Properties

Label 1218.2.i.d.697.1
Level $1218$
Weight $2$
Character 1218.697
Analytic conductor $9.726$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(697,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.697"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-3,-3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1783323.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 697.1
Root \(-0.956115 - 1.65604i\) of defining polynomial
Character \(\chi\) \(=\) 1218.697
Dual form 1218.2.i.d.1045.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.956115 - 1.65604i) q^{5} -1.00000 q^{6} +(-2.58392 + 0.568650i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.956115 - 1.65604i) q^{10} +(1.17169 - 2.02943i) q^{11} +(-0.500000 - 0.866025i) q^{12} +1.91223 q^{13} +(-1.78442 - 1.95341i) q^{14} +1.91223 q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.69665 - 4.67074i) q^{17} +(0.500000 - 0.866025i) q^{18} +(3.11274 + 5.39142i) q^{19} +1.91223 q^{20} +(0.799494 - 2.52206i) q^{21} +2.34338 q^{22} +(1.11274 + 1.92731i) q^{23} +(0.500000 - 0.866025i) q^{24} +(0.671690 - 1.16340i) q^{25} +(0.956115 + 1.65604i) q^{26} +1.00000 q^{27} +(0.799494 - 2.52206i) q^{28} +1.00000 q^{29} +(0.956115 + 1.65604i) q^{30} +(-1.44105 + 2.49596i) q^{31} +(0.500000 - 0.866025i) q^{32} +(1.17169 + 2.02943i) q^{33} +5.39331 q^{34} +(3.41223 + 3.73538i) q^{35} +1.00000 q^{36} +(0.612735 + 1.06129i) q^{37} +(-3.11274 + 5.39142i) q^{38} +(-0.956115 + 1.65604i) q^{39} +(0.956115 + 1.65604i) q^{40} +12.3933 q^{41} +(2.58392 - 0.568650i) q^{42} +0.313241 q^{43} +(1.17169 + 2.02943i) q^{44} +(-0.956115 + 1.65604i) q^{45} +(-1.11274 + 1.92731i) q^{46} +(-0.0288161 - 0.0499109i) q^{47} +1.00000 q^{48} +(6.35327 - 2.93869i) q^{49} +1.34338 q^{50} +(2.69665 + 4.67074i) q^{51} +(-0.956115 + 1.65604i) q^{52} +(-2.56885 + 4.44938i) q^{53} +(0.500000 + 0.866025i) q^{54} -4.48108 q^{55} +(2.58392 - 0.568650i) q^{56} -6.22547 q^{57} +(0.500000 + 0.866025i) q^{58} +(0.343380 - 0.594751i) q^{59} +(-0.956115 + 1.65604i) q^{60} +(1.14287 + 1.97952i) q^{61} -2.88209 q^{62} +(1.78442 + 1.95341i) q^{63} +1.00000 q^{64} +(-1.82831 - 3.16673i) q^{65} +(-1.17169 + 2.02943i) q^{66} +(3.18158 - 5.51067i) q^{67} +(2.69665 + 4.67074i) q^{68} -2.22547 q^{69} +(-1.52882 + 4.82277i) q^{70} -1.37087 q^{71} +(0.500000 + 0.866025i) q^{72} +(5.45611 - 9.45027i) q^{73} +(-0.612735 + 1.06129i) q^{74} +(0.671690 + 1.16340i) q^{75} -6.22547 q^{76} +(-1.87352 + 5.91015i) q^{77} -1.91223 q^{78} +(-5.50989 - 9.54342i) q^{79} +(-0.956115 + 1.65604i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(6.19665 + 10.7329i) q^{82} +17.8168 q^{83} +(1.78442 + 1.95341i) q^{84} -10.3132 q^{85} +(0.156620 + 0.271275i) q^{86} +(-0.500000 + 0.866025i) q^{87} +(-1.17169 + 2.02943i) q^{88} +(1.14155 + 1.97722i) q^{89} -1.91223 q^{90} +(-4.94105 + 1.08739i) q^{91} -2.22547 q^{92} +(-1.44105 - 2.49596i) q^{93} +(0.0288161 - 