Properties

Label 1218.2.m.b.307.3
Level $1218$
Weight $2$
Character 1218.307
Analytic conductor $9.726$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(307,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.3
Character \(\chi\) \(=\) 1218.307
Dual form 1218.2.m.b.853.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +0.964064 q^{5} +1.00000 q^{6} +(-1.12003 - 2.39698i) q^{7} +(0.707107 + 0.707107i) q^{8} +1.00000i q^{9} +(-0.681696 + 0.681696i) q^{10} +(1.01614 - 1.01614i) q^{11} +(-0.707107 + 0.707107i) q^{12} -1.66411 q^{13} +(2.48690 + 0.902943i) q^{14} +(-0.681696 - 0.681696i) q^{15} -1.00000 q^{16} +(-4.23210 - 4.23210i) q^{17} +(-0.707107 - 0.707107i) q^{18} +(-0.200133 - 0.200133i) q^{19} -0.964064i q^{20} +(-0.902943 + 2.48690i) q^{21} +1.43704i q^{22} +2.37884 q^{23} -1.00000i q^{24} -4.07058 q^{25} +(1.17671 - 1.17671i) q^{26} +(0.707107 - 0.707107i) q^{27} +(-2.39698 + 1.12003i) q^{28} +(0.792373 + 5.32655i) q^{29} +0.964064 q^{30} +(2.45149 + 2.45149i) q^{31} +(0.707107 - 0.707107i) q^{32} -1.43704 q^{33} +5.98509 q^{34} +(-1.07978 - 2.31085i) q^{35} +1.00000 q^{36} +(-2.55744 - 2.55744i) q^{37} +0.283030 q^{38} +(1.17671 + 1.17671i) q^{39} +(0.681696 + 0.681696i) q^{40} +(6.53863 - 6.53863i) q^{41} +(-1.12003 - 2.39698i) q^{42} +(-5.80881 + 5.80881i) q^{43} +(-1.01614 - 1.01614i) q^{44} +0.964064i q^{45} +(-1.68209 + 1.68209i) q^{46} +(-4.08757 + 4.08757i) q^{47} +(0.707107 + 0.707107i) q^{48} +(-4.49107 + 5.36939i) q^{49} +(2.87833 - 2.87833i) q^{50} +5.98509i q^{51} +1.66411i q^{52} -12.0147 q^{53} +1.00000i q^{54} +(0.979626 - 0.979626i) q^{55} +(0.902943 - 2.48690i) q^{56} +0.283030i q^{57} +(-4.32673 - 3.20615i) q^{58} -12.4636i q^{59} +(-0.681696 + 0.681696i) q^{60} +(-0.252020 - 0.252020i) q^{61} -3.46692 q^{62} +(2.39698 - 1.12003i) q^{63} +1.00000i q^{64} -1.60431 q^{65} +(1.01614 - 1.01614i) q^{66} -0.439521i q^{67} +(-4.23210 + 4.23210i) q^{68} +(-1.68209 - 1.68209i) q^{69} +(2.39754 + 0.870495i) q^{70} +10.6464i q^{71} +(-0.707107 + 0.707107i) q^{72} +(-9.08410 + 9.08410i) q^{73} +3.61676 q^{74} +(2.87833 + 2.87833i) q^{75} +(-0.200133 + 0.200133i) q^{76} +(-3.57379 - 1.29757i) q^{77} -1.66411 q^{78} +(-5.16289 + 5.16289i) q^{79} -0.964064 q^{80} -1.00000 q^{81} +9.24702i q^{82} -8.98566i q^{83} +(2.48690 + 0.902943i) q^{84} +(-4.08001 - 4.08001i) q^{85} -8.21489i q^{86} +(3.20615 - 4.32673i) q^{87} +1.43704 q^{88} +(-7.53183 - 7.53183i) q^{89} +(-0.681696 - 0.681696i) q^{90} +(1.86386 + 3.98886i) q^{91} -2.37884i q^{92} -3.46692i q^{93} -5.78069i q^{94} +(-0.192941 - 0.192941i) q^{95} -1.00000 q^{96} +(6.57198 - 6.57198i) q^{97} +(-0.621066 - 6.97239i) q^{98} +(1.01614 + 1.01614i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 40 q^{6} - 4 q^{10} + 4 q^{14} - 4 q^{15} - 40 q^{16} - 8 q^{19} + 4 q^{21} + 24 q^{25} + 12 q^{28} + 8 q^{29} + 24 q^{31} + 12 q^{35} + 40 q^{36} - 16 q^{37} + 4 q^{40} - 16 q^{41} - 20 q^{43} + 4 q^{46}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 0.964064 0.431143 0.215571 0.976488i \(-0.430839\pi\)
0.215571 + 0.976488i \(0.430839\pi\)
\(6\) 1.00000 0.408248
\(7\) −1.12003 2.39698i −0.423331 0.905975i
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −0.681696 + 0.681696i −0.215571 + 0.215571i
\(11\) 1.01614 1.01614i 0.306378 0.306378i −0.537125 0.843503i \(-0.680489\pi\)
0.843503 + 0.537125i \(0.180489\pi\)
\(12\) −0.707107 + 0.707107i −0.204124 + 0.204124i
\(13\) −1.66411 −0.461542 −0.230771 0.973008i \(-0.574125\pi\)
−0.230771 + 0.973008i \(0.574125\pi\)
\(14\) 2.48690 + 0.902943i 0.664653 + 0.241322i
\(15\) −0.681696 0.681696i −0.176013 0.176013i
\(16\) −1.00000 −0.250000
\(17\) −4.23210 4.23210i −1.02643 1.02643i −0.999641 0.0267933i \(-0.991470\pi\)
−0.0267933 0.999641i \(-0.508530\pi\)
\(18\) −0.707107 0.707107i −0.166667 0.166667i
\(19\) −0.200133 0.200133i −0.0459136 0.0459136i 0.683777 0.729691i \(-0.260336\pi\)
−0.729691 + 0.683777i \(0.760336\pi\)
\(20\) 0.964064i 0.215571i
\(21\) −0.902943 + 2.48690i −0.197038 + 0.542687i
\(22\) 1.43704i 0.306378i
\(23\) 2.37884 0.496022 0.248011 0.968757i \(-0.420223\pi\)
0.248011 + 0.968757i \(0.420223\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −4.07058 −0.814116
\(26\) 1.17671 1.17671i 0.230771 0.230771i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −2.39698 + 1.12003i −0.452987 + 0.211666i
\(29\) 0.792373 + 5.32655i 0.147140 + 0.989116i
\(30\) 0.964064 0.176013
\(31\) 2.45149 + 2.45149i 0.440300 + 0.440300i 0.892113 0.451813i \(-0.149223\pi\)
−0.451813 + 0.892113i \(0.649223\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −1.43704 −0.250157
\(34\) 5.98509 1.02643
\(35\) −1.07978 2.31085i −0.182516 0.390604i
\(36\) 1.00000 0.166667
\(37\) −2.55744 2.55744i −0.420440 0.420440i 0.464915 0.885355i \(-0.346085\pi\)
−0.885355 + 0.464915i \(0.846085\pi\)
\(38\) 0.283030 0.0459136
\(39\) 1.17671 + 1.17671i 0.188424 + 0.188424i
\(40\) 0.681696 + 0.681696i 0.107786 + 0.107786i
\(41\) 6.53863 6.53863i 1.02116 1.02116i 0.0213914 0.999771i \(-0.493190\pi\)
0.999771 0.0213914i \(-0.00680962\pi\)
\(42\) −1.12003 2.39698i −0.172824 0.369863i
\(43\) −5.80881 + 5.80881i −0.885834 + 0.885834i −0.994120 0.108285i \(-0.965464\pi\)
0.108285 + 0.994120i \(0.465464\pi\)
\(44\) −1.01614 1.01614i −0.153189 0.153189i
\(45\) 0.964064i 0.143714i
\(46\) −1.68209 + 1.68209i −0.248011 + 0.248011i
\(47\) −4.08757 + 4.08757i −0.596233 + 0.596233i −0.939308 0.343075i \(-0.888531\pi\)
0.343075 + 0.939308i \(0.388531\pi\)
\(48\) 0.707107 + 0.707107i 0.102062 + 0.102062i
\(49\) −4.49107 + 5.36939i −0.641581 + 0.767055i
\(50\) 2.87833 2.87833i 0.407058 0.407058i
\(51\) 5.98509i 0.838080i
\(52\) 1.66411i 0.230771i
\(53\) −12.0147 −1.65035 −0.825176 0.564876i \(-0.808924\pi\)
−0.825176 + 0.564876i \(0.808924\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 0.979626 0.979626i 0.132093 0.132093i
\(56\) 0.902943 2.48690i 0.120661 0.332327i
\(57\) 0.283030i 0.0374883i
\(58\) −4.32673 3.20615i −0.568128 0.420988i
\(59\) 12.4636i 1.62262i −0.584616 0.811310i \(-0.698755\pi\)
0.584616 0.811310i \(-0.301245\pi\)
\(60\) −0.681696 + 0.681696i −0.0880066 + 0.0880066i
\(61\) −0.252020 0.252020i −0.0322679 0.0322679i 0.690789 0.723057i \(-0.257263\pi\)
−0.723057 + 0.690789i \(0.757263\pi\)
\(62\) −3.46692 −0.440300
\(63\) 2.39698 1.12003i 0.301992 0.141110i
\(64\) 1.00000i 0.125000i
\(65\) −1.60431 −0.198991
\(66\) 1.01614 1.01614i 0.125078 0.125078i
\(67\) 0.439521i 0.0536961i −0.999640 0.0268480i \(-0.991453\pi\)
0.999640 0.0268480i \(-0.00854702\pi\)
\(68\) −4.23210 + 4.23210i −0.513217 + 0.513217i
\(69\) −1.68209 1.68209i −0.202500 0.202500i
\(70\) 2.39754 + 0.870495i 0.286560 + 0.104044i
\(71\) 10.6464i 1.26350i 0.775173 + 0.631749i \(0.217663\pi\)
−0.775173 + 0.631749i \(0.782337\pi\)
\(72\) −0.707107 + 0.707107i −0.0833333 + 0.0833333i
