Properties

Label 1218.2.m.b.307.11
Level $1218$
Weight $2$
Character 1218.307
Analytic conductor $9.726$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(307,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.11
Character \(\chi\) \(=\) 1218.307
Dual form 1218.2.m.b.853.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +3.88041 q^{5} +1.00000 q^{6} +(-0.687128 + 2.55497i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +(2.74387 - 2.74387i) q^{10} +(-2.40290 + 2.40290i) q^{11} +(0.707107 - 0.707107i) q^{12} +1.76810 q^{13} +(1.32076 + 2.29251i) q^{14} +(2.74387 + 2.74387i) q^{15} -1.00000 q^{16} +(-2.16662 - 2.16662i) q^{17} +(0.707107 + 0.707107i) q^{18} +(1.23644 + 1.23644i) q^{19} -3.88041i q^{20} +(-2.29251 + 1.32076i) q^{21} +3.39821i q^{22} +7.16005 q^{23} -1.00000i q^{24} +10.0576 q^{25} +(1.25024 - 1.25024i) q^{26} +(-0.707107 + 0.707107i) q^{27} +(2.55497 + 0.687128i) q^{28} +(3.09777 + 4.40498i) q^{29} +3.88041 q^{30} +(-0.785278 - 0.785278i) q^{31} +(-0.707107 + 0.707107i) q^{32} -3.39821 q^{33} -3.06407 q^{34} +(-2.66634 + 9.91432i) q^{35} +1.00000 q^{36} +(-6.21199 - 6.21199i) q^{37} +1.74860 q^{38} +(1.25024 + 1.25024i) q^{39} +(-2.74387 - 2.74387i) q^{40} +(0.510951 - 0.510951i) q^{41} +(-0.687128 + 2.55497i) q^{42} +(-1.06007 + 1.06007i) q^{43} +(2.40290 + 2.40290i) q^{44} +3.88041i q^{45} +(5.06292 - 5.06292i) q^{46} +(-1.53254 + 1.53254i) q^{47} +(-0.707107 - 0.707107i) q^{48} +(-6.05571 - 3.51118i) q^{49} +(7.11180 - 7.11180i) q^{50} -3.06407i q^{51} -1.76810i q^{52} -4.74736 q^{53} +1.00000i q^{54} +(-9.32424 + 9.32424i) q^{55} +(2.29251 - 1.32076i) q^{56} +1.74860i q^{57} +(5.30524 + 0.924337i) q^{58} -9.85641i q^{59} +(2.74387 - 2.74387i) q^{60} +(-3.88401 - 3.88401i) q^{61} -1.11055 q^{62} +(-2.55497 - 0.687128i) q^{63} +1.00000i q^{64} +6.86097 q^{65} +(-2.40290 + 2.40290i) q^{66} +1.35982i q^{67} +(-2.16662 + 2.16662i) q^{68} +(5.06292 + 5.06292i) q^{69} +(5.12510 + 8.89587i) q^{70} +11.6097i q^{71} +(0.707107 - 0.707107i) q^{72} +(11.0505 - 11.0505i) q^{73} -8.78507 q^{74} +(7.11180 + 7.11180i) q^{75} +(1.23644 - 1.23644i) q^{76} +(-4.48823 - 7.79042i) q^{77} +1.76810 q^{78} +(7.92623 - 7.92623i) q^{79} -3.88041 q^{80} -1.00000 q^{81} -0.722594i q^{82} +4.45629i q^{83} +(1.32076 + 2.29251i) q^{84} +(-8.40739 - 8.40739i) q^{85} +1.49917i q^{86} +(-0.924337 + 5.30524i) q^{87} +3.39821 q^{88} +(-5.59795 - 5.59795i) q^{89} +(2.74387 + 2.74387i) q^{90} +(-1.21491 + 4.51745i) q^{91} -7.16005i q^{92} -1.11055i q^{93} +2.16733i q^{94} +(4.79791 + 4.79791i) q^{95} -1.00000 q^{96} +(5.97411 - 5.97411i) q^{97} +(-6.76481 + 1.79926i) q^{98} +(-2.40290 - 2.40290i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 40 q^{6} - 4 q^{10} + 4 q^{14} - 4 q^{15} - 40 q^{16} - 8 q^{19} + 4 q^{21} + 24 q^{25} + 12 q^{28} + 8 q^{29} + 24 q^{31} + 12 q^{35} + 40 q^{36} - 16 q^{37} + 4 q^{40} - 16 q^{41} - 20 q^{43} + 4 q^{46}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) 3.88041 1.73537 0.867687 0.497112i \(-0.165606\pi\)
0.867687 + 0.497112i \(0.165606\pi\)
\(6\) 1.00000 0.408248
\(7\) −0.687128 + 2.55497i −0.259710 + 0.965687i
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) 2.74387 2.74387i 0.867687 0.867687i
\(11\) −2.40290 + 2.40290i −0.724501 + 0.724501i −0.969519 0.245017i \(-0.921206\pi\)
0.245017 + 0.969519i \(0.421206\pi\)
\(12\) 0.707107 0.707107i 0.204124 0.204124i
\(13\) 1.76810 0.490384 0.245192 0.969475i \(-0.421149\pi\)
0.245192 + 0.969475i \(0.421149\pi\)
\(14\) 1.32076 + 2.29251i 0.352988 + 0.612698i
\(15\) 2.74387 + 2.74387i 0.708463 + 0.708463i
\(16\) −1.00000 −0.250000
\(17\) −2.16662 2.16662i −0.525483 0.525483i 0.393739 0.919222i \(-0.371181\pi\)
−0.919222 + 0.393739i \(0.871181\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) 1.23644 + 1.23644i 0.283660 + 0.283660i 0.834567 0.550907i \(-0.185718\pi\)
−0.550907 + 0.834567i \(0.685718\pi\)
\(20\) 3.88041i 0.867687i
\(21\) −2.29251 + 1.32076i −0.500266 + 0.288214i
\(22\) 3.39821i 0.724501i
\(23\) 7.16005 1.49297 0.746487 0.665400i \(-0.231739\pi\)
0.746487 + 0.665400i \(0.231739\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 10.0576 2.01152
\(26\) 1.25024 1.25024i 0.245192 0.245192i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 2.55497 + 0.687128i 0.482843 + 0.129855i
\(29\) 3.09777 + 4.40498i 0.575241 + 0.817984i
\(30\) 3.88041 0.708463
\(31\) −0.785278 0.785278i −0.141040 0.141040i 0.633061 0.774102i \(-0.281798\pi\)
−0.774102 + 0.633061i \(0.781798\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −3.39821 −0.591553
\(34\) −3.06407 −0.525483
\(35\) −2.66634 + 9.91432i −0.450694 + 1.67583i
\(36\) 1.00000 0.166667
\(37\) −6.21199 6.21199i −1.02124 1.02124i −0.999769 0.0214747i \(-0.993164\pi\)
−0.0214747 0.999769i \(-0.506836\pi\)
\(38\) 1.74860 0.283660
\(39\) 1.25024 + 1.25024i 0.200198 + 0.200198i
\(40\) −2.74387 2.74387i −0.433843 0.433843i
\(41\) 0.510951 0.510951i 0.0797972 0.0797972i −0.666082 0.745879i \(-0.732030\pi\)
0.745879 + 0.666082i \(0.232030\pi\)
\(42\) −0.687128 + 2.55497i −0.106026 + 0.394240i
\(43\) −1.06007 + 1.06007i −0.161659 + 0.161659i −0.783301 0.621642i \(-0.786466\pi\)
0.621642 + 0.783301i \(0.286466\pi\)
\(44\) 2.40290 + 2.40290i 0.362251 + 0.362251i
\(45\) 3.88041i 0.578458i
\(46\) 5.06292 5.06292i 0.746487 0.746487i
\(47\) −1.53254 + 1.53254i −0.223543 + 0.223543i −0.809989 0.586445i \(-0.800527\pi\)
0.586445 + 0.809989i \(0.300527\pi\)
\(48\) −0.707107 0.707107i −0.102062 0.102062i
\(49\) −6.05571 3.51118i −0.865101 0.501597i
\(50\) 7.11180 7.11180i 1.00576 1.00576i
\(51\) 3.06407i 0.429055i
\(52\) 1.76810i 0.245192i
\(53\) −4.74736 −0.652100 −0.326050 0.945353i \(-0.605718\pi\)
−0.326050 + 0.945353i \(0.605718\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −9.32424 + 9.32424i −1.25728 + 1.25728i
\(56\) 2.29251 1.32076i 0.306349 0.176494i
\(57\) 1.74860i 0.231607i
\(58\) 5.30524 + 0.924337i 0.696613 + 0.121371i
\(59\) 9.85641i 1.28320i −0.767041 0.641598i \(-0.778272\pi\)
0.767041 0.641598i \(-0.221728\pi\)
\(60\) 2.74387 2.74387i 0.354232 0.354232i
\(61\) −3.88401 3.88401i −0.497297 0.497297i 0.413299 0.910596i \(-0.364377\pi\)
−0.910596 + 0.413299i \(0.864377\pi\)
\(62\) −1.11055 −0.141040
\(63\) −2.55497 0.687128i −0.321896 0.0865700i
\(64\) 1.00000i 0.125000i
\(65\) 6.86097 0.850999
\(66\) −2.40290 + 2.40290i −0.295776 + 0.295776i
\(67\) 1.35982i 0.166128i 0.996544 + 0.0830640i \(0.0264706\pi\)
−0.996544 + 0.0830640i \(0.973529\pi\)
\(68\) −2.16662 + 2.16662i −0.262742 + 0.262742i
\(69\) 5.06292 + 5.06292i 0.609504 + 0.609504i
\(70\) 5.12510 + 8.89587i 0.612566 + 1.06326i
\(71\) 11.6097i 1.37782i 0.724848 + 0.688909i \(0.241910\pi\)
−0.724848 + 0.688909i \(0.758090\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) 11.0505 11.0505i 1.29336 1.29336i 0.360666 0.932695i \(-0.382550\pi\)
