −4.72960 + 4.72960i −0.156871 + 0.156871i
\(910\) 12.2716 + 12.5835i 0.406798 + 0.417141i
\(911\) −7.90665 7.90665i −0.261959 0.261959i 0.563890 0.825850i \(-0.309304\pi\)
−0.825850 + 0.563890i \(0.809304\pi\)
\(912\) 2.96834i 0.0982916i
\(913\) 22.7984 + 22.7984i 0.754517 + 0.754517i
\(914\) 22.6852 + 22.6852i 0.750358 + 0.750358i
\(915\) 9.50405i 0.314194i
\(916\) −4.68182 4.68182i −0.154692 0.154692i
\(917\) 15.3529 + 15.7433i 0.506998 + 0.519888i
\(918\) 2.01832 2.01832i 0.0666146 0.0666146i
\(919\) 33.5692 1.10735 0.553673 0.832734i \(-0.313226\pi\)
0.553673 + 0.832734i \(0.313226\pi\)
\(920\) −3.02859 3.02859i −0.0998495 0.0998495i
\(921\) 20.9471i 0.690229i
\(922\) 31.4103i 1.03444i
\(923\) 41.9716i 1.38151i
\(924\) 11.5077 + 0.144452i 0.378577 + 0.00475211i
\(925\) 1.56046 + 1.56046i 0.0513076 + 0.0513076i
\(926\) 14.0967 + 14.0967i 0.463247 + 0.463247i
\(927\) −2.63995 −0.0867072
\(928\) −5.31067 0.892636i −0.174331 0.0293022i
\(929\) 39.4514i 1.29436i 0.762339 + 0.647178i \(0.224051\pi\)
−0.762339 + 0.647178i \(0.775949\pi\)
\(930\) 4.12178 + 4.12178i 0.135159 + 0.135159i
\(931\) 14.3191 + 15.0567i 0.469290 + 0.493464i
\(932\) 0.533098i 0.0174622i
\(933\) 18.3998i 0.602382i
\(934\) −17.1773 −0.562058
\(935\) 27.0306 0.883995
\(936\) 2.15772 2.15772i 0.0705274 0.0705274i
\(937\) 50.9693 1.66509 0.832547 0.553954i \(-0.186882\pi\)
0.832547 + 0.553954i \(0.186882\pi\)
\(938\) 16.0990 15.6999i 0.525652 0.512619i
\(939\) 4.13211 4.13211i 0.134846 0.134846i
\(940\) −18.7419 18.7419i −0.611295 0.611295i
\(941\) 26.7601 0.872354 0.436177 0.899861i \(-0.356332\pi\)
0.436177 + 0.899861i \(0.356332\pi\)
\(942\) −8.66060 + 8.66060i −0.282178 + 0.282178i
\(943\) −6.64667 + 6.64667i −0.216445 + 0.216445i
\(944\) 11.1746i 0.363703i
\(945\) 4.02150 + 4.12375i 0.130820 + 0.134146i
\(946\) 9.00312 + 9.00312i 0.292717 + 0.292717i
\(947\) −30.6822 + 30.6822i −0.997039 + 0.997039i −0.999996 0.00295680i \(-0.999059\pi\)
0.00295680 + 0.999996i \(0.499059\pi\)
\(948\) 15.0619i 0.489188i
\(949\) −19.7163 + 19.7163i −0.640017 + 0.640017i
\(950\) −0.772700 −0.0250697
\(951\) 13.5692i 0.440013i
\(952\) 7.55128 + 0.0947880i 0.244738 + 0.00307210i
\(953\) 37.2539 1.20677 0.603386 0.797450i \(-0.293818\pi\)
0.603386 + 0.797450i \(0.293818\pi\)
\(954\) 7.76320 + 7.76320i 0.251343 + 0.251343i
\(955\) −13.9155 + 13.9155i −0.450296 + 0.450296i
\(956\) 22.8814i 0.740036i
\(957\) −13.5890 19.0802i −0.439271 0.616775i