\(73\) −9.08410 + 9.08410i −1.06321 + 1.06321i −0.0653506 + 0.997862i \(0.520817\pi\)
−0.997862 + 0.0653506i \(0.979183\pi\)
\(74\) 3.61676 0.420440
\(75\) 2.87833 + 2.87833i 0.332361 + 0.332361i
\(76\) −0.200133 + 0.200133i −0.0229568 + 0.0229568i
\(77\) −3.57379 1.29757i −0.407271 0.147872i
\(78\) −1.66411 −0.188424
\(79\) −5.16289 + 5.16289i −0.580870 + 0.580870i −0.935142 0.354272i \(-0.884729\pi\)
0.354272 + 0.935142i \(0.384729\pi\)
\(80\) −0.964064 −0.107786
\(81\) −1.00000 −0.111111
\(82\) 9.24702i 1.02116i
\(83\) 8.98566i 0.986304i −0.869943 0.493152i \(-0.835845\pi\)
0.869943 0.493152i \(-0.164155\pi\)
\(84\) 2.48690 + 0.902943i 0.271344 + 0.0985192i
\(85\) −4.08001 4.08001i −0.442540 0.442540i
\(86\) 8.21489i 0.885834i
\(87\) 3.20615 4.32673i 0.343735 0.463874i
\(88\) 1.43704 0.153189
\(89\) −7.53183 7.53183i −0.798372 0.798372i 0.184467 0.982839i \(-0.440944\pi\)
−0.982839 + 0.184467i \(0.940944\pi\)
\(90\) −0.681696 0.681696i −0.0718571 0.0718571i
\(91\) 1.86386 + 3.98886i 0.195385 + 0.418146i
\(92\) 2.37884i 0.248011i
\(93\) 3.46692i 0.359503i
\(94\) 5.78069i 0.596233i
\(95\) −0.192941 0.192941i −0.0197953 0.0197953i
\(96\) −1.00000 −0.102062
\(97\) 6.57198 6.57198i 0.667283 0.667283i −0.289803 0.957086i \(-0.593590\pi\)
0.957086 + 0.289803i \(0.0935899\pi\)
\(98\) −0.621066 6.97239i −0.0627372 0.704318i
\(99\) 1.01614 + 1.01614i 0.102126 + 0.102126i
\(100\) 4.07058i 0.407058i
\(101\) −9.05597 9.05597i −0.901102 0.901102i 0.0944292 0.995532i \(-0.469897\pi\)
−0.995532 + 0.0944292i \(0.969897\pi\)
\(102\) −4.23210 4.23210i −0.419040 0.419040i
\(103\) 6.00327i 0.591520i 0.955262 + 0.295760i \(0.0955729\pi\)
−0.955262 + 0.295760i \(0.904427\pi\)
\(104\) −1.17671 1.17671i −0.115386 0.115386i
\(105\) −0.870495 + 2.39754i −0.0849516 + 0.233975i
\(106\) 8.49571 8.49571i 0.825176 0.825176i
\(107\) 5.74000 0.554906 0.277453 0.960739i \(-0.410510\pi\)
0.277453 + 0.960739i \(0.410510\pi\)
\(108\) −0.707107 0.707107i −0.0680414 0.0680414i
\(109\) 12.5615i 1.20317i −0.798807 0.601587i \(-0.794535\pi\)
0.798807 0.601587i \(-0.205465\pi\)
\(110\) 1.38540i 0.132093i
\(111\) 3.61676i 0.343288i
\(112\) 1.12003 + 2.39698i 0.105833 + 0.226494i
\(113\) −14.2794 14.2794i −1.34329 1.34329i −0.892759 0.450535i \(-0.851233\pi\)
−0.450535 0.892759i \(-0.648767\pi\)
\(114\) −0.200133 0.200133i −0.0187441 0.0187441i
\(115\) 2.29335 0.213856
\(116\) 5.32655 0.792373i 0.494558 0.0735700i
\(117\) 1.66411i 0.153847i
\(118\) 8.81308 + 8.81308i 0.811310 + 0.811310i
\(119\) −5.40420 + 14.8843i −0.495402 + 1.36445i
\(120\) 0.964064i 0.0880066i
\(121\) 8.93491i 0.812265i
\(122\) 0.356410 0.0322679
\(123\) −9.24702 −0.833776
\(124\) 2.45149 2.45149i 0.220150 0.220150i
\(125\) −8.74462 −0.782143
\(126\) −0.902943 + 2.48690i −0.0804406 + 0.221551i
\(127\) −3.20089 + 3.20089i −0.284033 + 0.284033i −0.834715 0.550682i \(-0.814368\pi\)
0.550682 + 0.834715i \(0.314368\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 8.21489 0.723281
\(130\) 1.13442 1.13442i 0.0994953 0.0994953i
\(131\) −7.76228 + 7.76228i −0.678194 + 0.678194i −0.959591 0.281397i \(-0.909202\pi\)
0.281397 + 0.959591i \(0.409202\pi\)
\(132\) 1.43704i 0.125078i
\(133\) −0.255560 + 0.703870i −0.0221599 + 0.0610332i
\(134\) 0.310789 + 0.310789i 0.0268480 + 0.0268480i
\(135\) 0.681696 0.681696i 0.0586711 0.0586711i
\(136\) 5.98509i 0.513217i
\(137\) 5.94573 5.94573i 0.507978 0.507978i −0.405927 0.913905i \(-0.633051\pi\)
0.913905 + 0.405927i \(0.133051\pi\)
\(138\) 2.37884 0.202500
\(139\) 2.25836i 0.191552i −0.995403 0.0957758i \(-0.969467\pi\)
0.995403 0.0957758i \(-0.0305332\pi\)
\(140\) −2.31085 + 1.07978i −0.195302 + 0.0912581i
\(141\) 5.78069 0.486822
\(142\) −7.52816 7.52816i −0.631749 0.631749i
\(143\) −1.69098 + 1.69098i −0.141407 + 0.141407i
\(144\) 1.00000i 0.0833333i
\(145\) 0.763898 + 5.13514i 0.0634383 + 0.426450i
\(146\) 12.8469i 1.06321i
\(147\) 6.97239 0.621066i 0.575073 0.0512247i
\(148\) −2.55744 + 2.55744i −0.210220 + 0.210220i
\(149\) 11.1573i 0.914041i −0.889456 0.457020i \(-0.848917\pi\)
0.889456 0.457020i \(-0.151083\pi\)
\(150\) −4.07058 −0.332361
\(151\) 7.71410i 0.627765i −0.949462 0.313882i \(-0.898370\pi\)
0.949462 0.313882i \(-0.101630\pi\)
\(152\) 0.283030i 0.0229568i
\(153\) 4.23210 4.23210i 0.342145 0.342145i
\(154\) 3.44457 1.60953i 0.277571 0.129700i
\(155\) 2.36339 + 2.36339i 0.189832 + 0.189832i
\(156\) 1.17671 1.17671i 0.0942120 0.0942120i
\(157\) −6.62851 + 6.62851i −0.529012 + 0.529012i −0.920278 0.391265i \(-0.872037\pi\)
0.391265 + 0.920278i \(0.372037\pi\)
\(158\) 7.30143i 0.580870i
\(159\) 8.49571 + 8.49571i 0.673753 + 0.673753i
\(160\) 0.681696 0.681696i 0.0538928 0.0538928i
\(161\) −2.66437 5.70203i −0.209982 0.449383i
\(162\) 0.707107 0.707107i 0.0555556 0.0555556i
\(163\) −1.20031 1.20031i −0.0940153 0.0940153i 0.658535 0.752550i \(-0.271177\pi\)
−0.752550 + 0.658535i \(0.771177\pi\)
\(164\) −6.53863 6.53863i −0.510581 0.510581i
\(165\) −1.38540 −0.107853
\(166\) 6.35382 + 6.35382i 0.493152 + 0.493152i
\(167\) −3.58474 −0.277396 −0.138698 0.990335i \(-0.544292\pi\)
−0.138698 + 0.990335i \(0.544292\pi\)
\(168\) −2.39698 + 1.12003i −0.184931 + 0.0864122i
\(169\) −10.2307 −0.786979
\(170\) 5.77001 0.442540
\(171\) 0.200133 0.200133i 0.0153045 0.0153045i
\(172\) 5.80881 + 5.80881i 0.442917 + 0.442917i
\(173\) 11.2490 0.855244 0.427622 0.903958i \(-0.359351\pi\)
0.427622 + 0.903958i \(0.359351\pi\)
\(174\) 0.792373 + 5.32655i 0.0600696 + 0.403805i
\(175\) 4.55917 + 9.75712i 0.344641 + 0.737569i
\(176\) −1.01614 + 1.01614i −0.0765946 + 0.0765946i
\(177\) −8.81308 + 8.81308i −0.662432 + 0.662432i
\(178\) 10.6516 0.798372
\(179\) 10.1493i 0.758592i 0.925275 + 0.379296i \(0.123834\pi\)
−0.925275 + 0.379296i \(0.876166\pi\)
\(180\) 0.964064 0.0718571
\(181\) 3.87066i 0.287704i 0.989599 + 0.143852i \(0.0459489\pi\)
−0.989599 + 0.143852i \(0.954051\pi\)
\(182\) −4.13849 1.50260i −0.306766 0.111380i
\(183\) 0.356410i 0.0263466i
\(184\) 1.68209 + 1.68209i 0.124005 + 0.124005i
\(185\) −2.46553 2.46553i −0.181269 0.181269i
\(186\) 2.45149 + 2.45149i 0.179752 + 0.179752i
\(187\) −8.60082 −0.628955
\(188\) 4.08757 + 4.08757i 0.298116 + 0.298116i
\(189\) −2.48690 0.902943i −0.180896 0.0656795i
\(190\) 0.272859 0.0197953
\(191\) 9.44291 9.44291i 0.683265 0.683265i −0.277470 0.960734i \(-0.589496\pi\)
0.960734 + 0.277470i \(0.0894958\pi\)
\(192\) 0.707107 0.707107i 0.0510310 0.0510310i
\(193\) −7.99696 + 7.99696i −0.575634 + 0.575634i −0.933697 0.358064i \(-0.883437\pi\)
0.358064 + 0.933697i \(0.383437\pi\)
\(194\) 9.29418i 0.667283i
\(195\) 1.13442 + 1.13442i 0.0812376 + 0.0812376i
\(196\) 5.36939 + 4.49107i 0.383528 + 0.320790i
\(197\) 12.7280 0.906829 0.453415 0.891300i \(-0.350206\pi\)
0.453415 + 0.891300i \(0.350206\pi\)
\(198\) −1.43704 −0.102126
\(199\) 21.9546i 1.55632i −0.628066 0.778160i \(-0.716153\pi\)