0.932695 0.360666i \(-0.117450\pi\)
\(74\) −8.78507 −1.02124
\(75\) 7.11180 + 7.11180i 0.821199 + 0.821199i
\(76\) 1.23644 1.23644i 0.141830 0.141830i
\(77\) −4.48823 7.79042i −0.511481 0.887801i
\(78\) 1.76810 0.200198
\(79\) 7.92623 7.92623i 0.891770 0.891770i −0.102920 0.994690i \(-0.532818\pi\)
0.994690 + 0.102920i \(0.0328184\pi\)
\(80\) −3.88041 −0.433843
\(81\) −1.00000 −0.111111
\(82\) 0.722594i 0.0797972i
\(83\) 4.45629i 0.489141i 0.969631 + 0.244571i \(0.0786470\pi\)
−0.969631 + 0.244571i \(0.921353\pi\)
\(84\) 1.32076 + 2.29251i 0.144107 + 0.250133i
\(85\) −8.40739 8.40739i −0.911910 0.911910i
\(86\) 1.49917i 0.161659i
\(87\) −0.924337 + 5.30524i −0.0990994 + 0.568782i
\(88\) 3.39821 0.362251
\(89\) −5.59795 5.59795i −0.593382 0.593382i 0.345161 0.938543i \(-0.387824\pi\)
−0.938543 + 0.345161i \(0.887824\pi\)
\(90\) 2.74387 + 2.74387i 0.289229 + 0.289229i
\(91\) −1.21491 + 4.51745i −0.127358 + 0.473557i
\(92\) 7.16005i 0.746487i
\(93\) 1.11055i 0.115159i
\(94\) 2.16733i 0.223543i
\(95\) 4.79791 + 4.79791i 0.492256 + 0.492256i
\(96\) −1.00000 −0.102062
\(97\) 5.97411 5.97411i 0.606579 0.606579i −0.335472 0.942050i \(-0.608896\pi\)
0.942050 + 0.335472i \(0.108896\pi\)
\(98\) −6.76481 + 1.79926i −0.683349 + 0.181752i
\(99\) −2.40290 2.40290i −0.241500 0.241500i
\(100\) 10.0576i 1.00576i
\(101\) −7.21936 7.21936i −0.718354 0.718354i 0.249914 0.968268i \(-0.419598\pi\)
−0.968268 + 0.249914i \(0.919598\pi\)
\(102\) −2.16662 2.16662i −0.214528 0.214528i
\(103\) 0.782210i 0.0770734i 0.999257 + 0.0385367i \(0.0122697\pi\)
−0.999257 + 0.0385367i \(0.987730\pi\)
\(104\) −1.25024 1.25024i −0.122596 0.122596i
\(105\) −8.89587 + 5.12510i −0.868148 + 0.500158i
\(106\) −3.35689 + 3.35689i −0.326050 + 0.326050i
\(107\) −11.5937 −1.12081 −0.560404 0.828220i \(-0.689354\pi\)
−0.560404 + 0.828220i \(0.689354\pi\)
\(108\) 0.707107 + 0.707107i 0.0680414 + 0.0680414i
\(109\) 14.2977i 1.36947i 0.728793 + 0.684734i \(0.240082\pi\)
−0.728793 + 0.684734i \(0.759918\pi\)
\(110\) 13.1865i 1.25728i
\(111\) 8.78507i 0.833842i
\(112\) 0.687128 2.55497i 0.0649275 0.241422i
\(113\) −6.59090 6.59090i −0.620019 0.620019i 0.325517 0.945536i \(-0.394462\pi\)
−0.945536 + 0.325517i \(0.894462\pi\)
\(114\) 1.23644 + 1.23644i 0.115804 + 0.115804i
\(115\) 27.7840 2.59087
\(116\) 4.40498 3.09777i 0.408992 0.287621i
\(117\) 1.76810i 0.163461i
\(118\) −6.96953 6.96953i −0.641598 0.641598i
\(119\) 7.02440 4.04690i 0.643925 0.370979i
\(120\) 3.88041i 0.354232i
\(121\) 0.547843i 0.0498039i
\(122\) −5.49282 −0.497297
\(123\) 0.722594 0.0651541
\(124\) −0.785278 + 0.785278i −0.0705201 + 0.0705201i
\(125\) 19.6256 1.75536
\(126\) −2.29251 + 1.32076i −0.204233 + 0.117663i
\(127\) 0.338185 0.338185i 0.0300090 0.0300090i −0.691943 0.721952i \(-0.743245\pi\)
0.721952 + 0.691943i \(0.243245\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −1.49917 −0.131994
\(130\) 4.85144 4.85144i 0.425500 0.425500i
\(131\) 14.5792 14.5792i 1.27379 1.27379i 0.329705 0.944084i \(-0.393051\pi\)
0.944084 0.329705i \(-0.106949\pi\)
\(132\) 3.39821i 0.295776i
\(133\) −4.00867 + 2.30948i −0.347596 + 0.200257i
\(134\) 0.961535 + 0.961535i 0.0830640 + 0.0830640i
\(135\) −2.74387 + 2.74387i −0.236154 + 0.236154i
\(136\) 3.06407i 0.262742i
\(137\) 8.26353 8.26353i 0.706001 0.706001i −0.259691 0.965692i \(-0.583621\pi\)
0.965692 + 0.259691i \(0.0836206\pi\)
\(138\) 7.16005 0.609504
\(139\) 17.5372i 1.48749i 0.668466 + 0.743743i \(0.266951\pi\)
−0.668466 + 0.743743i \(0.733049\pi\)
\(140\) 9.91432 + 2.66634i 0.837913 + 0.225347i
\(141\) −2.16733 −0.182522
\(142\) 8.20930 + 8.20930i 0.688909 + 0.688909i
\(143\) −4.24858 + 4.24858i −0.355284 + 0.355284i
\(144\) 1.00000i 0.0833333i
\(145\) 12.0206 + 17.0931i 0.998258 + 1.41951i
\(146\) 15.6277i 1.29336i
\(147\) −1.79926 6.76481i −0.148400 0.557952i
\(148\) −6.21199 + 6.21199i −0.510622 + 0.510622i
\(149\) 18.4592i 1.51224i −0.654435 0.756118i \(-0.727093\pi\)
0.654435 0.756118i \(-0.272907\pi\)
\(150\) 10.0576 0.821199
\(151\) 15.7405i 1.28094i 0.767982 + 0.640471i \(0.221261\pi\)
−0.767982 + 0.640471i \(0.778739\pi\)
\(152\) 1.74860i 0.141830i
\(153\) 2.16662 2.16662i 0.175161 0.175161i
\(154\) −8.68232 2.33501i −0.699641 0.188160i
\(155\) −3.04720 3.04720i −0.244757 0.244757i
\(156\) 1.25024 1.25024i 0.100099 0.100099i
\(157\) −1.45145 + 1.45145i −0.115838 + 0.115838i −0.762650 0.646812i \(-0.776102\pi\)
0.646812 + 0.762650i \(0.276102\pi\)
\(158\) 11.2094i 0.891770i
\(159\) −3.35689 3.35689i −0.266219 0.266219i
\(160\) −2.74387 + 2.74387i −0.216922 + 0.216922i
\(161\) −4.91987 + 18.2937i −0.387740 + 1.44175i
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) −4.55608 4.55608i −0.356859 0.356859i 0.505795 0.862654i \(-0.331199\pi\)
−0.862654 + 0.505795i \(0.831199\pi\)
\(164\) −0.510951 0.510951i −0.0398986 0.0398986i
\(165\) −13.1865 −1.02656
\(166\) 3.15107 + 3.15107i 0.244571 + 0.244571i
\(167\) −18.2313 −1.41078 −0.705392 0.708817i \(-0.749229\pi\)
−0.705392 + 0.708817i \(0.749229\pi\)
\(168\) 2.55497 + 0.687128i 0.197120 + 0.0530131i
\(169\) −9.87381 −0.759524
\(170\) −11.8898 −0.911910
\(171\) −1.23644 + 1.23644i −0.0945533 + 0.0945533i
\(172\) 1.06007 + 1.06007i 0.0808296 + 0.0808296i
\(173\) 5.05323 0.384190 0.192095 0.981376i \(-0.438472\pi\)
0.192095 + 0.981376i \(0.438472\pi\)
\(174\) 3.09777 + 4.40498i 0.234841 + 0.333941i
\(175\) −6.91086 + 25.6968i −0.522412 + 1.94250i
\(176\) 2.40290 2.40290i 0.181125 0.181125i
\(177\) 6.96953 6.96953i 0.523862 0.523862i
\(178\) −7.91670 −0.593382
\(179\) 0.891530i 0.0666361i −0.999445 0.0333181i \(-0.989393\pi\)
0.999445 0.0333181i \(-0.0106074\pi\)
\(180\) 3.88041 0.289229
\(181\) 6.24425i 0.464131i 0.972700 + 0.232066i \(0.0745484\pi\)
−0.972700 + 0.232066i \(0.925452\pi\)
\(182\) 2.33524 + 4.05339i 0.173100 + 0.300457i
\(183\) 5.49282i 0.406041i
\(184\) −5.06292 5.06292i −0.373244 0.373244i
\(185\) −24.1051 24.1051i −1.77224 1.77224i
\(186\) −0.785278 0.785278i −0.0575794 0.0575794i
\(187\) 10.4124 0.761427
\(188\) 1.53254 + 1.53254i 0.111772 + 0.111772i
\(189\) −1.32076 2.29251i −0.0960713 0.166755i
\(190\) 6.78527 0.492256
\(191\) −10.9753 + 10.9753i −0.794144 + 0.794144i −0.982165 0.188021i \(-0.939793\pi\)
0.188021 + 0.982165i \(0.439793\pi\)
\(192\) −0.707107 + 0.707107i −0.0510310 + 0.0510310i
\(193\) 6.10050 6.10050i 0.439124 0.439124i −0.452593 0.891717i \(-0.649501\pi\)
0.891717 + 0.452593i \(0.149501\pi\)
\(194\) 8.44867i 0.606579i
\(195\) 4.85144 + 4.85144i 0.347419 + 0.347419i
\(196\) −3.51118 + 6.05571i −0.250798 + 0.432551i
\(197\) −20.1298 −1.43419 −0.717095 0.696976i \(-0.754529\pi\)
−0.717095 + 0.696976i \(0.754529\pi\)
\(198\) −3.39821 −0.241500
\(199\) 25.5990i 1.81466i −0.420415 0.907332i \(-0.638115\pi\)
0.420415 0.907332i \(-0.361885\pi\)