\(958\) 10.8341i 0.350034i
\(959\) 10.9545 + 11.2330i 0.353738 + 0.362731i
\(960\) 1.53943 1.53943i 0.0496849 0.0496849i
\(961\) 23.8311i 0.768746i
\(962\) −25.8691 −0.834054
\(963\) 5.12152i 0.165039i
\(964\) 7.01610i 0.225973i
\(965\) 0.490472 0.490472i 0.0157888 0.0157888i
\(966\) 0.0653322 5.20469i 0.00210203 0.167458i
\(967\) 7.54886 + 7.54886i 0.242755 + 0.242755i 0.817989 0.575234i \(-0.195089\pi\)
−0.575234 + 0.817989i \(0.695089\pi\)
\(968\) 5.60117 5.60117i 0.180028 0.180028i
\(969\) 5.99107 5.99107i 0.192461 0.192461i
\(970\) 22.3241i 0.716783i
\(971\) −25.3655 25.3655i −0.814019 0.814019i 0.171215 0.985234i \(-0.445231\pi\)
−0.985234 + 0.171215i \(0.945231\pi\)
\(972\) 0.707107 0.707107i 0.0226805 0.0226805i
\(973\) −32.7866 0.411556i −1.05109 0.0131939i
\(974\) 30.2869 30.2869i 0.970454 0.970454i
\(975\) −0.561685 0.561685i −0.0179883 0.0179883i
\(976\) −3.08688 3.08688i −0.0988085 0.0988085i
\(977\) −25.4162 −0.813138 −0.406569 0.913620i \(-0.633275\pi\)
−0.406569 + 0.913620i \(0.633275\pi\)
\(978\) −5.70229 5.70229i −0.182339 0.182339i
\(979\) 78.1841 2.49877
\(980\) −0.382531 + 15.2348i −0.0122195 + 0.486657i
\(981\) −7.14857 −0.228236
\(982\) −6.04131 −0.192786
\(983\) 13.7017 13.7017i 0.437018 0.437018i −0.453989 0.891007i \(-0.650000\pi\)
0.891007 + 0.453989i \(0.150000\pi\)
\(984\) −3.37850 3.37850i −0.107703 0.107703i
\(985\) −44.9693 −1.43284
\(986\) −8.91702 12.5203i −0.283976 0.398727i
\(987\) 0.404299 32.2084i 0.0128690 1.02521i
\(988\) 6.40486 6.40486i 0.203766 0.203766i
\(989\) 4.07191 4.07191i 0.129479 0.129479i
\(990\) 9.47000 0.300976
\(991\) 18.4180i 0.585066i 0.956255 + 0.292533i \(0.0944982\pi\)
−0.956255 + 0.292533i \(0.905502\pi\)
\(992\) 2.67747 0.0850099
\(993\) 31.7684i 1.00814i
\(994\) −26.0533 + 25.4073i −0.826360 + 0.805871i
\(995\) 16.0514i 0.508864i
\(996\) 5.24119 + 5.24119i 0.166073 + 0.166073i
\(997\) 1.78541 + 1.78541i 0.0565446 + 0.0565446i 0.734814 0.678269i \(-0.237270\pi\)
−0.678269 + 0.734814i \(0.737270\pi\)
\(998\) −7.26426 7.26426i −0.229946 0.229946i
\(999\) −8.47756 −0.268218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.m.b.307.7 yes 40
7.6 odd 2 1218.2.m.a.307.7 40
29.12 odd 4 1218.2.m.a.853.7 yes 40
203.41 even 4 inner 1218.2.m.b.853.7 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.m.a.307.7 40 7.6 odd 2
1218.2.m.a.853.7 yes 40 29.12 odd 4
1218.2.m.b.307.7 yes 40 1.1 even 1 trivial
1218.2.m.b.853.7 yes 40 203.41 even 4 inner