0.628066 0.778160i \(-0.283847\pi\)
\(200\) −2.87833 2.87833i −0.203529 0.203529i
\(201\) −0.310789 + 0.310789i −0.0219213 + 0.0219213i
\(202\) 12.8071 0.901102
\(203\) 11.8802 7.86520i 0.833825 0.552029i
\(204\) 5.98509 0.419040
\(205\) 6.30366 6.30366i 0.440267 0.440267i
\(206\) −4.24495 4.24495i −0.295760 0.295760i
\(207\) 2.37884i 0.165341i
\(208\) 1.66411 0.115386
\(209\) −0.406727 −0.0281339
\(210\) −1.07978 2.31085i −0.0745119 0.159464i
\(211\) 16.8267 + 16.8267i 1.15840 + 1.15840i 0.984820 + 0.173581i \(0.0555338\pi\)
0.173581 + 0.984820i \(0.444466\pi\)
\(212\) 12.0147i 0.825176i
\(213\) 7.52816 7.52816i 0.515821 0.515821i
\(214\) −4.05879 + 4.05879i −0.277453 + 0.277453i
\(215\) −5.60006 + 5.60006i −0.381921 + 0.381921i
\(216\) 1.00000 0.0680414
\(217\) 3.13044 8.62191i 0.212508 0.585293i
\(218\) 8.88232 + 8.88232i 0.601587 + 0.601587i
\(219\) 12.8469 0.868110
\(220\) −0.979626 0.979626i −0.0660464 0.0660464i
\(221\) 7.04270 + 7.04270i 0.473743 + 0.473743i
\(222\) −2.55744 2.55744i −0.171644 0.171644i
\(223\) 11.4633i 0.767638i −0.923408 0.383819i \(-0.874609\pi\)
0.923408 0.383819i \(-0.125391\pi\)
\(224\) −2.48690 0.902943i −0.166163 0.0603304i
\(225\) 4.07058i 0.271372i
\(226\) 20.1941 1.34329
\(227\) 6.63942i 0.440674i −0.975424 0.220337i \(-0.929284\pi\)
0.975424 0.220337i \(-0.0707157\pi\)
\(228\) 0.283030 0.0187441
\(229\) −12.1043 + 12.1043i −0.799872 + 0.799872i −0.983075 0.183203i \(-0.941353\pi\)
0.183203 + 0.983075i \(0.441353\pi\)
\(230\) −1.62164 + 1.62164i −0.106928 + 0.106928i
\(231\) 1.60953 + 3.44457i 0.105899 + 0.226636i
\(232\) −3.20615 + 4.32673i −0.210494 + 0.284064i
\(233\) 10.8589 0.711393 0.355697 0.934602i \(-0.384244\pi\)
0.355697 + 0.934602i \(0.384244\pi\)
\(234\) 1.17671 + 1.17671i 0.0769237 + 0.0769237i
\(235\) −3.94068 + 3.94068i −0.257061 + 0.257061i
\(236\) −12.4636 −0.811310
\(237\) 7.30143 0.474279
\(238\) −6.70348 14.3462i −0.434522 0.929924i
\(239\) 20.2877 1.31230 0.656152 0.754629i \(-0.272183\pi\)
0.656152 + 0.754629i \(0.272183\pi\)
\(240\) 0.681696 + 0.681696i 0.0440033 + 0.0440033i
\(241\) 20.7111 1.33412 0.667061 0.745003i \(-0.267552\pi\)
0.667061 + 0.745003i \(0.267552\pi\)
\(242\) −6.31794 6.31794i −0.406132 0.406132i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) −0.252020 + 0.252020i −0.0161339 + 0.0161339i
\(245\) −4.32968 + 5.17643i −0.276613 + 0.330710i
\(246\) 6.53863 6.53863i 0.416888 0.416888i
\(247\) 0.333044 + 0.333044i 0.0211911 + 0.0211911i
\(248\) 3.46692i 0.220150i
\(249\) −6.35382 + 6.35382i −0.402657 + 0.402657i
\(250\) 6.18338 6.18338i 0.391071 0.391071i
\(251\) 12.2309 + 12.2309i 0.772010 + 0.772010i 0.978458 0.206448i \(-0.0661903\pi\)
−0.206448 + 0.978458i \(0.566190\pi\)
\(252\) −1.12003 2.39698i −0.0705552 0.150996i
\(253\) 2.41724 2.41724i 0.151970 0.151970i
\(254\) 4.52674i 0.284033i
\(255\) 5.77001i 0.361332i
\(256\) 1.00000 0.0625000
\(257\) 11.8867i 0.741471i 0.928738 + 0.370736i \(0.120894\pi\)
−0.928738 + 0.370736i \(0.879106\pi\)
\(258\) −5.80881 + 5.80881i −0.361640 + 0.361640i
\(259\) −3.26573 + 8.99453i −0.202922 + 0.558893i
\(260\) 1.60431i 0.0994953i
\(261\) −5.32655 + 0.792373i −0.329705 + 0.0490467i
\(262\) 10.9775i 0.678194i
\(263\) 10.9109 10.9109i 0.672793 0.672793i −0.285566 0.958359i \(-0.592182\pi\)
0.958359 + 0.285566i \(0.0921816\pi\)
\(264\) −1.01614 1.01614i −0.0625392 0.0625392i
\(265\) −11.5830 −0.711537
\(266\) −0.317002 0.678419i −0.0194367 0.0415966i
\(267\) 10.6516i 0.651868i
\(268\) −0.439521 −0.0268480
\(269\) 2.30415 2.30415i 0.140486 0.140486i −0.633366 0.773852i \(-0.718327\pi\)
0.773852 + 0.633366i \(0.218327\pi\)
\(270\) 0.964064i 0.0586711i
\(271\) −14.3107 + 14.3107i −0.869311 + 0.869311i −0.992396 0.123085i \(-0.960721\pi\)
0.123085 + 0.992396i \(0.460721\pi\)
\(272\) 4.23210 + 4.23210i 0.256609 + 0.256609i
\(273\) 1.50260 4.13849i 0.0909416 0.250473i
\(274\) 8.40854i 0.507978i
\(275\) −4.13629 + 4.13629i −0.249428 + 0.249428i
\(276\) −1.68209 + 1.68209i −0.101250 + 0.101250i
\(277\) 28.9309 1.73829 0.869145 0.494558i \(-0.164670\pi\)
0.869145 + 0.494558i \(0.164670\pi\)
\(278\) 1.59690 + 1.59690i 0.0957758 + 0.0957758i
\(279\) −2.45149 + 2.45149i −0.146767 + 0.146767i
\(280\) 0.870495 2.39754i 0.0520220 0.143280i
\(281\) 15.0360 0.896974 0.448487 0.893789i \(-0.351963\pi\)
0.448487 + 0.893789i \(0.351963\pi\)
\(282\) −4.08757 + 4.08757i −0.243411 + 0.243411i
\(283\) −8.71282 −0.517923 −0.258962 0.965888i \(-0.583380\pi\)
−0.258962 + 0.965888i \(0.583380\pi\)
\(284\) 10.6464 0.631749
\(285\) 0.272859i 0.0161628i
\(286\) 2.39140i 0.141407i
\(287\) −22.9965 8.34953i −1.35744 0.492857i
\(288\) 0.707107 + 0.707107i 0.0416667 + 0.0416667i
\(289\) 18.8213i 1.10713i
\(290\) −4.17125 3.09093i −0.244944 0.181506i
\(291\) −9.29418 −0.544834
\(292\) 9.08410 + 9.08410i 0.531606 + 0.531606i
\(293\) −12.7513 12.7513i −0.744940 0.744940i 0.228584 0.973524i \(-0.426590\pi\)
−0.973524 + 0.228584i \(0.926590\pi\)
\(294\) −4.49107 + 5.36939i −0.261924 + 0.313149i
\(295\) 12.0157i 0.699580i
\(296\) 3.61676i 0.210220i
\(297\) 1.43704i 0.0833856i
\(298\) 7.88939 + 7.88939i 0.457020 + 0.457020i
\(299\) −3.95866 −0.228935
\(300\) 2.87833 2.87833i 0.166181 0.166181i
\(301\) 20.4296 + 7.41758i 1.17755 + 0.427542i
\(302\) 5.45470 + 5.45470i 0.313882 + 0.313882i
\(303\) 12.8071i 0.735747i
\(304\) 0.200133 + 0.200133i 0.0114784 + 0.0114784i
\(305\) −0.242963 0.242963i −0.0139120 0.0139120i
\(306\) 5.98509i 0.342145i
\(307\) −17.0684 17.0684i −0.974147 0.974147i 0.0255270 0.999674i \(-0.491874\pi\)
−0.999674 + 0.0255270i \(0.991874\pi\)
\(308\) −1.29757 + 3.57379i −0.0739358 + 0.203635i
\(309\) 4.24495 4.24495i 0.241487 0.241487i
\(310\) −3.34234 −0.189832
\(311\) 10.0030 + 10.0030i 0.567216 + 0.567216i 0.931347 0.364132i \(-0.118634\pi\)
−0.364132 + 0.931347i \(0.618634\pi\)
\(312\) 1.66411i 0.0942120i
\(313\) 10.7799i 0.609315i 0.952462 + 0.304658i \(0.0985421\pi\)
−0.952462 + 0.304658i \(0.901458\pi\)
\(314\) 9.37413i 0.529012i
\(315\) 2.31085 1.07978i 0.130201 0.0608387i
\(316\) 5.16289 + 5.16289i 0.290435 + 0.290435i
\(317\) −10.7710 10.7710i −0.604958 0.604958i 0.336666 0.941624i \(-0.390701\pi\)
−0.941624 + 0.336666i \(0.890701\pi\)
\(318\) −12.0147 −0.673753
\(319\) 6.21770 + 4.60737i 0.348124 + 0.257963i
\(320\) 0.964064i 0.0538928i
\(321\) −4.05879 4.05879i −0.226540 0.226540i
\(322\) 5.91594 + 2.14795i 0.329682 + 0.119701i
\(323\) 1.69396i 0.0942546i
\(324\) 1.00000i 0.0555556i
\(325\) 6.77391 0.375749
\(326\) 1.69749 0.0940153
\(327\) −8.88232 + 8.88232i −0.491194 + 0.491194i
\(328\) 9.24702 0.510581
\(329\) 14.3760 + 5.21964i 0.792576 + 0.287768i
\(330\) 0.979626 0.979626i 0.0539266 0.0539266i
\(331\) 16.9128 + 16.9128i 0.929613 + 0.929613i 0.997681 0.0680677i \(-0.0216834\pi\)
−0.0680677 + 0.997681i \(0.521683\pi\)
\(332\) −8.98566 −0.493152