\(200\) −7.11180 7.11180i −0.502880 0.502880i
\(201\) −0.961535 + 0.961535i −0.0678215 + 0.0678215i
\(202\) −10.2097 −0.718354
\(203\) −13.3831 + 4.88791i −0.939312 + 0.343064i
\(204\) −3.06407 −0.214528
\(205\) 1.98270 1.98270i 0.138478 0.138478i
\(206\) 0.553106 + 0.553106i 0.0385367 + 0.0385367i
\(207\) 7.16005i 0.497658i
\(208\) −1.76810 −0.122596
\(209\) −5.94210 −0.411024
\(210\) −2.66634 + 9.91432i −0.183995 + 0.684153i
\(211\) 1.07647 + 1.07647i 0.0741069 + 0.0741069i 0.743189 0.669082i \(-0.233312\pi\)
−0.669082 + 0.743189i \(0.733312\pi\)
\(212\) 4.74736i 0.326050i
\(213\) −8.20930 + 8.20930i −0.562492 + 0.562492i
\(214\) −8.19800 + 8.19800i −0.560404 + 0.560404i
\(215\) −4.11351 + 4.11351i −0.280539 + 0.280539i
\(216\) 1.00000 0.0680414
\(217\) 2.54595 1.46677i 0.172830 0.0995710i
\(218\) 10.1100 + 10.1100i 0.684734 + 0.684734i
\(219\) 15.6277 1.05602
\(220\) 9.32424 + 9.32424i 0.628640 + 0.628640i
\(221\) −3.83082 3.83082i −0.257689 0.257689i
\(222\) −6.21199 6.21199i −0.416921 0.416921i
\(223\) 10.9392i 0.732540i −0.930509 0.366270i \(-0.880635\pi\)
0.930509 0.366270i \(-0.119365\pi\)
\(224\) −1.32076 2.29251i −0.0882471 0.153175i
\(225\) 10.0576i 0.670506i
\(226\) −9.32093 −0.620019
\(227\) 17.7624i 1.17893i −0.807794 0.589465i \(-0.799339\pi\)
0.807794 0.589465i \(-0.200661\pi\)
\(228\) 1.74860 0.115804
\(229\) −3.14767 + 3.14767i −0.208004 + 0.208004i −0.803419 0.595414i \(-0.796988\pi\)
0.595414 + 0.803419i \(0.296988\pi\)
\(230\) 19.6462 19.6462i 1.29543 1.29543i
\(231\) 2.33501 8.68232i 0.153632 0.571255i
\(232\) 0.924337 5.30524i 0.0606857 0.348306i
\(233\) −19.9854 −1.30929 −0.654643 0.755938i \(-0.727181\pi\)
−0.654643 + 0.755938i \(0.727181\pi\)
\(234\) 1.25024 + 1.25024i 0.0817307 + 0.0817307i
\(235\) −5.94687 + 5.94687i −0.387931 + 0.387931i
\(236\) −9.85641 −0.641598
\(237\) 11.2094 0.728127
\(238\) 2.10541 7.82859i 0.136473 0.507452i
\(239\) 11.0084 0.712073 0.356036 0.934472i \(-0.384128\pi\)
0.356036 + 0.934472i \(0.384128\pi\)
\(240\) −2.74387 2.74387i −0.177116 0.177116i
\(241\) 20.2704 1.30573 0.652866 0.757473i \(-0.273566\pi\)
0.652866 + 0.757473i \(0.273566\pi\)
\(242\) −0.387383 0.387383i −0.0249019 0.0249019i
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) −3.88401 + 3.88401i −0.248648 + 0.248648i
\(245\) −23.4987 13.6248i −1.50127 0.870458i
\(246\) 0.510951 0.510951i 0.0325771 0.0325771i
\(247\) 2.18616 + 2.18616i 0.139102 + 0.139102i
\(248\) 1.11055i 0.0705201i
\(249\) −3.15107 + 3.15107i −0.199691 + 0.199691i
\(250\) 13.8774 13.8774i 0.877682 0.877682i
\(251\) −21.1985 21.1985i −1.33804 1.33804i −0.897958 0.440081i \(-0.854950\pi\)
−0.440081 0.897958i \(-0.645050\pi\)
\(252\) −0.687128 + 2.55497i −0.0432850 + 0.160948i
\(253\) −17.2049 + 17.2049i −1.08166 + 1.08166i
\(254\) 0.478265i 0.0300090i
\(255\) 11.8898i 0.744571i
\(256\) 1.00000 0.0625000
\(257\) 10.3926i 0.648275i 0.946010 + 0.324137i \(0.105074\pi\)
−0.946010 + 0.324137i \(0.894926\pi\)
\(258\) −1.06007 + 1.06007i −0.0659971 + 0.0659971i
\(259\) 20.1398 11.6030i 1.25143 0.720975i
\(260\) 6.86097i 0.425500i
\(261\) −4.40498 + 3.09777i −0.272661 + 0.191747i
\(262\) 20.6181i 1.27379i
\(263\) −9.73225 + 9.73225i −0.600116 + 0.600116i −0.940343 0.340227i \(-0.889496\pi\)
0.340227 + 0.940343i \(0.389496\pi\)
\(264\) 2.40290 + 2.40290i 0.147888 + 0.147888i
\(265\) −18.4217 −1.13164
\(266\) −1.20151 + 4.46761i −0.0736693 + 0.273926i
\(267\) 7.91670i 0.484494i
\(268\) 1.35982 0.0830640
\(269\) 8.63324 8.63324i 0.526378 0.526378i −0.393112 0.919490i \(-0.628602\pi\)
0.919490 + 0.393112i \(0.128602\pi\)
\(270\) 3.88041i 0.236154i
\(271\) −18.4083 + 18.4083i −1.11823 + 1.11823i −0.126223 + 0.992002i \(0.540286\pi\)
−0.992002 + 0.126223i \(0.959714\pi\)
\(272\) 2.16662 + 2.16662i 0.131371 + 0.131371i
\(273\) −4.05339 + 2.33524i −0.245322 + 0.141335i
\(274\) 11.6864i 0.706001i
\(275\) −24.1674 + 24.1674i −1.45735 + 1.45735i
\(276\) 5.06292 5.06292i 0.304752 0.304752i
\(277\) 31.0879 1.86789 0.933944 0.357418i \(-0.116343\pi\)
0.933944 + 0.357418i \(0.116343\pi\)
\(278\) 12.4007 + 12.4007i 0.743743 + 0.743743i
\(279\) 0.785278 0.785278i 0.0470134 0.0470134i
\(280\) 8.89587 5.12510i 0.531630 0.306283i
\(281\) −23.9949 −1.43142 −0.715709 0.698398i \(-0.753896\pi\)
−0.715709 + 0.698398i \(0.753896\pi\)
\(282\) −1.53254 + 1.53254i −0.0912612 + 0.0912612i
\(283\) −9.79920 −0.582502 −0.291251 0.956647i \(-0.594071\pi\)
−0.291251 + 0.956647i \(0.594071\pi\)
\(284\) 11.6097 0.688909
\(285\) 6.78527i 0.401925i
\(286\) 6.00839i 0.355284i
\(287\) 0.954374 + 1.65655i 0.0563349 + 0.0977832i
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 7.61149i 0.447735i
\(290\) 20.5865 + 3.58681i 1.20888 + 0.210625i
\(291\) 8.44867 0.495270
\(292\) −11.0505 11.0505i −0.646680 0.646680i
\(293\) 10.0604 + 10.0604i 0.587735 + 0.587735i 0.937017 0.349283i \(-0.113575\pi\)
−0.349283 + 0.937017i \(0.613575\pi\)
\(294\) −6.05571 3.51118i −0.353176 0.204776i
\(295\) 38.2469i 2.22682i
\(296\) 8.78507i 0.510622i
\(297\) 3.39821i 0.197184i
\(298\) −13.0526 13.0526i −0.756118 0.756118i
\(299\) 12.6597 0.732131
\(300\) 7.11180 7.11180i 0.410600 0.410600i
\(301\) −1.98004 3.43685i −0.114128 0.198097i
\(302\) 11.1302 + 11.1302i 0.640471 + 0.640471i
\(303\) 10.2097i 0.586533i
\(304\) −1.23644 1.23644i −0.0709149 0.0709149i
\(305\) −15.0716 15.0716i −0.862996 0.862996i
\(306\) 3.06407i 0.175161i
\(307\) 2.73053 + 2.73053i 0.155839 + 0.155839i 0.780720 0.624881i \(-0.214852\pi\)
−0.624881 + 0.780720i \(0.714852\pi\)
\(308\) −7.79042 + 4.48823i −0.443901 + 0.255740i
\(309\) −0.553106 + 0.553106i −0.0314651 + 0.0314651i
\(310\) −4.30940 −0.244757
\(311\) 11.4930 + 11.4930i 0.651709 + 0.651709i 0.953404 0.301695i \(-0.0975525\pi\)
−0.301695 + 0.953404i \(0.597553\pi\)
\(312\) 1.76810i 0.100099i
\(313\) 21.8401i 1.23448i 0.786777 + 0.617238i \(0.211748\pi\)
−0.786777 + 0.617238i \(0.788252\pi\)
\(314\) 2.05266i 0.115838i
\(315\) −9.91432 2.66634i −0.558609 0.150231i
\(316\) −7.92623 7.92623i −0.445885 0.445885i
\(317\) 11.4335 + 11.4335i 0.642171 + 0.642171i 0.951089 0.308918i \(-0.0999668\pi\)
−0.308918 + 0.951089i \(0.599967\pi\)
\(318\) −4.74736 −0.266219
\(319\) −18.0283 3.14109i −1.00939 0.175867i
\(320\) 3.88041i 0.216922i
\(321\) −8.19800 8.19800i −0.457568 0.457568i
\(322\) 9.45672 + 16.4145i 0.527002 + 0.914743i
\(323\) 5.35782i 0.298117i
\(324\) 1.00000i 0.0555556i
\(325\) 17.7829 0.986417
\(326\) −6.44326 −0.356859
\(327\) −10.1100 + 10.1100i −0.559083 + 0.559083i
\(328\) −0.722594 −0.0398986
\(329\) −2.86253 4.96862i −0.157816 0.273929i
\(330\) −9.32424 + 9.32424i −0.513282 + 0.513282i
\(331\) −4.83645 4.83645i −0.265836 0.265836i 0.561584 0.827420i \(-0.310192\pi\)
−0.827420 + 0.561584i \(0.810192\pi\)
\(332\) 4.45629 0.244571
\(333\) 6.21199 6.21199i 0.340415 0.340415i
\(334\) −12.8915 + 12.8915i −0.705392 + 0.705392i
\(335\) 5.27665i 0.288294i
\(336\) 2.29251 1.32076i 0.125067 0.0720534i
\(337\) 22.2007 + 22.2007i 1.20935 + 1.20935i 0.971238 + 0.238109i \(0.0765277\pi\)
0.238109 + 0.971238i \(0.423472\pi\)
\(338\) −6.98184 + 6.98184i −0.379762 + 0.379762i
\(339\) 9.32093i 0.506244i
\(340\) −8.40739 + 8.40739i −0.455955 + 0.455955i
\(341\) 3.77389 0.204367
\(342\) 1.74860i 0.0945533i
\(343\) 13.1320 13.0595i 0.709061 0.705147i
\(344\) 1.49917 0.0808296
\(345\) 19.6462 + 19.6462i 1.05772 + 1.05772i
\(346\) 3.57317 3.57317i 0.192095 0.192095i
\(347\) 29.9840i 1.60962i 0.593531 + 0.804811i \(0.297734\pi\)
−0.593531 + 0.804811i \(0.702266\pi\)
\(348\) 5.30524 + 0.924337i 0.284391 + 0.0495497i
\(349\) 23.4820i 1.25696i 0.777824 + 0.628482i \(0.216323\pi\)
−0.777824 + 0.628482i \(0.783677\pi\)
\(350\) 13.2837 + 23.0571i 0.710043 + 1.23245i
\(351\) −1.25024 + 1.25024i −0.0667328 + 0.0667328i
\(352\) 3.39821i 0.181125i
\(353\) −17.7191 −0.943090 −0.471545 0.881842i \(-0.656304\pi\)
−0.471545 + 0.881842i \(0.656304\pi\)
\(354\) 9.85641i 0.523862i
\(355\) 45.0504i 2.39103i
\(356\) −5.59795 + 5.59795i −0.296691 + 0.296691i
\(357\) 7.82859 + 2.10541i 0.414333 + 0.111430i
\(358\) −0.630407 0.630407i −0.0333181 0.0333181i
\(359\) −21.1072 + 21.1072i −1.11400 + 1.11400i −0.121391 + 0.992605i \(0.538736\pi\)
−0.992605 + 0.121391i \(0.961264\pi\)
\(360\) 2.74387 2.74387i 0.144614 0.144614i
\(361\) 15.9424i 0.839074i
\(362\) 4.41535 + 4.41535i 0.232066 + 0.232066i
\(363\) 0.387383 0.387383i 0.0203323 0.0203323i
\(364\) 4.51745 + 1.21491i 0.236779 + 0.0636788i
\(365\) 42.8804 42.8804i 2.24446 2.24446i
\(366\) −3.88401 3.88401i −0.203021 0.203021i
\(367\) 1.25748 + 1.25748i 0.0656401 + 0.0656401i 0.739165 0.673525i \(-0.235220\pi\)
−0.673525 + 0.739165i \(0.735220\pi\)
\(368\) −7.16005 −0.373244
\(369\) 0.510951 + 0.510951i 0.0265991 + 0.0265991i
\(370\) −34.0897 −1.77224
\(371\) 3.26204 12.1293i 0.169357 0.629724i
\(372\) −1.11055 −0.0575794
\(373\) 23.0732 1.19468 0.597342 0.801987i \(-0.296224\pi\)
0.597342 + 0.801987i \(0.296224\pi\)
\(374\) 7.36264 7.36264i 0.380713 0.380713i
\(375\) 13.8774 + 13.8774i 0.716624 + 0.716624i
\(376\) 2.16733 0.111772
\(377\) 5.47718 + 7.78846i 0.282089 + 0.401126i
\(378\) −2.55497 0.687128i −0.131413 0.0353420i
\(379\) 7.79108 7.79108i 0.400201 0.400201i −0.478103 0.878304i \(-0.658675\pi\)
0.878304 + 0.478103i \(0.158675\pi\)
\(380\) 4.79791 4.79791i 0.246128 0.246128i
\(381\) 0.478265 0.0245023
\(382\) 15.5214i 0.794144i
\(383\) −12.5525 −0.641405 −0.320702 0.947180i \(-0.603919\pi\)
−0.320702 + 0.947180i \(0.603919\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −17.4162 30.2301i −0.887610 1.54067i
\(386\) 8.62741i 0.439124i
\(387\) −1.06007 1.06007i −0.0538864 0.0538864i
\(388\) −5.97411 5.97411i −0.303289 0.303289i
\(389\) 10.5528 + 10.5528i 0.535048 + 0.535048i 0.922070 0.387022i \(-0.126496\pi\)
−0.387022 + 0.922070i \(0.626496\pi\)
\(390\) 6.86097 0.347419
\(391\) −15.5131 15.5131i −0.784533 0.784533i
\(392\) 1.79926 + 6.76481i 0.0908761 + 0.341675i
\(393\) 20.6181 1.04004
\(394\) −14.2339 + 14.2339i −0.717095 + 0.717095i
\(395\) 30.7570 30.7570i 1.54755 1.54755i
\(396\) −2.40290 + 2.40290i −0.120750 + 0.120750i
\(397\) 3.99122i 0.200314i 0.994972 + 0.100157i \(0.0319344\pi\)
−0.994972 + 0.100157i \(0.968066\pi\)
\(398\) −18.1012 18.1012i −0.907332 0.907332i
\(399\) −4.46761 1.20151i −0.223660 0.0601507i
\(400\) −10.0576 −0.502880
\(401\) 4.52848 0.226142 0.113071 0.993587i \(-0.463931\pi\)
0.113071 + 0.993587i \(0.463931\pi\)
\(402\) 1.35982i 0.0678215i
\(403\) −1.38845 1.38845i −0.0691638 0.0691638i
\(404\) −7.21936 + 7.21936i −0.359177 + 0.359177i
\(405\) −3.88041 −0.192819
\(406\) −6.00703 + 12.9196i −0.298124 + 0.641188i
\(407\) 29.8535 1.47979
\(408\) −2.16662 + 2.16662i −0.107264 + 0.107264i
\(409\) 9.49565 + 9.49565i 0.469530 + 0.469530i 0.901762 0.432232i \(-0.142274\pi\)
−0.432232 + 0.901762i \(0.642274\pi\)
\(410\) 2.80396i 0.138478i
\(411\) 11.6864 0.576448
\(412\) 0.782210 0.0385367
\(413\) 25.1828 + 6.77261i 1.23916 + 0.333259i
\(414\) 5.06292 + 5.06292i 0.248829 + 0.248829i
\(415\) 17.2922i 0.848843i
\(416\) −1.25024 + 1.25024i −0.0612980 + 0.0612980i
\(417\) −12.4007 + 12.4007i −0.607264 + 0.607264i
\(418\) −4.20170 + 4.20170i −0.205512 + 0.205512i
\(419\) 17.6136 0.860480 0.430240 0.902715i \(-0.358429\pi\)
0.430240 + 0.902715i \(0.358429\pi\)
\(420\) 5.12510 + 8.89587i 0.250079 + 0.434074i
\(421\) −22.3294 22.3294i −1.08827 1.08827i −0.995707 0.0925634i \(-0.970494\pi\)
−0.0925634 0.995707i \(-0.529506\pi\)
\(422\) 1.52235 0.0741069
\(423\) −1.53254 1.53254i −0.0745144 0.0745144i
\(424\) 3.35689 + 3.35689i 0.163025 + 0.163025i
\(425\) −21.7910 21.7910i −1.05702 1.05702i
\(426\) 11.6097i 0.562492i
\(427\) 12.5923 7.25471i 0.609386 0.351080i
\(428\) 11.5937i 0.560404i
\(429\) −6.00839 −0.290088
\(430\) 5.81738i 0.280539i
\(431\) −40.2666 −1.93958 −0.969788 0.243950i \(-0.921557\pi\)
−0.969788 + 0.243950i \(0.921557\pi\)
\(432\) 0.707107 0.707107i 0.0340207 0.0340207i
\(433\) −11.3274 + 11.3274i −0.544360 + 0.544360i −0.924804 0.380444i \(-0.875771\pi\)
0.380444 + 0.924804i \(0.375771\pi\)
\(434\) 0.763091 2.83742i 0.0366295 0.136201i
\(435\) −3.58681 + 20.5865i −0.171974 + 0.987048i
\(436\) 14.2977 0.684734
\(437\) 8.85301 + 8.85301i 0.423497 + 0.423497i
\(438\) 11.0505 11.0505i 0.528012 0.528012i
\(439\) 16.5852 0.791570 0.395785 0.918343i \(-0.370473\pi\)
0.395785 + 0.918343i \(0.370473\pi\)
\(440\) 13.1865 0.628640
\(441\) 3.51118 6.05571i 0.167199 0.288367i
\(442\) −5.41759 −0.257689
\(443\) 6.90021 + 6.90021i 0.327839 + 0.327839i 0.851764 0.523925i \(-0.175533\pi\)
−0.523925 + 0.851764i \(0.675533\pi\)
\(444\) −8.78507 −0.416921
\(445\) −21.7224 21.7224i −1.02974 1.02974i
\(446\) −7.73515 7.73515i −0.366270 0.366270i
\(447\) 13.0526 13.0526i 0.617368 0.617368i
\(448\) −2.55497 0.687128i −0.120711 0.0324637i
\(449\) −7.35642 + 7.35642i −0.347171 + 0.347171i −0.859055 0.511884i \(-0.828948\pi\)
0.511884 + 0.859055i \(0.328948\pi\)
\(450\) 7.11180 + 7.11180i 0.335253 + 0.335253i
\(451\) 2.45553i 0.115626i
\(452\) −6.59090 + 6.59090i −0.310010 + 0.310010i
\(453\) −11.1302 + 11.1302i −0.522943 + 0.522943i
\(454\) −12.5599 12.5599i −0.589465 0.589465i
\(455\) −4.71437 + 17.5296i −0.221013 + 0.821798i
\(456\) 1.23644 1.23644i 0.0579018 0.0579018i
\(457\) 20.0788i 0.939248i 0.882866 + 0.469624i \(0.155611\pi\)
−0.882866 + 0.469624i \(0.844389\pi\)
\(458\) 4.45148i 0.208004i
\(459\) 3.06407 0.143018
\(460\) 27.7840i 1.29543i
\(461\) −7.14248 + 7.14248i −0.332658 + 0.332658i −0.853595 0.520937i \(-0.825583\pi\)
0.520937 + 0.853595i \(0.325583\pi\)
\(462\) −4.48823 7.79042i −0.208811 0.362443i