\(333\) 2.55744 2.55744i 0.140147 0.140147i
\(334\) 2.53480 2.53480i 0.138698 0.138698i
\(335\) 0.423727i 0.0231507i
\(336\) 0.902943 2.48690i 0.0492596 0.135672i
\(337\) −17.1735 17.1735i −0.935498 0.935498i 0.0625441 0.998042i \(-0.480079\pi\)
−0.998042 + 0.0625441i \(0.980079\pi\)
\(338\) 7.23421 7.23421i 0.393489 0.393489i
\(339\) 20.1941i 1.09679i
\(340\) −4.08001 + 4.08001i −0.221270 + 0.221270i
\(341\) 4.98212 0.269797
\(342\) 0.283030i 0.0153045i
\(343\) 17.9005 + 4.75114i 0.966534 + 0.256538i
\(344\) −8.21489 −0.442917
\(345\) −1.62164 1.62164i −0.0873064 0.0873064i
\(346\) −7.95423 + 7.95423i −0.427622 + 0.427622i
\(347\) 19.0608i 1.02324i 0.859212 + 0.511619i \(0.170954\pi\)
−0.859212 + 0.511619i \(0.829046\pi\)
\(348\) −4.32673 3.20615i −0.231937 0.171868i
\(349\) 6.14089i 0.328714i −0.986401 0.164357i \(-0.947445\pi\)
0.986401 0.164357i \(-0.0525550\pi\)
\(350\) −10.1231 3.67550i −0.541105 0.196464i
\(351\) −1.17671 + 1.17671i −0.0628080 + 0.0628080i
\(352\) 1.43704i 0.0765946i
\(353\) 20.8953 1.11214 0.556072 0.831134i \(-0.312308\pi\)
0.556072 + 0.831134i \(0.312308\pi\)
\(354\) 12.4636i 0.662432i
\(355\) 10.2638i 0.544748i
\(356\) −7.53183 + 7.53183i −0.399186 + 0.399186i
\(357\) 14.3462 6.70348i 0.759280 0.354786i
\(358\) −7.17662 7.17662i −0.379296 0.379296i
\(359\) 13.1158 13.1158i 0.692228 0.692228i −0.270494 0.962722i \(-0.587187\pi\)
0.962722 + 0.270494i \(0.0871870\pi\)
\(360\) −0.681696 + 0.681696i −0.0359285 + 0.0359285i
\(361\) 18.9199i 0.995784i
\(362\) −2.73697 2.73697i −0.143852 0.143852i
\(363\) 6.31794 6.31794i 0.331606 0.331606i
\(364\) 3.98886 1.86386i 0.209073 0.0976927i
\(365\) −8.75765 + 8.75765i −0.458396 + 0.458396i
\(366\) −0.252020 0.252020i −0.0131733 0.0131733i
\(367\) −7.78965 7.78965i −0.406616 0.406616i 0.473940 0.880557i \(-0.342831\pi\)
−0.880557 + 0.473940i \(0.842831\pi\)
\(368\) −2.37884 −0.124005
\(369\) 6.53863 + 6.53863i 0.340388 + 0.340388i
\(370\) 3.48679 0.181269
\(371\) 13.4569 + 28.7992i 0.698646 + 1.49518i
\(372\) −3.46692 −0.179752
\(373\) −17.8557 −0.924535 −0.462268 0.886740i \(-0.652964\pi\)
−0.462268 + 0.886740i \(0.652964\pi\)
\(374\) 6.08170 6.08170i 0.314477 0.314477i
\(375\) 6.18338 + 6.18338i 0.319308 + 0.319308i
\(376\) −5.78069 −0.298116
\(377\) −1.31860 8.86399i −0.0679113 0.456519i
\(378\) 2.39698 1.12003i 0.123288 0.0576081i
\(379\) −5.41892 + 5.41892i −0.278351 + 0.278351i −0.832451 0.554099i \(-0.813063\pi\)
0.554099 + 0.832451i \(0.313063\pi\)
\(380\) −0.192941 + 0.192941i −0.00989765 + 0.00989765i
\(381\) 4.52674 0.231912
\(382\) 13.3543i 0.683265i
\(383\) −10.5121 −0.537143 −0.268572 0.963260i \(-0.586552\pi\)
−0.268572 + 0.963260i \(0.586552\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −3.44536 1.25094i −0.175592 0.0637537i
\(386\) 11.3094i 0.575634i
\(387\) −5.80881 5.80881i −0.295278 0.295278i
\(388\) −6.57198 6.57198i −0.333642 0.333642i
\(389\) 2.21704 + 2.21704i 0.112408 + 0.112408i 0.761074 0.648665i \(-0.224672\pi\)
−0.648665 + 0.761074i \(0.724672\pi\)
\(390\) −1.60431 −0.0812376
\(391\) −10.0675 10.0675i −0.509134 0.509134i
\(392\) −6.97239 + 0.621066i −0.352159 + 0.0313686i
\(393\) 10.9775 0.553743
\(394\) −9.00003 + 9.00003i −0.453415 + 0.453415i
\(395\) −4.97736 + 4.97736i −0.250438 + 0.250438i
\(396\) 1.01614 1.01614i 0.0510631 0.0510631i
\(397\) 11.4076i 0.572532i 0.958150 + 0.286266i \(0.0924141\pi\)
−0.958150 + 0.286266i \(0.907586\pi\)
\(398\) 15.5243 + 15.5243i 0.778160 + 0.778160i
\(399\) 0.678419 0.317002i 0.0339635 0.0158700i
\(400\) 4.07058 0.203529
\(401\) 25.2084 1.25885 0.629424 0.777062i \(-0.283291\pi\)
0.629424 + 0.777062i \(0.283291\pi\)
\(402\) 0.439521i 0.0219213i
\(403\) −4.07955 4.07955i −0.203217 0.203217i
\(404\) −9.05597 + 9.05597i −0.450551 + 0.450551i
\(405\) −0.964064 −0.0479047
\(406\) −2.83902 + 13.9621i −0.140898 + 0.692927i
\(407\) −5.19743 −0.257627
\(408\) −4.23210 + 4.23210i −0.209520 + 0.209520i
\(409\) −25.7643 25.7643i −1.27396 1.27396i −0.943990 0.329974i \(-0.892960\pi\)
−0.329974 0.943990i \(-0.607040\pi\)
\(410\) 8.91472i 0.440267i
\(411\) −8.40854 −0.414762
\(412\) 6.00327 0.295760
\(413\) −29.8750 + 13.9596i −1.47005 + 0.686906i
\(414\) −1.68209 1.68209i −0.0826703 0.0826703i
\(415\) 8.66275i 0.425238i
\(416\) −1.17671 + 1.17671i −0.0576928 + 0.0576928i
\(417\) −1.59690 + 1.59690i −0.0782006 + 0.0782006i
\(418\) 0.287599 0.287599i 0.0140669 0.0140669i
\(419\) −35.2790 −1.72349 −0.861746 0.507340i \(-0.830629\pi\)
−0.861746 + 0.507340i \(0.830629\pi\)
\(420\) 2.39754 + 0.870495i 0.116988 + 0.0424758i
\(421\) −2.48282 2.48282i −0.121005 0.121005i 0.644011 0.765016i \(-0.277269\pi\)
−0.765016 + 0.644011i \(0.777269\pi\)
\(422\) −23.7966 −1.15840
\(423\) −4.08757 4.08757i −0.198744 0.198744i
\(424\) −8.49571 8.49571i −0.412588 0.412588i
\(425\) 17.2271 + 17.2271i 0.835637 + 0.835637i
\(426\) 10.6464i 0.515821i
\(427\) −0.321818 + 0.886358i −0.0155739 + 0.0428939i
\(428\) 5.74000i 0.277453i
\(429\) 2.39140 0.115458
\(430\) 7.91968i 0.381921i
\(431\) 15.7376 0.758054 0.379027 0.925386i \(-0.376259\pi\)
0.379027 + 0.925386i \(0.376259\pi\)
\(432\) −0.707107 + 0.707107i −0.0340207 + 0.0340207i
\(433\) 12.3276 12.3276i 0.592427 0.592427i −0.345860 0.938286i \(-0.612413\pi\)
0.938286 + 0.345860i \(0.112413\pi\)
\(434\) 3.88306 + 8.31016i 0.186393 + 0.398901i
\(435\) 3.09093 4.17125i 0.148199 0.199996i
\(436\) −12.5615 −0.601587
\(437\) −0.476083 0.476083i −0.0227741 0.0227741i
\(438\) −9.08410 + 9.08410i −0.434055 + 0.434055i
\(439\) 26.3216 1.25626 0.628131 0.778108i \(-0.283820\pi\)
0.628131 + 0.778108i \(0.283820\pi\)
\(440\) 1.38540 0.0660464
\(441\) −5.36939 4.49107i −0.255685 0.213860i
\(442\) −9.95988 −0.473743
\(443\) 16.9914 + 16.9914i 0.807287 + 0.807287i 0.984222 0.176936i \(-0.0566185\pi\)
−0.176936 + 0.984222i \(0.556618\pi\)
\(444\) 3.61676 0.171644
\(445\) −7.26117 7.26117i −0.344212 0.344212i
\(446\) 8.10576 + 8.10576i 0.383819 + 0.383819i
\(447\) −7.88939 + 7.88939i −0.373156 + 0.373156i
\(448\) 2.39698 1.12003i 0.113247 0.0529164i
\(449\) −19.8245 + 19.8245i −0.935575 + 0.935575i −0.998047 0.0624716i \(-0.980102\pi\)
0.0624716 + 0.998047i \(0.480102\pi\)
\(450\) 2.87833 + 2.87833i 0.135686 + 0.135686i
\(451\) 13.2884i 0.625724i
\(452\) −14.2794 + 14.2794i −0.671647 + 0.671647i
\(453\) −5.45470 + 5.45470i −0.256284 + 0.256284i
\(454\) 4.69478 + 4.69478i 0.220337 + 0.220337i
\(455\) 1.79688 + 3.84551i 0.0842390 + 0.180280i
\(456\) −0.200133 + 0.200133i −0.00937207 + 0.00937207i
\(457\) 15.5388i 0.726875i −0.931619 0.363437i \(-0.881603\pi\)
0.931619 0.363437i \(-0.118397\pi\)
\(458\) 17.1180i 0.799872i
\(459\) −5.98509 −0.279360
\(460\) 2.29335i 0.106928i
\(461\) 8.39366 8.39366i 0.390932 0.390932i −0.484088 0.875019i \(-0.660848\pi\)
0.875019 + 0.484088i \(0.160848\pi\)
\(462\) −3.57379 1.29757i −0.166268 0.0603683i