\(463\) 8.83408i 0.410554i 0.978704 + 0.205277i \(0.0658096\pi\)
−0.978704 + 0.205277i \(0.934190\pi\)
\(464\) −3.09777 4.40498i −0.143810 0.204496i
\(465\) 4.30940i 0.199843i
\(466\) −14.1318 + 14.1318i −0.654643 + 0.654643i
\(467\) −4.91709 4.91709i −0.227536 0.227536i 0.584127 0.811662i \(-0.301437\pi\)
−0.811662 + 0.584127i \(0.801437\pi\)
\(468\) 1.76810 0.0817307
\(469\) −3.47429 0.934368i −0.160428 0.0431451i
\(470\) 8.41014i 0.387931i
\(471\) −2.05266 −0.0945814
\(472\) −6.96953 + 6.96953i −0.320799 + 0.320799i
\(473\) 5.09448i 0.234245i
\(474\) 7.92623 7.92623i 0.364064 0.364064i
\(475\) 12.4357 + 12.4357i 0.570587 + 0.570587i
\(476\) −4.04690 7.02440i −0.185489 0.321963i
\(477\) 4.74736i 0.217367i
\(478\) 7.78410 7.78410i 0.356036 0.356036i
\(479\) 28.3303 28.3303i 1.29445 1.29445i 0.362438 0.932008i \(-0.381945\pi\)
0.932008 0.362438i \(-0.118055\pi\)
\(480\) −3.88041 −0.177116
\(481\) −10.9834 10.9834i −0.500802 0.500802i
\(482\) 14.3333 14.3333i 0.652866 0.652866i
\(483\) −16.4145 + 9.45672i −0.746884 + 0.430296i
\(484\) −0.547843 −0.0249019
\(485\) 23.1820 23.1820i 1.05264 1.05264i
\(486\) −1.00000 −0.0453609
\(487\) 20.9227 0.948098 0.474049 0.880498i \(-0.342792\pi\)
0.474049 + 0.880498i \(0.342792\pi\)
\(488\) 5.49282i 0.248648i
\(489\) 6.44326i 0.291374i
\(490\) −26.2503 + 6.98185i −1.18587 + 0.315408i
\(491\) 5.00624 + 5.00624i 0.225928 + 0.225928i 0.810989 0.585061i \(-0.198929\pi\)
−0.585061 + 0.810989i \(0.698929\pi\)
\(492\) 0.722594i 0.0325771i
\(493\) 2.83223 16.2556i 0.127557 0.732116i
\(494\) 3.09170 0.139102
\(495\) −9.32424 9.32424i −0.419093 0.419093i
\(496\) 0.785278 + 0.785278i 0.0352600 + 0.0352600i
\(497\) −29.6624 7.97735i −1.33054 0.357833i
\(498\) 4.45629i 0.199691i
\(499\) 23.0218i 1.03060i 0.857010 + 0.515300i \(0.172319\pi\)
−0.857010 + 0.515300i \(0.827681\pi\)
\(500\) 19.6256i 0.877682i
\(501\) −12.8915 12.8915i −0.575950 0.575950i
\(502\) −29.9792 −1.33804
\(503\) 8.96664 8.96664i 0.399803 0.399803i −0.478361 0.878163i \(-0.658769\pi\)
0.878163 + 0.478361i \(0.158769\pi\)
\(504\) 1.32076 + 2.29251i 0.0588314 + 0.102116i
\(505\) −28.0141 28.0141i −1.24661 1.24661i
\(506\) 24.3314i 1.08166i
\(507\) −6.98184 6.98184i −0.310074 0.310074i
\(508\) −0.338185 0.338185i −0.0150045 0.0150045i
\(509\) 20.3233i 0.900813i −0.892824 0.450407i \(-0.851279\pi\)
0.892824 0.450407i \(-0.148721\pi\)
\(510\) −8.40739 8.40739i −0.372286 0.372286i
\(511\) 20.6405 + 35.8267i 0.913083 + 1.58488i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −1.74860 −0.0772024
\(514\) 7.34870 + 7.34870i 0.324137 + 0.324137i
\(515\) 3.03530i 0.133751i
\(516\) 1.49917i 0.0659971i
\(517\) 7.36505i 0.323915i
\(518\) 6.03647 22.4456i 0.265227 0.986202i
\(519\) 3.57317 + 3.57317i 0.156845 + 0.156845i
\(520\) −4.85144 4.85144i −0.212750 0.212750i
\(521\) 11.3986 0.499382 0.249691 0.968326i \(-0.419671\pi\)
0.249691 + 0.968326i \(0.419671\pi\)
\(522\) −0.924337 + 5.30524i −0.0404571 + 0.232204i
\(523\) 22.2814i 0.974300i −0.873318 0.487150i \(-0.838037\pi\)
0.873318 0.487150i \(-0.161963\pi\)
\(524\) −14.5792 14.5792i −0.636894 0.636894i
\(525\) −23.0571 + 13.2837i −1.00629 + 0.579748i
\(526\) 13.7635i 0.600116i
\(527\) 3.40280i 0.148228i
\(528\) 3.39821 0.147888
\(529\) 28.2663 1.22897
\(530\) −13.0261 + 13.0261i −0.565818 + 0.565818i
\(531\) 9.85641 0.427732
\(532\) 2.30948 + 4.00867i 0.100129 + 0.173798i
\(533\) 0.903415 0.903415i 0.0391312 0.0391312i
\(534\) −5.59795 5.59795i −0.242247 0.242247i
\(535\) −44.9884 −1.94502
\(536\) 0.961535 0.961535i 0.0415320 0.0415320i
\(537\) 0.630407 0.630407i 0.0272041 0.0272041i
\(538\) 12.2092i 0.526378i
\(539\) 22.9883 6.11425i 0.990175 0.263359i
\(540\) 2.74387 + 2.74387i 0.118077 + 0.118077i
\(541\) −1.68034 + 1.68034i −0.0722434 + 0.0722434i −0.742305 0.670062i \(-0.766268\pi\)
0.670062 + 0.742305i \(0.266268\pi\)
\(542\) 26.0333i 1.11823i
\(543\) −4.41535 + 4.41535i −0.189481 + 0.189481i
\(544\) 3.06407 0.131371
\(545\) 55.4808i 2.37654i
\(546\) −1.21491 + 4.51745i −0.0519935 + 0.193329i
\(547\) 2.50454 0.107087 0.0535433 0.998566i \(-0.482948\pi\)
0.0535433 + 0.998566i \(0.482948\pi\)
\(548\) −8.26353 8.26353i −0.353001 0.353001i
\(549\) 3.88401 3.88401i 0.165766 0.165766i
\(550\) 34.1778i 1.45735i
\(551\) −1.61629 + 9.27673i −0.0688564 + 0.395202i
\(552\) 7.16005i 0.304752i
\(553\) 14.8049 + 25.6976i 0.629569 + 1.09277i
\(554\) 21.9824 21.9824i 0.933944 0.933944i
\(555\) 34.0897i 1.44703i
\(556\) 17.5372 0.743743
\(557\) 9.74487i 0.412904i −0.978457 0.206452i \(-0.933808\pi\)
0.978457 0.206452i \(-0.0661917\pi\)
\(558\) 1.11055i 0.0470134i
\(559\) −1.87432 + 1.87432i −0.0792751 + 0.0792751i
\(560\) 2.66634 9.91432i 0.112673 0.418957i
\(561\) 7.36264 + 7.36264i 0.310851 + 0.310851i
\(562\) −16.9670 + 16.9670i −0.715709 + 0.715709i
\(563\) −19.3437 + 19.3437i −0.815238 + 0.815238i −0.985414 0.170176i \(-0.945566\pi\)
0.170176 + 0.985414i \(0.445566\pi\)
\(564\) 2.16733i 0.0912612i
\(565\) −25.5754 25.5754i −1.07596 1.07596i
\(566\) −6.92908 + 6.92908i −0.291251 + 0.291251i
\(567\) 0.687128 2.55497i 0.0288567 0.107299i
\(568\) 8.20930 8.20930i 0.344455 0.344455i
\(569\) −15.2343 15.2343i −0.638656 0.638656i 0.311568 0.950224i \(-0.399146\pi\)
−0.950224 + 0.311568i \(0.899146\pi\)
\(570\) 4.79791 + 4.79791i 0.200962 + 0.200962i
\(571\) 17.0054 0.711653 0.355827 0.934552i \(-0.384199\pi\)
0.355827 + 0.934552i \(0.384199\pi\)
\(572\) 4.24858 + 4.24858i 0.177642 + 0.177642i
\(573\) −15.5214 −0.648416
\(574\) 1.84620 + 0.496515i 0.0770591 + 0.0207241i
\(575\) 72.0129 3.00315
\(576\) −1.00000 −0.0416667
\(577\) 21.7073 21.7073i 0.903686 0.903686i −0.0920667 0.995753i \(-0.529347\pi\)
0.995753 + 0.0920667i \(0.0293473\pi\)
\(578\) −5.38213 5.38213i −0.223867 0.223867i
\(579\) 8.62741 0.358543
\(580\) 17.0931 12.0206i 0.709754 0.499129i
\(581\) −11.3857 3.06204i −0.472357 0.127035i
\(582\) 5.97411 5.97411i 0.247635 0.247635i
\(583\) 11.4074 11.4074i 0.472447 0.472447i
\(584\) −15.6277 −0.646680
\(585\) 6.86097i 0.283666i
\(586\) 14.2276 0.587735
\(587\) 35.2646i 1.45553i −0.685828 0.727764i \(-0.740560\pi\)
0.685828 0.727764i \(-0.259440\pi\)
\(588\) −6.76481 + 1.79926i −0.278976 + 0.0742001i
\(589\) 1.94191i 0.0800148i
\(590\) −27.0447 27.0447i −1.11341 1.11341i
\(591\) −14.2339 14.2339i −0.585505 0.585505i
\(592\) 6.21199 + 6.21199i 0.255311 + 0.255311i
\(593\) 38.8278 1.59447 0.797234 0.603670i \(-0.206296\pi\)
0.797234 + 0.603670i \(0.206296\pi\)
\(594\) −2.40290 2.40290i −0.0985921 0.0985921i
\(595\) 27.2576 15.7037i 1.11745 0.643787i
\(596\) −18.4592 −0.756118
\(597\) 18.1012 18.1012i 0.740834 0.740834i
\(598\) 8.95177 8.95177i 0.366065 0.366065i
\(599\) 23.2214 23.2214i 0.948800 0.948800i −0.0499516 0.998752i \(-0.515907\pi\)
0.998752 + 0.0499516i \(0.0159067\pi\)
\(600\) 10.0576i 0.410600i
\(601\) −11.1708 11.1708i −0.455665 0.455665i 0.441564 0.897230i \(-0.354424\pi\)
−0.897230 + 0.441564i \(0.854424\pi\)
\(602\) −3.83032 1.03012i −0.156112 0.0419845i
\(603\) −1.35982 −0.0553760
\(604\) 15.7405 0.640471
\(605\) 2.12586i 0.0864283i
\(606\) −7.21936 7.21936i −0.293267 0.293267i
\(607\) −20.1281 + 20.1281i −0.816976 + 0.816976i −0.985669 0.168692i \(-0.946046\pi\)
0.168692 + 0.985669i \(0.446046\pi\)
\(608\) −1.74860 −0.0709149
\(609\) −12.9196 6.00703i −0.523528 0.243417i
\(610\) −21.3144 −0.862996
\(611\) −2.70968 + 2.70968i −0.109622 + 0.109622i
\(612\) −2.16662 2.16662i −0.0875806 0.0875806i
\(613\) 23.9316i 0.966590i −0.875458 0.483295i \(-0.839440\pi\)
0.875458 0.483295i \(-0.160560\pi\)
\(614\) 3.86155 0.155839
\(615\) 2.80396 0.113067
\(616\) −2.33501 + 8.68232i −0.0940801 + 0.349821i
\(617\) 17.8937 + 17.8937i 0.720374 + 0.720374i 0.968681 0.248307i \(-0.0798743\pi\)
−0.248307 + 0.968681i \(0.579874\pi\)
\(618\) 0.782210i 0.0314651i
\(619\) −27.0456 + 27.0456i −1.08705 + 1.08705i −0.0912240 + 0.995830i \(0.529078\pi\)
−0.995830 + 0.0912240i \(0.970922\pi\)
\(620\) −3.04720 + 3.04720i −0.122379 + 0.122379i
\(621\) −5.06292 + 5.06292i −0.203168 + 0.203168i
\(622\) 16.2536 0.651709
\(623\) 18.1491 10.4561i 0.727128 0.418914i
\(624\) −1.25024 1.25024i −0.0500496 0.0500496i
\(625\) 25.8673 1.03469
\(626\) 15.4433 + 15.4433i 0.617238 + 0.617238i
\(627\) −4.20170 4.20170i −0.167800 0.167800i
\(628\) 1.45145 + 1.45145i 0.0579191 + 0.0579191i
\(629\) 26.9181i 1.07329i
\(630\) −8.89587 + 5.12510i −0.354420 + 0.204189i
\(631\) 16.7392i 0.666379i 0.942860 + 0.333189i \(0.108125\pi\)
−0.942860 + 0.333189i \(0.891875\pi\)
\(632\) −11.2094 −0.445885
\(633\) 1.52235i 0.0605080i
\(634\) 16.1694 0.642171
\(635\) 1.31230 1.31230i 0.0520769 0.0520769i
\(636\) −3.35689 + 3.35689i −0.133109 + 0.133109i
\(637\) −10.7071 6.20813i −0.424232 0.245975i
\(638\) −14.9690 + 10.5269i −0.592630 + 0.416763i
\(639\) −11.6097 −0.459273
\(640\) 2.74387 + 2.74387i 0.108461 + 0.108461i
\(641\) 20.3165 20.3165i 0.802454 0.802454i −0.181025 0.983479i \(-0.557941\pi\)
0.983479 + 0.181025i \(0.0579413\pi\)
\(642\) −11.5937 −0.457568
\(643\) 36.0097 1.42008 0.710041 0.704160i \(-0.248676\pi\)
0.710041 + 0.704160i \(0.248676\pi\)
\(644\) 18.2937 + 4.91987i 0.720873 + 0.193870i
\(645\) −5.81738 −0.229059
\(646\) −3.78855 3.78855i −0.149058 0.149058i
\(647\) 18.3194 0.720211 0.360106 0.932912i \(-0.382741\pi\)
0.360106 + 0.932912i \(0.382741\pi\)
\(648\) 0.707107 + 0.707107i 0.0277778 + 0.0277778i
\(649\) 23.6840 + 23.6840i 0.929676 + 0.929676i
\(650\) 12.5744 12.5744i 0.493208 0.493208i
\(651\) 2.83742 + 0.763091i 0.111207 + 0.0299079i
\(652\) −4.55608 + 4.55608i −0.178430 + 0.178430i
\(653\) 0.221855 + 0.221855i 0.00868187 + 0.00868187i 0.711434 0.702753i \(-0.248046\pi\)
−0.702753 + 0.711434i \(0.748046\pi\)
\(654\) 14.2977i 0.559083i
\(655\) 56.5732 56.5732i 2.21050 2.21050i
\(656\) −0.510951 + 0.510951i −0.0199493 + 0.0199493i
\(657\) 11.0505 + 11.0505i 0.431120 + 0.431120i
\(658\) −5.53746 1.48923i −0.215873 0.0580564i
\(659\) 11.2380 11.2380i 0.437770 0.437770i −0.453491 0.891261i \(-0.649822\pi\)
0.891261 + 0.453491i \(0.149822\pi\)
\(660\) 13.1865i 0.513282i
\(661\) 35.6931i 1.38830i −0.719830 0.694151i \(-0.755780\pi\)
0.719830 0.694151i \(-0.244220\pi\)
\(662\) −6.83978 −0.265836
\(663\) 5.41759i 0.210402i
\(664\) 3.15107 3.15107i 0.122285 0.122285i
\(665\) −15.5553 + 8.96173i −0.603208 + 0.347521i
\(666\) 8.78507i 0.340415i
\(667\) 22.1802 + 31.5399i 0.858820 + 1.22123i
\(668\) 18.2313i 0.705392i
\(669\) 7.73515 7.73515i 0.299058 0.299058i
\(670\) 3.73115 + 3.73115i 0.144147 + 0.144147i
\(671\) 18.6658 0.720584
\(672\) 0.687128 2.55497i 0.0265065 0.0985600i
\(673\) 30.8589i 1.18952i 0.803902 + 0.594761i \(0.202753\pi\)
−0.803902 + 0.594761i \(0.797247\pi\)
\(674\) 31.3965 1.20935
\(675\) −7.11180 + 7.11180i −0.273733 + 0.273733i
\(676\) 9.87381i 0.379762i
\(677\) −32.9228 + 32.9228i −1.26533 + 1.26533i −0.316850 + 0.948476i \(0.602625\pi\)
−0.948476 + 0.316850i \(0.897375\pi\)
\(678\) −6.59090 6.59090i −0.253122 0.253122i
\(679\) 11.1587 + 19.3686i 0.428231 + 0.743300i
\(680\) 11.8898i 0.455955i
\(681\) 12.5599 12.5599i 0.481296 0.481296i
\(682\) 2.66854 2.66854i 0.102184 0.102184i
\(683\) −43.0568 −1.64752 −0.823761 0.566938i \(-0.808128\pi\)
−0.823761 + 0.566938i \(0.808128\pi\)
\(684\) 1.23644 + 1.23644i 0.0472766 + 0.0472766i
\(685\) 32.0659 32.0659i 1.22518 1.22518i
\(686\) 0.0512525 18.5202i 0.00195683 0.707104i
\(687\) −4.45148 −0.169835
\(688\) 1.06007 1.06007i 0.0404148 0.0404148i
\(689\) −8.39382 −0.319779
\(690\) 27.7840 1.05772
\(691\) 5.39638i 0.205288i 0.994718 + 0.102644i \(0.0327303\pi\)
−0.994718 + 0.102644i \(0.967270\pi\)
\(692\) 5.05323i 0.192095i
\(693\) 7.79042 4.48823i 0.295934 0.170494i
\(694\) 21.2019 + 21.2019i 0.804811 + 0.804811i
\(695\) 68.0516i 2.58134i
\(696\) 4.40498 3.09777i 0.166970 0.117421i
\(697\) −2.21408 −0.0838641
\(698\) 16.6043 + 16.6043i 0.628482 + 0.628482i
\(699\) −14.1318 14.1318i −0.534514 0.534514i
\(700\) 25.6968 + 6.91086i 0.971249 + 0.261206i
\(701\) 14.4183i 0.544571i 0.962217 + 0.272285i \(0.0877795\pi\)
−0.962217 + 0.272285i \(0.912221\pi\)
\(702\) 1.76810i 0.0667328i
\(703\) 15.3615i 0.579372i
\(704\) −2.40290 2.40290i −0.0905626 0.0905626i
\(705\) −8.41014 −0.316744
\(706\) −12.5293 + 12.5293i −0.471545 + 0.471545i
\(707\) 23.4059 13.4846i 0.880268 0.507141i
\(708\) −6.96953 6.96953i −0.261931 0.261931i
\(709\) 11.3698i 0.427000i −0.976943 0.213500i \(-0.931514\pi\)
0.976943 0.213500i \(-0.0684863\pi\)
\(710\) 31.8555 + 31.8555i 1.19551 + 1.19551i
\(711\) 7.92623 + 7.92623i 0.297257 + 0.297257i
\(712\) 7.91670i 0.296691i
\(713\) −5.62263 5.62263i −0.210569 0.210569i
\(714\) 7.02440 4.04690i 0.262881 0.151452i
\(715\) −16.4862 + 16.4862i −0.616550 + 0.616550i
\(716\) −0.891530 −0.0333181
\(717\) 7.78410 + 7.78410i 0.290702 + 0.290702i
\(718\) 29.8501i 1.11400i
\(719\) 44.8233i 1.67163i −0.549013 0.835814i \(-0.684996\pi\)
0.549013 0.835814i \(-0.315004\pi\)
\(720\) 3.88041i 0.144614i
\(721\) −1.99852 0.537478i −0.0744288 0.0200167i
\(722\) −11.2730 11.2730i −0.419537 0.419537i
\(723\) 14.3333 + 14.3333i 0.533063 + 0.533063i
\(724\) 6.24425 0.232066
\(725\) 31.1561 + 44.3035i 1.15711 + 1.64539i
\(726\) 0.547843i 0.0203323i
\(727\) 26.5082 + 26.5082i 0.983133 + 0.983133i 0.999860 0.0167272i \(-0.00532467\pi\)
−0.0167272 + 0.999860i \(0.505325\pi\)
\(728\) 4.05339 2.33524i 0.150229 0.0865499i
\(729\) 1.00000i 0.0370370i
\(730\) 60.6421i 2.24446i
\(731\) 4.59355 0.169898
\(732\) −5.49282 −0.203021
\(733\) 20.4703 20.4703i 0.756087 0.756087i −0.219521 0.975608i \(-0.570449\pi\)
0.975608 + 0.219521i \(0.0704494\pi\)
\(734\) 1.77835 0.0656401
\(735\) −6.98185 26.2503i −0.257530 0.968255i