\(463\) 33.7822i 1.56999i −0.619500 0.784997i \(-0.712665\pi\)
0.619500 0.784997i \(-0.287335\pi\)
\(464\) −0.792373 5.32655i −0.0367850 0.247279i
\(465\) 3.34234i 0.154997i
\(466\) −7.67843 + 7.67843i −0.355697 + 0.355697i
\(467\) −7.67724 7.67724i −0.355260 0.355260i 0.506802 0.862062i \(-0.330828\pi\)
−0.862062 + 0.506802i \(0.830828\pi\)
\(468\) −1.66411 −0.0769237
\(469\) −1.05353 + 0.492277i −0.0486473 + 0.0227312i
\(470\) 5.57296i 0.257061i
\(471\) 9.37413 0.431937
\(472\) 8.81308 8.81308i 0.405655 0.405655i
\(473\) 11.8051i 0.542801i
\(474\) −5.16289 + 5.16289i −0.237139 + 0.237139i
\(475\) 0.814656 + 0.814656i 0.0373790 + 0.0373790i
\(476\) 14.8843 + 5.40420i 0.682223 + 0.247701i
\(477\) 12.0147i 0.550117i
\(478\) −14.3456 + 14.3456i −0.656152 + 0.656152i
\(479\) 26.1341 26.1341i 1.19410 1.19410i 0.218189 0.975906i \(-0.429985\pi\)
0.975906 0.218189i \(-0.0700150\pi\)
\(480\) −0.964064 −0.0440033
\(481\) 4.25587 + 4.25587i 0.194051 + 0.194051i
\(482\) −14.6450 + 14.6450i −0.667061 + 0.667061i
\(483\) −2.14795 + 5.91594i −0.0977353 + 0.269185i
\(484\) 8.93491 0.406132
\(485\) 6.33581 6.33581i 0.287694 0.287694i
\(486\) −1.00000 −0.0453609
\(487\) 39.9490 1.81026 0.905131 0.425133i \(-0.139773\pi\)
0.905131 + 0.425133i \(0.139773\pi\)
\(488\) 0.356410i 0.0161339i
\(489\) 1.69749i 0.0767632i
\(490\) −0.598748 6.72183i −0.0270487 0.303662i
\(491\) −23.2695 23.2695i −1.05014 1.05014i −0.998675 0.0514649i \(-0.983611\pi\)
−0.0514649 0.998675i \(-0.516389\pi\)
\(492\) 9.24702i 0.416888i
\(493\) 19.1891 25.8959i 0.864233 1.16629i
\(494\) −0.470995 −0.0211911
\(495\) 0.979626 + 0.979626i 0.0440309 + 0.0440309i
\(496\) −2.45149 2.45149i −0.110075 0.110075i
\(497\) 25.5193 11.9243i 1.14470 0.534879i
\(498\) 8.98566i 0.402657i
\(499\) 30.6018i 1.36992i −0.728579 0.684962i \(-0.759819\pi\)
0.728579 0.684962i \(-0.240181\pi\)
\(500\) 8.74462i 0.391071i
\(501\) 2.53480 + 2.53480i 0.113246 + 0.113246i
\(502\) −17.2972 −0.772010
\(503\) 11.5060 11.5060i 0.513029 0.513029i −0.402424 0.915453i \(-0.631832\pi\)
0.915453 + 0.402424i \(0.131832\pi\)
\(504\) 2.48690 + 0.902943i 0.110776 + 0.0402203i
\(505\) −8.73053 8.73053i −0.388504 0.388504i
\(506\) 3.41849i 0.151970i
\(507\) 7.23421 + 7.23421i 0.321283 + 0.321283i
\(508\) 3.20089 + 3.20089i 0.142016 + 0.142016i
\(509\) 15.0180i 0.665661i −0.942987 0.332830i \(-0.891996\pi\)
0.942987 0.332830i \(-0.108004\pi\)
\(510\) −4.08001 4.08001i −0.180666 0.180666i
\(511\) 31.9489 + 11.6000i 1.41334 + 0.513153i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −0.283030 −0.0124961
\(514\) −8.40516 8.40516i −0.370736 0.370736i
\(515\) 5.78754i 0.255029i
\(516\) 8.21489i 0.361640i
\(517\) 8.30710i 0.365346i
\(518\) −4.05088 8.66932i −0.177985 0.380908i
\(519\) −7.95423 7.95423i −0.349152 0.349152i
\(520\) −1.13442 1.13442i −0.0497476 0.0497476i
\(521\) −27.4497 −1.20259 −0.601296 0.799027i \(-0.705349\pi\)
−0.601296 + 0.799027i \(0.705349\pi\)
\(522\) 3.20615 4.32673i 0.140329 0.189376i
\(523\) 21.2786i 0.930450i −0.885193 0.465225i \(-0.845973\pi\)
0.885193 0.465225i \(-0.154027\pi\)
\(524\) 7.76228 + 7.76228i 0.339097 + 0.339097i
\(525\) 3.67550 10.1231i 0.160412 0.441810i
\(526\) 15.4303i 0.672793i
\(527\) 20.7499i 0.903878i
\(528\) 1.43704 0.0625392
\(529\) −17.3411 −0.753963
\(530\) 8.19041 8.19041i 0.355768 0.355768i
\(531\) 12.4636 0.540873
\(532\) 0.703870 + 0.255560i 0.0305166 + 0.0110799i
\(533\) −10.8810 + 10.8810i −0.471310 + 0.471310i
\(534\) −7.53183 7.53183i −0.325934 0.325934i
\(535\) 5.53373 0.239244
\(536\) 0.310789 0.310789i 0.0134240 0.0134240i
\(537\) 7.17662 7.17662i 0.309694 0.309694i
\(538\) 3.25855i 0.140486i
\(539\) 0.892498 + 10.0196i 0.0384426 + 0.431576i
\(540\) −0.681696 0.681696i −0.0293355 0.0293355i
\(541\) −16.8886 + 16.8886i −0.726098 + 0.726098i −0.969840 0.243742i \(-0.921625\pi\)
0.243742 + 0.969840i \(0.421625\pi\)
\(542\) 20.2383i 0.869311i
\(543\) 2.73697 2.73697i 0.117455 0.117455i
\(544\) −5.98509 −0.256609
\(545\) 12.1101i 0.518739i
\(546\) 1.86386 + 3.98886i 0.0797658 + 0.170707i
\(547\) −14.8657 −0.635613 −0.317806 0.948156i \(-0.602946\pi\)
−0.317806 + 0.948156i \(0.602946\pi\)
\(548\) −5.94573 5.94573i −0.253989 0.253989i
\(549\) 0.252020 0.252020i 0.0107560 0.0107560i
\(550\) 5.84959i 0.249428i
\(551\) 0.907437 1.22460i 0.0386581 0.0521696i
\(552\) 2.37884i 0.101250i
\(553\) 18.1579 + 6.59277i 0.772155 + 0.280353i
\(554\) −20.4572 + 20.4572i −0.869145 + 0.869145i
\(555\) 3.48679i 0.148006i
\(556\) −2.25836 −0.0957758
\(557\) 19.5606i 0.828811i −0.910092 0.414406i \(-0.863990\pi\)
0.910092 0.414406i \(-0.136010\pi\)
\(558\) 3.46692i 0.146767i
\(559\) 9.66652 9.66652i 0.408850 0.408850i
\(560\) 1.07978 + 2.31085i 0.0456291 + 0.0976511i
\(561\) 6.08170 + 6.08170i 0.256770 + 0.256770i
\(562\) −10.6321 + 10.6321i −0.448487 + 0.448487i
\(563\) 23.7395 23.7395i 1.00050 1.00050i 0.000501710 1.00000i \(-0.499840\pi\)
1.00000 0.000501710i \(-0.000159699\pi\)
\(564\) 5.78069i 0.243411i
\(565\) −13.7663 13.7663i −0.579151 0.579151i
\(566\) 6.16090 6.16090i 0.258962 0.258962i
\(567\) 1.12003 + 2.39698i 0.0470368 + 0.100664i
\(568\) −7.52816 + 7.52816i −0.315875 + 0.315875i
\(569\) −15.8417 15.8417i −0.664120 0.664120i 0.292228 0.956349i \(-0.405603\pi\)
−0.956349 + 0.292228i \(0.905603\pi\)
\(570\) −0.192941 0.192941i −0.00808140 0.00808140i
\(571\) 16.1487 0.675801 0.337900 0.941182i \(-0.390283\pi\)
0.337900 + 0.941182i \(0.390283\pi\)
\(572\) 1.69098 + 1.69098i 0.0707033 + 0.0707033i
\(573\) −13.3543 −0.557883
\(574\) 22.1650 10.3569i 0.925148 0.432290i
\(575\) −9.68324 −0.403819
\(576\) −1.00000 −0.0416667
\(577\) −13.1093 + 13.1093i −0.545746 + 0.545746i −0.925208 0.379461i \(-0.876109\pi\)
0.379461 + 0.925208i \(0.376109\pi\)
\(578\) −13.3087 13.3087i −0.553567 0.553567i
\(579\) 11.3094 0.470003
\(580\) 5.13514 0.763898i 0.213225 0.0317192i
\(581\) −21.5385 + 10.0642i −0.893567 + 0.417533i
\(582\) 6.57198 6.57198i 0.272417 0.272417i
\(583\) −12.2087 + 12.2087i −0.505632 + 0.505632i
\(584\) −12.8469 −0.531606
\(585\) 1.60431i 0.0663302i
\(586\) 18.0331 0.744940
\(587\) 3.73659i 0.154225i 0.997022 + 0.0771127i \(0.0245701\pi\)
−0.997022 + 0.0771127i \(0.975430\pi\)
\(588\) −0.621066 6.97239i −0.0256123 0.287537i
\(589\) 0.981245i 0.0404315i
\(590\) 8.49637 + 8.49637i 0.349790 + 0.349790i
\(591\) −9.00003 9.00003i −0.370212 0.370212i
\(592\) 2.55744 + 2.55744i 0.105110 + 0.105110i
\(593\) 21.6595 0.889448 0.444724 0.895668i \(-0.353302\pi\)
0.444724 + 0.895668i \(0.353302\pi\)
\(594\) 1.01614 + 1.01614i 0.0416928 + 0.0416928i
\(595\) −5.20999 + 14.3495i −0.213589 + 0.588271i
\(596\) −11.1573 −0.457020
\(597\) −15.5243 + 15.5243i −0.635365 + 0.635365i
\(598\) 2.79919 2.79919i 0.114468 0.114468i
\(599\) −17.8000 + 17.8000i −0.727288 + 0.727288i −0.970079 0.242790i \(-0.921937\pi\)