\(736\) −5.06292 + 5.06292i −0.186622 + 0.186622i
\(737\) −3.26750 3.26750i −0.120360 0.120360i
\(738\) 0.722594 0.0265991
\(739\) −37.2012 + 37.2012i −1.36847 + 1.36847i −0.505840 + 0.862627i \(0.668818\pi\)
−0.862627 + 0.505840i \(0.831182\pi\)
\(740\) −24.1051 + 24.1051i −0.886120 + 0.886120i
\(741\) 3.09170i 0.113576i
\(742\) −6.27013 10.8833i −0.230184 0.399540i
\(743\) −7.00263 7.00263i −0.256901 0.256901i 0.566891 0.823793i \(-0.308146\pi\)
−0.823793 + 0.566891i \(0.808146\pi\)
\(744\) −0.785278 + 0.785278i −0.0287897 + 0.0287897i
\(745\) 71.6293i 2.62429i
\(746\) 16.3152 16.3152i 0.597342 0.597342i
\(747\) −4.45629 −0.163047
\(748\) 10.4124i 0.380713i
\(749\) 7.96637 29.6216i 0.291085 1.08235i
\(750\) 19.6256 0.716624
\(751\) −10.2481 10.2481i −0.373959 0.373959i 0.494958 0.868917i \(-0.335183\pi\)
−0.868917 + 0.494958i \(0.835183\pi\)
\(752\) 1.53254 1.53254i 0.0558858 0.0558858i
\(753\) 29.9792i 1.09250i
\(754\) 9.38022 + 1.63432i 0.341608 + 0.0595186i
\(755\) 61.0796i 2.22291i
\(756\) −2.29251 + 1.32076i −0.0833777 + 0.0480356i
\(757\) −12.1461 + 12.1461i −0.441457 + 0.441457i −0.892501 0.451045i \(-0.851052\pi\)
0.451045 + 0.892501i \(0.351052\pi\)
\(758\) 11.0183i 0.400201i
\(759\) −24.3314 −0.883173
\(760\) 6.78527i 0.246128i
\(761\) 47.5299i 1.72296i 0.507795 + 0.861478i \(0.330461\pi\)
−0.507795 + 0.861478i \(0.669539\pi\)
\(762\) 0.338185 0.338185i 0.0122511 0.0122511i
\(763\) −36.5301 9.82433i −1.32248 0.355664i
\(764\) 10.9753 + 10.9753i 0.397072 + 0.397072i
\(765\) 8.40739 8.40739i 0.303970 0.303970i
\(766\) −8.87599 + 8.87599i −0.320702 + 0.320702i
\(767\) 17.4272i 0.629258i
\(768\) 0.707107 + 0.707107i 0.0255155 + 0.0255155i
\(769\) 2.93648 2.93648i 0.105892 0.105892i −0.652176 0.758068i \(-0.726144\pi\)
0.758068 + 0.652176i \(0.226144\pi\)
\(770\) −33.6910 9.06079i −1.21414 0.326528i
\(771\) −7.34870 + 7.34870i −0.264657 + 0.264657i
\(772\) −6.10050 6.10050i −0.219562 0.219562i
\(773\) 20.7552 + 20.7552i 0.746513 + 0.746513i 0.973823 0.227309i \(-0.0729928\pi\)
−0.227309 + 0.973823i \(0.572993\pi\)
\(774\) −1.49917 −0.0538864
\(775\) −7.89801 7.89801i −0.283705 0.283705i
\(776\) −8.44867 −0.303289
\(777\) 22.4456 + 6.03647i 0.805230 + 0.216557i
\(778\) 14.9239 0.535048
\(779\) 1.26353 0.0452705
\(780\) 4.85144 4.85144i 0.173709 0.173709i
\(781\) −27.8969 27.8969i −0.998231 0.998231i
\(782\) −21.9389 −0.784533
\(783\) −5.30524 0.924337i −0.189594 0.0330331i
\(784\) 6.05571 + 3.51118i 0.216275 + 0.125399i
\(785\) −5.63221 + 5.63221i −0.201022 + 0.201022i
\(786\) 14.5792 14.5792i 0.520022 0.520022i
\(787\) 0.190626 0.00679510 0.00339755 0.999994i \(-0.498919\pi\)
0.00339755 + 0.999994i \(0.498919\pi\)
\(788\) 20.1298i 0.717095i
\(789\) −13.7635 −0.489993
\(790\) 43.4970i 1.54755i
\(791\) 21.3683 12.3107i 0.759770 0.437719i
\(792\) 3.39821i 0.120750i
\(793\) −6.86734 6.86734i −0.243866 0.243866i
\(794\) 2.82222 + 2.82222i 0.100157 + 0.100157i
\(795\) −13.0261 13.0261i −0.461988 0.461988i
\(796\) −25.5990 −0.907332
\(797\) −14.2877 14.2877i −0.506097 0.506097i 0.407229 0.913326i \(-0.366495\pi\)
−0.913326 + 0.407229i \(0.866495\pi\)
\(798\) −4.00867 + 2.30948i −0.141905 + 0.0817547i
\(799\) 6.64085 0.234937
\(800\) −7.11180 + 7.11180i −0.251440 + 0.251440i
\(801\) 5.59795 5.59795i 0.197794 0.197794i
\(802\) 3.20212 3.20212i 0.113071 0.113071i
\(803\) 53.1064i 1.87408i
\(804\) 0.961535 + 0.961535i 0.0339107 + 0.0339107i
\(805\) −19.0911 + 70.9871i −0.672874 + 2.50197i
\(806\) −1.96357 −0.0691638
\(807\) 12.2092 0.429786
\(808\) 10.2097i 0.359177i
\(809\) −1.77372 1.77372i −0.0623608 0.0623608i 0.675239 0.737599i \(-0.264041\pi\)
−0.737599 + 0.675239i \(0.764041\pi\)
\(810\) −2.74387 + 2.74387i −0.0964096 + 0.0964096i
\(811\) 8.91151 0.312925 0.156463 0.987684i \(-0.449991\pi\)
0.156463 + 0.987684i \(0.449991\pi\)
\(812\) 4.88791 + 13.3831i 0.171532 + 0.469656i
\(813\) −26.0333 −0.913027
\(814\) 21.1096 21.1096i 0.739893 0.739893i
\(815\) −17.6794 17.6794i −0.619284 0.619284i
\(816\) 3.06407i 0.107264i
\(817\) −2.62144 −0.0917125
\(818\) 13.4289 0.469530
\(819\) −4.51745 1.21491i −0.157852 0.0424525i
\(820\) −1.98270 1.98270i −0.0692389 0.0692389i
\(821\) 5.40991i 0.188807i 0.995534 + 0.0944036i \(0.0300944\pi\)
−0.995534 + 0.0944036i \(0.969906\pi\)
\(822\) 8.26353 8.26353i 0.288224 0.288224i
\(823\) 11.9186 11.9186i 0.415458 0.415458i −0.468177 0.883635i \(-0.655089\pi\)
0.883635 + 0.468177i \(0.155089\pi\)
\(824\) 0.553106 0.553106i 0.0192684 0.0192684i
\(825\) −34.1778 −1.18992
\(826\) 22.5959 13.0180i 0.786212 0.452953i
\(827\) 31.9286 + 31.9286i 1.11027 + 1.11027i 0.993114 + 0.117154i \(0.0373771\pi\)
0.117154 + 0.993114i \(0.462623\pi\)
\(828\) 7.16005 0.248829
\(829\) −21.5126 21.5126i −0.747165 0.747165i 0.226781 0.973946i \(-0.427180\pi\)
−0.973946 + 0.226781i \(0.927180\pi\)
\(830\) 12.2275 + 12.2275i 0.424421 + 0.424421i
\(831\) 21.9824 + 21.9824i 0.762562 + 0.762562i
\(832\) 1.76810i 0.0612980i
\(833\) 5.51304 + 20.7278i 0.191016 + 0.718177i
\(834\) 17.5372i 0.607264i
\(835\) −70.7451 −2.44824
\(836\) 5.94210i 0.205512i
\(837\) 1.11055 0.0383863
\(838\) 12.4547 12.4547i 0.430240 0.430240i
\(839\) −8.26833 + 8.26833i −0.285455 + 0.285455i −0.835280 0.549825i \(-0.814694\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(840\) 9.91432 + 2.66634i 0.342077 + 0.0919975i
\(841\) −9.80767 + 27.2912i −0.338195 + 0.941076i
\(842\) −31.5786 −1.08827
\(843\) −16.9670 16.9670i −0.584374 0.584374i
\(844\) 1.07647 1.07647i 0.0370535 0.0370535i
\(845\) −38.3144 −1.31806
\(846\) −2.16733 −0.0745144
\(847\) 1.39972 + 0.376438i 0.0480949 + 0.0129346i
\(848\) 4.74736 0.163025
\(849\) −6.92908 6.92908i −0.237805 0.237805i
\(850\) −30.8172 −1.05702
\(851\) −44.4781 44.4781i −1.52469 1.52469i
\(852\) 8.20930 + 8.20930i 0.281246 + 0.281246i
\(853\) 34.4054 34.4054i 1.17802 1.17802i 0.197770 0.980248i \(-0.436630\pi\)
0.980248 0.197770i \(-0.0633699\pi\)
\(854\) 3.77427 14.0340i 0.129153 0.480233i
\(855\) −4.79791 + 4.79791i −0.164085 + 0.164085i
\(856\) 8.19800 + 8.19800i 0.280202 + 0.280202i
\(857\) 14.3116i 0.488875i −0.969665 0.244438i \(-0.921397\pi\)
0.969665 0.244438i \(-0.0786033\pi\)
\(858\) −4.24858 + 4.24858i −0.145044 + 0.145044i
\(859\) 1.18430 1.18430i 0.0404077 0.0404077i −0.686614 0.727022i \(-0.740904\pi\)
0.727022 + 0.686614i \(0.240904\pi\)
\(860\) 4.11351 + 4.11351i 0.140270 + 0.140270i
\(861\) −0.496515 + 1.84620i −0.0169212 + 0.0629185i
\(862\) −28.4728 + 28.4728i −0.969788 + 0.969788i
\(863\) 52.4294i 1.78472i −0.451328 0.892358i \(-0.649049\pi\)
0.451328 0.892358i \(-0.350951\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) 19.6086 0.666712
\(866\) 16.0194i 0.544360i
\(867\) 5.38213 5.38213i 0.182787 0.182787i
\(868\) −1.46677 2.54595i −0.0497855 0.0864150i
\(869\) 38.0918i 1.29218i
\(870\) 12.0206 + 17.0931i 0.407537 + 0.579511i
\(871\) 2.40430i 0.0814665i
\(872\) 10.1100 10.1100i 0.342367 0.342367i
\(873\) 5.97411 + 5.97411i 0.202193 + 0.202193i
\(874\) 12.5200 0.423497
\(875\) −13.4853 + 50.1427i −0.455885 + 1.69513i
\(876\) 15.6277i 0.528012i
\(877\) 47.4101 1.60093 0.800463 0.599383i \(-0.204587\pi\)
0.800463 + 0.599383i \(0.204587\pi\)
\(878\) 11.7275 11.7275i 0.395785 0.395785i
\(879\) 14.2276i 0.479883i
\(880\) 9.32424 9.32424i 0.314320 0.314320i
\(881\) 16.9873 + 16.9873i 0.572315 + 0.572315i 0.932775 0.360460i \(-0.117380\pi\)
−0.360460 + 0.932775i \(0.617380\pi\)
\(882\) −1.79926 6.76481i −0.0605841 0.227783i
\(883\) 6.73111i 0.226520i 0.993565 + 0.113260i \(0.0361293\pi\)
−0.993565 + 0.113260i \(0.963871\pi\)
\(884\) −3.83082 + 3.83082i −0.128844 + 0.128844i
\(885\) 27.0447 27.0447i 0.909096 0.909096i
\(886\) 9.75837 0.327839
\(887\) −2.89190 2.89190i −0.0971006 0.0971006i 0.656888 0.753988i \(-0.271873\pi\)
−0.753988 + 0.656888i \(0.771873\pi\)
\(888\) −6.21199 + 6.21199i −0.208461 + 0.208461i
\(889\) 0.631674 + 1.09643i 0.0211857 + 0.0367730i
\(890\) −30.7201 −1.02974
\(891\) 2.40290 2.40290i 0.0805001 0.0805001i
\(892\) −10.9392 −0.366270
\(893\) −3.78979 −0.126820
\(894\) 18.4592i 0.617368i
\(895\) 3.45950i 0.115638i
\(896\) −2.29251 + 1.32076i −0.0765873 + 0.0441235i
\(897\) 8.95177 + 8.95177i 0.298891 + 0.298891i
\(898\) 10.4036i 0.347171i
\(899\) 1.02652 5.89174i 0.0342365 0.196501i
\(900\) 10.0576 0.335253
\(901\) 10.2857 + 10.2857i 0.342667 + 0.342667i
\(902\) 1.73632 + 1.73632i 0.0578131 + 0.0578131i
\(903\) 1.03012 3.83032i 0.0342802 0.127465i
\(904\) 9.32093i 0.310010i
\(905\) 24.2302i 0.805441i
\(906\) 15.7405i 0.522943i
\(907\) −8.96822 8.96822i −0.297785 0.297785i 0.542361 0.840146i \(-0.317531\pi\)
−0.840146 + 0.542361i \(0.817531\pi\)
\(908\) −17.7624 −0.589465
\(909\) 7.21936 7.21936i 0.239451 0.239451i
\(910\) 9.06171 + 15.7288i 0.300393 + 0.521406i
\(911\) 7.57665 + 7.57665i 0.251026 + 0.251026i 0.821391 0.570365i \(-0.193198\pi\)
−0.570365 + 0.821391i \(0.693198\pi\)
\(912\) 1.74860i 0.0579018i
\(913\) −10.7080 10.7080i −0.354383 0.354383i
\(914\) 14.1979 + 14.1979i 0.469624 + 0.469624i
\(915\) 21.3144i 0.704633i
\(916\) 3.14767 + 3.14767i 0.104002 + 0.104002i
\(917\) 27.2316 + 47.2671i 0.899265 + 1.56090i
\(918\) 2.16662 2.16662i 0.0715092 0.0715092i
\(919\) 53.3016 1.75826 0.879128 0.476586i \(-0.158126\pi\)
0.879128 + 0.476586i \(0.158126\pi\)
\(920\) −19.6462 19.6462i −0.647717 0.647717i
\(921\) 3.86155i 0.127242i
\(922\) 10.1010i 0.332658i
\(923\) 20.5272i 0.675660i
\(924\) −8.68232 2.33501i −0.285627 0.0768161i
\(925\) −62.4776 62.4776i −2.05425 2.05425i
\(926\) 6.24664 + 6.24664i 0.205277 + 0.205277i
\(927\) −0.782210 −0.0256911
\(928\) −5.30524 0.924337i −0.174153 0.0303429i
\(929\) 22.7690i 0.747028i 0.927625 + 0.373514i \(0.121847\pi\)
−0.927625 + 0.373514i \(0.878153\pi\)
\(930\) −3.04720 3.04720i −0.0999217 0.0999217i
\(931\) −3.14617 11.8289i −0.103112 0.387677i
\(932\) 19.9854i 0.654643i
\(933\) 16.2536i 0.532118i
\(934\) −6.95381 −0.227536
\(935\) 40.4042 1.32136
\(936\) 1.25024 1.25024i 0.0408653 0.0408653i
\(937\) 9.74666 0.318410 0.159205 0.987246i \(-0.449107\pi\)
0.159205 + 0.987246i \(0.449107\pi\)
\(938\) −3.11739 + 1.79599i −0.101786 + 0.0586412i
\(939\) −15.4433 + 15.4433i −0.503972 + 0.503972i
\(940\) 5.94687 + 5.94687i 0.193965 + 0.193965i
\(941\) −10.3962 −0.338907 −0.169453 0.985538i \(-0.554200\pi\)
−0.169453 + 0.985538i \(0.554200\pi\)
\(942\) −1.45145 + 1.45145i −0.0472907 + 0.0472907i
\(943\) 3.65844 3.65844i 0.119135 0.119135i
\(944\) 9.85641i 0.320799i
\(945\) −5.12510 8.89587i −0.166719 0.289383i
\(946\) −3.60234 3.60234i −0.117122 0.117122i
\(947\) −14.0961 + 14.0961i −0.458063 + 0.458063i −0.898019 0.439956i \(-0.854994\pi\)
0.439956 + 0.898019i \(0.354994\pi\)
\(948\) 11.2094i 0.364064i
\(949\) 19.5384 19.5384i 0.634243 0.634243i
\(950\) 17.5867 0.570587
\(951\) 16.1694i 0.524330i
\(952\) −7.82859 2.10541i −0.253726 0.0682366i
\(953\) −11.5308 −0.373520 −0.186760 0.982406i \(-0.559799\pi\)
−0.186760 + 0.982406i \(0.559799\pi\)
\(954\) −3.35689 3.35689i −0.108683 0.108683i
\(955\) −42.5887 + 42.5887i −1.37814 + 1.37814i
\(956\) 11.0084i 0.356036i
\(957\) −10.5269 14.9690i −0.340285 0.483881i
\(958\) 40.0651i 1.29445i
\(959\) 15.4349 + 26.7912i 0.498420 + 0.865132i
\(960\) −2.74387 + 2.74387i −0.0885579 + 0.0885579i
\(961\) 29.7667i 0.960215i
\(962\) −15.5329 −0.500802
\(963\) 11.5937i 0.373602i
\(964\) 20.2704i 0.652866i
\(965\) 23.6725 23.6725i 0.762043 0.762043i
\(966\) −4.91987 + 18.2937i −0.158294 + 0.588590i
\(967\) 21.2133 + 21.2133i 0.682173 + 0.682173i 0.960489 0.278316i \(-0.0897763\pi\)
−0.278316 + 0.960489i \(0.589776\pi\)
\(968\) −0.387383 + 0.387383i −0.0124510 + 0.0124510i
\(969\) 3.78855 3.78855i 0.121706 0.121706i
\(970\) 32.7843i 1.05264i
\(971\) 1.28115 + 1.28115i 0.0411142 + 0.0411142i 0.727365 0.686251i \(-0.240745\pi\)
−0.686251 + 0.727365i \(0.740745\pi\)
\(972\) −0.707107 + 0.707107i −0.0226805 + 0.0226805i
\(973\) −44.8070 12.0503i −1.43645 0.386315i
\(974\) 14.7946 14.7946i 0.474049 0.474049i
\(975\) 12.5744 + 12.5744i 0.402703 + 0.402703i
\(976\) 3.88401 + 3.88401i 0.124324 + 0.124324i
\(977\) −24.4587 −0.782504 −0.391252 0.920283i \(-0.627958\pi\)
−0.391252 + 0.920283i \(0.627958\pi\)
\(978\) −4.55608 4.55608i −0.145687 0.145687i
\(979\) 26.9026 0.859812
\(980\) −13.6248 + 23.4987i −0.435229 + 0.750637i
\(981\) −14.2977 −0.456489
\(982\) 7.07989 0.225928
\(983\) −30.1694 + 30.1694i −0.962253 + 0.962253i −0.999313 0.0370597i \(-0.988201\pi\)
0.0370597 + 0.999313i \(0.488201\pi\)
\(984\) −0.510951 0.510951i −0.0162885 0.0162885i
\(985\) −78.1120 −2.48885
\(986\) −9.49177 13.4972i −0.302280 0.429837i
\(987\) 1.48923 5.53746i 0.0474029 0.176259i
\(988\) 2.18616 2.18616i 0.0695511 0.0695511i
\(989\) −7.59016 + 7.59016i −0.241353 + 0.241353i
\(990\) −13.1865 −0.419093
\(991\) 52.3974i 1.66446i 0.554432 + 0.832229i \(0.312936\pi\)
−0.554432 + 0.832229i \(0.687064\pi\)
\(992\) 1.11055 0.0352600
\(993\) 6.83978i 0.217054i
\(994\) −26.6153 + 15.3336i −0.844187 + 0.486354i
\(995\) 99.3346i 3.14912i
\(996\) 3.15107 + 3.15107i 0.0998455 + 0.0998455i
\(997\) 38.8636 + 38.8636i 1.23082 + 1.23082i 0.963648 + 0.267174i \(0.0860898\pi\)
0.267174 + 0.963648i \(0.413910\pi\)
\(998\) 16.2789 + 16.2789i 0.515300 + 0.515300i
\(999\) 8.78507 0.277947
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.m.b.307.11 yes 40
7.6 odd 2 1218.2.m.a.307.11 40
29.12 odd 4 1218.2.m.a.853.11 yes 40
203.41 even 4 inner 1218.2.m.b.853.11 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.m.a.307.11 40 7.6 odd 2
1218.2.m.a.853.11 yes 40 29.12 odd 4
1218.2.m.b.307.11 yes 40 1.1 even 1 trivial
1218.2.m.b.853.11 yes 40 203.41 even 4 inner