0.242790 + 0.970079i \(0.421937\pi\)
\(600\) 4.07058i 0.166181i
\(601\) −11.9411 11.9411i −0.487089 0.487089i 0.420298 0.907386i \(-0.361926\pi\)
−0.907386 + 0.420298i \(0.861926\pi\)
\(602\) −19.6910 + 9.20092i −0.802544 + 0.375002i
\(603\) 0.439521 0.0178987
\(604\) −7.71410 −0.313882
\(605\) 8.61383i 0.350202i
\(606\) −9.05597 9.05597i −0.367874 0.367874i
\(607\) −23.3502 + 23.3502i −0.947756 + 0.947756i −0.998701 0.0509456i \(-0.983777\pi\)
0.0509456 + 0.998701i \(0.483777\pi\)
\(608\) −0.283030 −0.0114784
\(609\) −13.9621 2.83902i −0.565772 0.115043i
\(610\) 0.343602 0.0139120
\(611\) 6.80218 6.80218i 0.275187 0.275187i
\(612\) −4.23210 4.23210i −0.171072 0.171072i
\(613\) 27.3874i 1.10617i −0.833125 0.553084i \(-0.813451\pi\)
0.833125 0.553084i \(-0.186549\pi\)
\(614\) 24.1384 0.974147
\(615\) −8.91472 −0.359476
\(616\) −1.60953 3.44457i −0.0648498 0.138786i
\(617\) 17.6926 + 17.6926i 0.712276 + 0.712276i 0.967011 0.254735i \(-0.0819883\pi\)
−0.254735 + 0.967011i \(0.581988\pi\)
\(618\) 6.00327i 0.241487i
\(619\) 5.85980 5.85980i 0.235525 0.235525i −0.579469 0.814994i \(-0.696740\pi\)
0.814994 + 0.579469i \(0.196740\pi\)
\(620\) 2.36339 2.36339i 0.0949160 0.0949160i
\(621\) 1.68209 1.68209i 0.0675000 0.0675000i
\(622\) −14.1463 −0.567216
\(623\) −9.61780 + 26.4895i −0.385329 + 1.06128i
\(624\) −1.17671 1.17671i −0.0471060 0.0471060i
\(625\) 11.9225 0.476901
\(626\) −7.62253 7.62253i −0.304658 0.304658i
\(627\) 0.287599 + 0.287599i 0.0114856 + 0.0114856i
\(628\) 6.62851 + 6.62851i 0.264506 + 0.264506i
\(629\) 21.6466i 0.863108i
\(630\) −0.870495 + 2.39754i −0.0346814 + 0.0955201i
\(631\) 33.9510i 1.35157i −0.737100 0.675784i \(-0.763805\pi\)
0.737100 0.675784i \(-0.236195\pi\)
\(632\) −7.30143 −0.290435
\(633\) 23.7966i 0.945830i
\(634\) 15.2325 0.604958
\(635\) −3.08586 + 3.08586i −0.122459 + 0.122459i
\(636\) 8.49571 8.49571i 0.336877 0.336877i
\(637\) 7.47365 8.93528i 0.296117 0.354029i
\(638\) −7.65448 + 1.13867i −0.303044 + 0.0450805i
\(639\) −10.6464 −0.421166
\(640\) −0.681696 0.681696i −0.0269464 0.0269464i
\(641\) 12.1238 12.1238i 0.478861 0.478861i −0.425906 0.904767i \(-0.640045\pi\)
0.904767 + 0.425906i \(0.140045\pi\)
\(642\) 5.74000 0.226540
\(643\) −32.3297 −1.27496 −0.637480 0.770467i \(-0.720023\pi\)
−0.637480 + 0.770467i \(0.720023\pi\)
\(644\) −5.70203 + 2.66437i −0.224692 + 0.104991i
\(645\) 7.91968 0.311837
\(646\) −1.19781 1.19781i −0.0471273 0.0471273i
\(647\) 7.49764 0.294763 0.147381 0.989080i \(-0.452916\pi\)
0.147381 + 0.989080i \(0.452916\pi\)
\(648\) −0.707107 0.707107i −0.0277778 0.0277778i
\(649\) −12.6648 12.6648i −0.497136 0.497136i
\(650\) −4.78988 + 4.78988i −0.187875 + 0.187875i
\(651\) −8.31016 + 3.88306i −0.325701 + 0.152189i
\(652\) −1.20031 + 1.20031i −0.0470077 + 0.0470077i
\(653\) −19.3186 19.3186i −0.755997 0.755997i 0.219595 0.975591i \(-0.429527\pi\)
−0.975591 + 0.219595i \(0.929527\pi\)
\(654\) 12.5615i 0.491194i
\(655\) −7.48334 + 7.48334i −0.292398 + 0.292398i
\(656\) −6.53863 + 6.53863i −0.255291 + 0.255291i
\(657\) −9.08410 9.08410i −0.354404 0.354404i
\(658\) −13.8562 + 6.47455i −0.540172 + 0.252404i
\(659\) −19.2863 + 19.2863i −0.751286 + 0.751286i −0.974719 0.223433i \(-0.928274\pi\)
0.223433 + 0.974719i \(0.428274\pi\)
\(660\) 1.38540i 0.0539266i
\(661\) 40.2924i 1.56719i 0.621269 + 0.783597i \(0.286617\pi\)
−0.621269 + 0.783597i \(0.713383\pi\)
\(662\) −23.9183 −0.929613
\(663\) 9.95988i 0.386810i
\(664\) 6.35382 6.35382i 0.246576 0.246576i
\(665\) −0.246377 + 0.678575i −0.00955407 + 0.0263140i
\(666\) 3.61676i 0.140147i
\(667\) 1.88493 + 12.6710i 0.0729846 + 0.490623i
\(668\) 3.58474i 0.138698i
\(669\) −8.10576 + 8.10576i −0.313387 + 0.313387i
\(670\) 0.299620 + 0.299620i 0.0115753 + 0.0115753i
\(671\) −0.512176 −0.0197723
\(672\) 1.12003 + 2.39698i 0.0432061 + 0.0924657i
\(673\) 27.3159i 1.05295i −0.850190 0.526476i \(-0.823513\pi\)
0.850190 0.526476i \(-0.176487\pi\)
\(674\) 24.2869 0.935498
\(675\) −2.87833 + 2.87833i −0.110787 + 0.110787i
\(676\) 10.2307i 0.393489i
\(677\) 7.13492 7.13492i 0.274217 0.274217i −0.556578 0.830795i \(-0.687886\pi\)
0.830795 + 0.556578i \(0.187886\pi\)
\(678\) −14.2794 14.2794i −0.548397 0.548397i
\(679\) −23.1137 8.39211i −0.887024 0.322060i
\(680\) 5.77001i 0.221270i
\(681\) −4.69478 + 4.69478i −0.179904 + 0.179904i
\(682\) −3.52289 + 3.52289i −0.134898 + 0.134898i
\(683\) 5.42689 0.207654 0.103827 0.994595i \(-0.466891\pi\)
0.103827 + 0.994595i \(0.466891\pi\)
\(684\) −0.200133 0.200133i −0.00765227 0.00765227i
\(685\) 5.73207 5.73207i 0.219011 0.219011i
\(686\) −16.0171 + 9.29797i −0.611536 + 0.354998i
\(687\) 17.1180 0.653093
\(688\) 5.80881 5.80881i 0.221459 0.221459i
\(689\) 19.9939 0.761707
\(690\) 2.29335 0.0873064
\(691\) 29.3076i 1.11492i −0.830205 0.557458i \(-0.811777\pi\)
0.830205 0.557458i \(-0.188223\pi\)
\(692\) 11.2490i 0.427622i
\(693\) 1.29757 3.57379i 0.0492905 0.135757i
\(694\) −13.4780 13.4780i −0.511619 0.511619i
\(695\) 2.17720i 0.0825860i
\(696\) 5.32655 0.792373i 0.201902 0.0300348i
\(697\) −55.3442 −2.09631
\(698\) 4.34227 + 4.34227i 0.164357 + 0.164357i
\(699\) −7.67843 7.67843i −0.290425 0.290425i
\(700\) 9.75712 4.55917i 0.368784 0.172320i
\(701\) 1.53161i 0.0578482i −0.999582 0.0289241i \(-0.990792\pi\)
0.999582 0.0289241i \(-0.00920812\pi\)
\(702\) 1.66411i 0.0628080i
\(703\) 1.02365i 0.0386078i
\(704\) 1.01614 + 1.01614i 0.0382973 + 0.0382973i
\(705\) 5.57296 0.209890
\(706\) −14.7752 + 14.7752i −0.556072 + 0.556072i
\(707\) −11.5641 + 31.8500i −0.434911 + 1.19784i
\(708\) 8.81308 + 8.81308i 0.331216 + 0.331216i
\(709\) 39.9169i 1.49911i 0.661941 + 0.749556i \(0.269733\pi\)
−0.661941 + 0.749556i \(0.730267\pi\)
\(710\) −7.25763 7.25763i −0.272374 0.272374i
\(711\) −5.16289 5.16289i −0.193623 0.193623i
\(712\) 10.6516i 0.399186i
\(713\) 5.83168 + 5.83168i 0.218398 + 0.218398i
\(714\) −5.40420 + 14.8843i −0.202247 + 0.557033i
\(715\) −1.63021 + 1.63021i −0.0609664 + 0.0609664i
\(716\) 10.1493 0.379296
\(717\) −14.3456 14.3456i −0.535746 0.535746i
\(718\) 18.5486i 0.692228i
\(719\) 48.6715i 1.81514i 0.419899 + 0.907571i \(0.362066\pi\)
−0.419899 + 0.907571i \(0.637934\pi\)
\(720\) 0.964064i 0.0359285i
\(721\) 14.3898 6.72384i 0.535902 0.250409i
\(722\) 13.3784 + 13.3784i 0.497892 + 0.497892i
\(723\) −14.6450 14.6450i −0.544653 0.544653i
\(724\) 3.87066 0.143852
\(725\) −3.22542 21.6822i −0.119789 0.805255i
\(726\) 8.93491i 0.331606i
\(727\) 7.20162 + 7.20162i 0.267093 + 0.267093i 0.827928 0.560835i \(-0.189520\pi\)
−0.560835 + 0.827928i \(0.689520\pi\)
\(728\) −1.50260 + 4.13849i −0.0556901 + 0.153383i
\(729\) 1.00000i 0.0370370i
\(730\) 12.3852i 0.458396i
\(731\) 49.1669 1.81850
\(732\) 0.356410 0.0131733
\(733\) 13.8947 13.8947i 0.513211 0.513211i −0.402298 0.915509i \(-0.631788\pi\)
0.915509 + 0.402298i \(0.131788\pi\)
\(734\) 11.0162 0.406616
\(735\) 6.72183 0.598748i 0.247939 0.0220851i
\(736\) 1.68209 1.68209i 0.0620027 0.0620027i
\(737\) −0.446616 0.446616i −0.0164513 0.0164513i
\(738\) −9.24702 −0.340388
\(739\) −14.7828 + 14.7828i −0.543793 + 0.543793i −0.924639 0.380846i \(-0.875633\pi\)
0.380846 + 0.924639i \(0.375633\pi\)
\(740\) −2.46553 + 2.46553i −0.0906347 + 0.0906347i
\(741\) 0.470995i 0.0173024i
\(742\) −29.8795 10.8486i −1.09691 0.398266i
\(743\) 13.9627 + 13.9627i 0.512241 + 0.512241i 0.915213 0.402972i \(-0.132023\pi\)
−0.402972 + 0.915213i \(0.632023\pi\)
\(744\) 2.45149 2.45149i 0.0898758 0.0898758i
\(745\) 10.7563i 0.394082i
\(746\) 12.6259 12.6259i 0.462268 0.462268i
\(747\) 8.98566 0.328768
\(748\) 8.60082i 0.314477i
\(749\) −6.42897 13.7587i −0.234909 0.502731i
\(750\) −8.74462 −0.319308
\(751\) 11.3537 + 11.3537i 0.414301 + 0.414301i 0.883234 0.468933i \(-0.155361\pi\)
−0.468933 + 0.883234i \(0.655361\pi\)
\(752\) 4.08757 4.08757i 0.149058 0.149058i
\(753\) 17.2972i 0.630344i
\(754\) 7.20018 + 5.33540i 0.262215 + 0.194304i
\(755\) 7.43689i 0.270656i
\(756\) −0.902943 + 2.48690i −0.0328397 + 0.0904478i
\(757\) −32.3617 + 32.3617i −1.17621 + 1.17621i −0.195503 + 0.980703i \(0.562634\pi\)
−0.980703 + 0.195503i \(0.937366\pi\)
\(758\) 7.66351i 0.278351i
\(759\) −3.41849 −0.124083
\(760\) 0.272859i 0.00989765i
\(761\) 7.74127i 0.280621i −0.990108 0.140310i \(-0.955190\pi\)
0.990108 0.140310i \(-0.0448101\pi\)
\(762\) −3.20089 + 3.20089i −0.115956 + 0.115956i
\(763\) −30.1097 + 14.0693i −1.09005 + 0.509341i
\(764\) −9.44291 9.44291i −0.341632 0.341632i
\(765\) 4.08001 4.08001i 0.147513 0.147513i
\(766\) 7.43318 7.43318i 0.268572 0.268572i
\(767\) 20.7408i 0.748908i
\(768\) −0.707107 0.707107i −0.0255155 0.0255155i
\(769\) −6.29639 + 6.29639i −0.227054 + 0.227054i −0.811461 0.584407i \(-0.801327\pi\)
0.584407 + 0.811461i \(0.301327\pi\)
\(770\) 3.32078 1.55169i 0.119673 0.0559190i
\(771\) 8.40516 8.40516i 0.302704 0.302704i
\(772\) 7.99696 + 7.99696i 0.287817 + 0.287817i
\(773\) 6.68353 + 6.68353i 0.240390 + 0.240390i 0.817011 0.576621i \(-0.195629\pi\)
−0.576621 + 0.817011i \(0.695629\pi\)
\(774\) 8.21489 0.295278
\(775\) −9.97897 9.97897i −0.358455 0.358455i
\(776\) 9.29418 0.333642
\(777\) 8.66932 4.05088i 0.311010 0.145324i
\(778\) −3.13537 −0.112408
\(779\) −2.61719 −0.0937705
\(780\) 1.13442 1.13442i 0.0406188 0.0406188i
\(781\) 10.8183 + 10.8183i 0.387109 + 0.387109i
\(782\) 14.2375 0.509134
\(783\) 4.32673 + 3.20615i 0.154625 + 0.114578i
\(784\) 4.49107 5.36939i 0.160395 0.191764i
\(785\) −6.39031 + 6.39031i −0.228080 + 0.228080i
\(786\) −7.76228 + 7.76228i −0.276871 + 0.276871i
\(787\) 3.64304 0.129860 0.0649301 0.997890i \(-0.479318\pi\)
0.0649301 + 0.997890i \(0.479318\pi\)
\(788\) 12.7280i 0.453415i
\(789\) −15.4303 −0.549333
\(790\) 7.03904i 0.250438i
\(791\) −18.2342 + 50.2209i −0.648332 + 1.78565i
\(792\) 1.43704i 0.0510631i
\(793\) 0.419390 + 0.419390i 0.0148930 + 0.0148930i
\(794\) −8.06640 8.06640i −0.286266 0.286266i
\(795\) 8.19041 + 8.19041i 0.290484 + 0.290484i
\(796\) −21.9546 −0.778160
\(797\) −0.0613583 0.0613583i −0.00217342 0.00217342i 0.706019 0.708193i \(-0.250489\pi\)
−0.708193 + 0.706019i \(0.750489\pi\)
\(798\) −0.255560 + 0.703870i −0.00904674 + 0.0249167i
\(799\) 34.5980 1.22399
\(800\) −2.87833 + 2.87833i −0.101765 + 0.101765i
\(801\) 7.53183 7.53183i 0.266124 0.266124i
\(802\) −17.8250 + 17.8250i −0.629424 + 0.629424i
\(803\) 18.4615i 0.651491i
\(804\) 0.310789 + 0.310789i 0.0109607 + 0.0109607i
\(805\) −2.56862 5.49713i −0.0905320 0.193748i
\(806\) 5.76936 0.203217
\(807\) −3.25855 −0.114707
\(808\) 12.8071i 0.450551i
\(809\) −21.0102 21.0102i −0.738680 0.738680i 0.233643 0.972323i \(-0.424935\pi\)
−0.972323 + 0.233643i \(0.924935\pi\)
\(810\) 0.681696 0.681696i 0.0239524 0.0239524i
\(811\) −12.3535 −0.433789 −0.216894 0.976195i \(-0.569593\pi\)
−0.216894 + 0.976195i \(0.569593\pi\)
\(812\) −7.86520 11.8802i −0.276014 0.416912i
\(813\) 20.2383 0.709790
\(814\) 3.67514 3.67514i 0.128814 0.128814i
\(815\) −1.15717 1.15717i −0.0405340 0.0405340i
\(816\) 5.98509i 0.209520i
\(817\) 2.32506 0.0813437
\(818\) 36.4363 1.27396
\(819\) −3.98886 + 1.86386i −0.139382 + 0.0651285i
\(820\) −6.30366 6.30366i −0.220133 0.220133i
\(821\) 12.2386i 0.427129i −0.976929 0.213565i \(-0.931493\pi\)
0.976929 0.213565i \(-0.0685074\pi\)
\(822\) 5.94573 5.94573i 0.207381 0.207381i
\(823\) 28.3968 28.3968i 0.989849 0.989849i −0.0100999 0.999949i \(-0.503215\pi\)
0.999949 + 0.0100999i \(0.00321494\pi\)
\(824\) −4.24495 + 4.24495i −0.147880 + 0.147880i
\(825\) 5.84959 0.203657
\(826\) 11.2539 30.9957i 0.391573 1.07848i
\(827\) −20.8899 20.8899i −0.726412 0.726412i 0.243491 0.969903i \(-0.421707\pi\)
−0.969903 + 0.243491i \(0.921707\pi\)
\(828\) 2.37884 0.0826703
\(829\) 4.18667 + 4.18667i 0.145409 + 0.145409i 0.776064 0.630655i \(-0.217214\pi\)
−0.630655 + 0.776064i \(0.717214\pi\)
\(830\) 6.12549 + 6.12549i 0.212619 + 0.212619i
\(831\) −20.4572 20.4572i −0.709654 0.709654i
\(832\) 1.66411i 0.0576928i
\(833\) 41.7304 3.71714i 1.44587 0.128791i
\(834\) 2.25836i 0.0782006i
\(835\) −3.45592 −0.119597
\(836\) 0.406727i 0.0140669i
\(837\) 3.46692 0.119834
\(838\) 24.9460 24.9460i 0.861746 0.861746i
\(839\) −20.9050 + 20.9050i −0.721721 + 0.721721i −0.968956 0.247235i \(-0.920478\pi\)
0.247235 + 0.968956i \(0.420478\pi\)
\(840\) −2.31085 + 1.07978i −0.0797318 + 0.0372560i
\(841\) −27.7443 + 8.44123i −0.956700 + 0.291077i
\(842\) 3.51123 0.121005
\(843\) −10.6321 10.6321i −0.366188 0.366188i
\(844\) 16.8267 16.8267i 0.579200 0.579200i
\(845\) −9.86307 −0.339300
\(846\) 5.78069 0.198744
\(847\) 21.4168 10.0074i 0.735891 0.343857i
\(848\) 12.0147 0.412588
\(849\) 6.16090 + 6.16090i 0.211441 + 0.211441i
\(850\) −24.3628 −0.835637
\(851\) −6.08372 6.08372i −0.208547 0.208547i
\(852\) −7.52816 7.52816i −0.257910 0.257910i
\(853\) −33.7086 + 33.7086i −1.15416 + 1.15416i −0.168452 + 0.985710i \(0.553877\pi\)
−0.985710 + 0.168452i \(0.946123\pi\)
\(854\) −0.399190 0.854309i −0.0136600 0.0292339i
\(855\) 0.192941 0.192941i 0.00659844 0.00659844i
\(856\) 4.05879 + 4.05879i 0.138727 + 0.138727i
\(857\) 42.4479i 1.44999i 0.688753 + 0.724996i \(0.258158\pi\)
−0.688753 + 0.724996i \(0.741842\pi\)
\(858\) −1.69098 + 1.69098i −0.0577290 + 0.0577290i
\(859\) 1.13914 1.13914i 0.0388670 0.0388670i −0.687406 0.726273i \(-0.741251\pi\)
0.726273 + 0.687406i \(0.241251\pi\)
\(860\) 5.60006 + 5.60006i 0.190960 + 0.190960i
\(861\) 10.3569 + 22.1650i 0.352963 + 0.755380i
\(862\) −11.1282 + 11.1282i −0.379027 + 0.379027i
\(863\) 37.2710i 1.26872i −0.773038 0.634359i \(-0.781264\pi\)
0.773038 0.634359i \(-0.218736\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 10.8447 0.368732
\(866\) 17.4339i 0.592427i
\(867\) 13.3087 13.3087i 0.451986 0.451986i
\(868\) −8.62191 3.13044i −0.292647 0.106254i
\(869\) 10.4925i 0.355932i
\(870\) 0.763898 + 5.13514i 0.0258986 + 0.174097i
\(871\) 0.731414i 0.0247830i
\(872\) 8.88232 8.88232i 0.300793 0.300793i
\(873\) 6.57198 + 6.57198i 0.222428 + 0.222428i
\(874\) 0.673283 0.0227741
\(875\) 9.79424 + 20.9607i 0.331106 + 0.708602i
\(876\) 12.8469i 0.434055i
\(877\) −31.8050 −1.07398 −0.536989 0.843589i \(-0.680438\pi\)
−0.536989 + 0.843589i \(0.680438\pi\)
\(878\) −18.6122 + 18.6122i −0.628131 + 0.628131i
\(879\) 18.0331i 0.608241i
\(880\) −0.979626 + 0.979626i −0.0330232 + 0.0330232i
\(881\) −12.4714 12.4714i −0.420171 0.420171i 0.465091 0.885263i \(-0.346021\pi\)
−0.885263 + 0.465091i \(0.846021\pi\)
\(882\) 6.97239 0.621066i 0.234773 0.0209124i
\(883\) 1.51845i 0.0510998i −0.999674 0.0255499i \(-0.991866\pi\)
0.999674 0.0255499i \(-0.00813368\pi\)
\(884\) 7.04270 7.04270i 0.236871 0.236871i
\(885\) −8.49637 + 8.49637i −0.285603 + 0.285603i
\(886\) −24.0295 −0.807287
\(887\) 0.296112 + 0.296112i 0.00994248 + 0.00994248i 0.712061 0.702118i \(-0.247762\pi\)
−0.702118 + 0.712061i \(0.747762\pi\)
\(888\) −2.55744 + 2.55744i −0.0858219 + 0.0858219i
\(889\) 11.2576 + 4.08739i 0.377566 + 0.137087i
\(890\) 10.2688 0.344212
\(891\) −1.01614 + 1.01614i −0.0340420 + 0.0340420i
\(892\) −11.4633 −0.383819
\(893\) 1.63611 0.0547504
\(894\) 11.1573i 0.373156i
\(895\) 9.78455i 0.327061i
\(896\) −0.902943 + 2.48690i −0.0301652 + 0.0830816i
\(897\) 2.79919 + 2.79919i 0.0934623 + 0.0934623i
\(898\) 28.0361i 0.935575i
\(899\) −11.1155 + 15.0005i −0.370722 + 0.500293i
\(900\) −4.07058 −0.135686
\(901\) 50.8476 + 50.8476i 1.69398 + 1.69398i
\(902\) 9.39629 + 9.39629i 0.312862 + 0.312862i
\(903\) −9.20092 19.6910i −0.306188 0.655274i
\(904\) 20.1941i 0.671647i
\(905\) 3.73157i 0.124041i
\(906\) 7.71410i 0.256284i
\(907\) 22.8118 + 22.8118i 0.757454 + 0.757454i 0.975858 0.218404i \(-0.0700851\pi\)
−0.218404 + 0.975858i \(0.570085\pi\)
\(908\) −6.63942 −0.220337
\(909\) 9.05597 9.05597i 0.300367 0.300367i
\(910\) −3.98977 1.44860i −0.132260 0.0480208i
\(911\) 40.0810 + 40.0810i 1.32794 + 1.32794i 0.907163 + 0.420780i \(0.138244\pi\)
0.420780 + 0.907163i \(0.361756\pi\)
\(912\) 0.283030i 0.00937207i
\(913\) −9.13070 9.13070i −0.302182 0.302182i
\(914\) 10.9876 + 10.9876i 0.363437 + 0.363437i
\(915\) 0.343602i 0.0113591i
\(916\) 12.1043 + 12.1043i 0.399936 + 0.399936i
\(917\) 27.3001 + 9.91208i 0.901527 + 0.327326i
\(918\) 4.23210 4.23210i 0.139680 0.139680i
\(919\) 7.15196 0.235921 0.117961 0.993018i \(-0.462364\pi\)
0.117961 + 0.993018i \(0.462364\pi\)
\(920\) 1.62164 + 1.62164i 0.0534640 + 0.0534640i
\(921\) 24.1384i 0.795388i
\(922\) 11.8704i 0.390932i
\(923\) 17.7169i 0.583158i
\(924\) 3.44457 1.60953i 0.113318 0.0529496i
\(925\) 10.4102 + 10.4102i 0.342287 + 0.342287i
\(926\) 23.8876 + 23.8876i 0.784997 + 0.784997i
\(927\) −6.00327 −0.197173
\(928\) 4.32673 + 3.20615i 0.142032 + 0.105247i
\(929\) 59.2220i 1.94301i −0.237020 0.971505i \(-0.576171\pi\)
0.237020 0.971505i \(-0.423829\pi\)
\(930\) 2.36339 + 2.36339i 0.0774986 + 0.0774986i
\(931\) 1.97340 0.175781i 0.0646756 0.00576098i
\(932\) 10.8589i 0.355697i
\(933\) 14.1463i 0.463130i
\(934\) 10.8573 0.355260
\(935\) −8.29175 −0.271169
\(936\) 1.17671 1.17671i 0.0384619 0.0384619i
\(937\) −24.2941 −0.793652 −0.396826 0.917894i \(-0.629888\pi\)
−0.396826 + 0.917894i \(0.629888\pi\)
\(938\) 0.396863 1.09305i 0.0129580 0.0356893i
\(939\) 7.62253 7.62253i 0.248752 0.248752i
\(940\) 3.94068 + 3.94068i 0.128531 + 0.128531i
\(941\) 9.24786 0.301472 0.150736 0.988574i \(-0.451836\pi\)
0.150736 + 0.988574i \(0.451836\pi\)
\(942\) −6.62851 + 6.62851i −0.215968 + 0.215968i
\(943\) 15.5543 15.5543i 0.506519 0.506519i
\(944\) 12.4636i 0.405655i
\(945\) −2.39754 0.870495i −0.0779918 0.0283172i
\(946\) −8.34750 8.34750i −0.271401 0.271401i
\(947\) 15.9133 15.9133i 0.517111 0.517111i −0.399585 0.916696i \(-0.630846\pi\)
0.916696 + 0.399585i \(0.130846\pi\)
\(948\) 7.30143i 0.237139i
\(949\) 15.1170 15.1170i 0.490718 0.490718i
\(950\) −1.15210 −0.0373790
\(951\) 15.2325i 0.493946i
\(952\) −14.3462 + 6.70348i −0.464962 + 0.217261i
\(953\) −23.5911 −0.764192 −0.382096 0.924123i \(-0.624798\pi\)
−0.382096 + 0.924123i \(0.624798\pi\)
\(954\) 8.49571 + 8.49571i 0.275059 + 0.275059i
\(955\) 9.10357 9.10357i 0.294584 0.294584i
\(956\) 20.2877i 0.656152i
\(957\) −1.13867 7.65448i −0.0368081 0.247434i
\(958\) 36.9591i 1.19410i
\(959\) −20.9112 7.59243i −0.675259 0.245172i
\(960\) 0.681696 0.681696i 0.0220017 0.0220017i
\(961\) 18.9804i 0.612272i
\(962\) −6.01870 −0.194051
\(963\) 5.74000i 0.184969i
\(964\) 20.7111i 0.667061i
\(965\) −7.70958 + 7.70958i −0.248180 + 0.248180i
\(966\) −2.66437 5.70203i −0.0857246 0.183460i
\(967\) −7.25348 7.25348i −0.233256 0.233256i 0.580794 0.814050i \(-0.302742\pi\)
−0.814050 + 0.580794i \(0.802742\pi\)
\(968\) −6.31794 + 6.31794i −0.203066 + 0.203066i
\(969\) 1.19781 1.19781i 0.0384793 0.0384793i
\(970\) 8.96018i 0.287694i
\(971\) 0.353537 + 0.353537i 0.0113455 + 0.0113455i 0.712757 0.701411i \(-0.247446\pi\)
−0.701411 + 0.712757i \(0.747446\pi\)
\(972\) 0.707107 0.707107i 0.0226805 0.0226805i
\(973\) −5.41325 + 2.52943i −0.173541 + 0.0810898i
\(974\) −28.2482 + 28.2482i −0.905131 + 0.905131i
\(975\) −4.78988 4.78988i −0.153399 0.153399i
\(976\) 0.252020 + 0.252020i 0.00806696 + 0.00806696i
\(977\) 7.58272 0.242593 0.121296 0.992616i \(-0.461295\pi\)
0.121296 + 0.992616i \(0.461295\pi\)
\(978\) −1.20031 1.20031i −0.0383816 0.0383816i
\(979\) −15.3068 −0.489208
\(980\) 5.17643 + 4.32968i 0.165355 + 0.138306i
\(981\) 12.5615 0.401058
\(982\) 32.9081 1.05014
\(983\) −16.7975 + 16.7975i −0.535758 + 0.535758i −0.922280 0.386522i \(-0.873676\pi\)
0.386522 + 0.922280i \(0.373676\pi\)
\(984\) −6.53863 6.53863i −0.208444 0.208444i
\(985\) 12.2706 0.390973
\(986\) 4.74242 + 31.8799i 0.151030 + 1.01526i
\(987\) −6.47455 13.8562i −0.206087 0.441049i
\(988\) 0.333044 0.333044i 0.0105955 0.0105955i
\(989\) −13.8182 + 13.8182i −0.439393 + 0.439393i
\(990\) −1.38540 −0.0440309
\(991\) 23.0921i 0.733544i −0.930311 0.366772i \(-0.880463\pi\)
0.930311 0.366772i \(-0.119537\pi\)
\(992\) 3.46692 0.110075
\(993\) 23.9183i 0.759026i
\(994\) −9.61312 + 26.4766i −0.304910 + 0.839788i
\(995\) 21.1656i 0.670996i
\(996\) 6.35382 + 6.35382i 0.201328 + 0.201328i
\(997\) 33.6194 + 33.6194i 1.06474 + 1.06474i 0.997754 + 0.0669825i \(0.0213372\pi\)
0.0669825 + 0.997754i \(0.478663\pi\)
\(998\) 21.6387 + 21.6387i 0.684962 + 0.684962i
\(999\) −3.61676 −0.114429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.m.b.307.3 yes 40
7.6 odd 2 1218.2.m.a.307.3 40
29.12 odd 4 1218.2.m.a.853.3 yes 40
203.41 even 4 inner 1218.2.m.b.853.3 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.m.a.307.3 40 7.6 odd 2
1218.2.m.a.853.3 yes 40 29.12 odd 4
1218.2.m.b.307.3 yes 40 1.1 even 1 trivial
1218.2.m.b.853.3 yes 40 203.41 even 4 inner