0.0499109i) q^{94} +(5.95226 - 10.3096i) q^{95} +(0.500000 + 0.866025i) q^{96} -9.36581 q^{97} +(5.72162 + 4.03275i) q^{98} -2.34338 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{3} - 3 q^{4} + q^{5} - 6 q^{6} - 4 q^{7} - 6 q^{8} - 3 q^{9} - q^{10} + 9 q^{11} - 3 q^{12} - 2 q^{13} - 2 q^{14} - 2 q^{15} - 3 q^{16} - 6 q^{17} + 3 q^{18} + 8 q^{19} - 2 q^{20}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.956115 1.65604i −0.427587 0.740603i 0.569071 0.822289i \(-0.307303\pi\)
−0.996658 + 0.0816854i \(0.973970\pi\)
\(6\) −1.00000 −0.408248
\(7\) −2.58392 + 0.568650i −0.976630 + 0.214929i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.956115 1.65604i 0.302350 0.523686i
\(11\) 1.17169 2.02943i 0.353278 0.611895i −0.633544 0.773707i \(-0.718400\pi\)
0.986822 + 0.161812i \(0.0517337\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 1.91223 0.530357 0.265178 0.964199i \(-0.414569\pi\)
0.265178 + 0.964199i \(0.414569\pi\)
\(14\) −1.78442 1.95341i −0.476908 0.522072i
\(15\) 1.91223 0.493735
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.69665 4.67074i 0.654035 1.13282i −0.328100 0.944643i \(-0.606408\pi\)
0.982135 0.188178i \(-0.0602583\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 3.11274 + 5.39142i 0.714110 + 1.23688i 0.963302 + 0.268421i \(0.0865019\pi\)
−0.249191 + 0.968454i \(0.580165\pi\)
\(20\) 1.91223 0.427587
\(21\) 0.799494 2.52206i 0.174464 0.550360i
\(22\) 2.34338 0.499610
\(23\) 1.11274 + 1.92731i 0.232021 + 0.401873i 0.958403 0.285419i \(-0.0921328\pi\)
−0.726382 + 0.687292i \(0.758799\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) 0.671690 1.16340i 0.134338 0.232680i
\(26\) 0.956115 + 1.65604i 0.187509 + 0.324776i
\(27\) 1.00000 0.192450
\(28\) 0.799494 2.52206i 0.151090 0.476625i
\(29\) 1.00000 0.185695
\(30\) 0.956115 + 1.65604i 0.174562 + 0.302350i
\(31\) −1.44105 + 2.49596i −0.258819 + 0.448288i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 1.17169 + 2.02943i 0.203965 + 0.353278i
\(34\) 5.39331 0.924945
\(35\) 3.41223 + 3.73538i 0.576772 + 0.631394i
\(36\) 1.00000 0.166667
\(37\) 0.612735 + 1.06129i 0.100733 + 0.174475i 0.911987 0.410219i \(-0.134548\pi\)
−0.811254 + 0.584694i \(0.801215\pi\)
\(38\) −3.11274 + 5.39142i −0.504952 + 0.874603i
\(39\) −0.956115 + 1.65604i −0.153101 + 0.265178i
\(40\) 0.956115 + 1.65604i 0.151175 + 0.261843i
\(41\) 12.3933 1.93551 0.967755 0.251894i \(-0.0810535\pi\)
0.967755 + 0.251894i \(0.0810535\pi\)
\(42\) 2.58392 0.568650i 0.398707 0.0877446i
\(43\) 0.313241 0.0477688 0.0238844 0.999715i \(-0.492397\pi\)
0.0238844 + 0.999715i \(0.492397\pi\)
\(44\) 1.17169 + 2.02943i 0.176639 + 0.305948i
\(45\) −0.956115 + 1.65604i −0.142529 + 0.246868i
\(46\) −1.11274 + 1.92731i −0.164064 + 0.284167i
\(47\) −0.0288161 0.0499109i −0.00420325 0.00728025i 0.863916 0.503636i \(-0.168005\pi\)
−0.868119 + 0.496355i \(0.834671\pi\)
\(48\) 1.00000 0.144338
\(49\) 6.35327 2.93869i 0.907611 0.419813i
\(50\) 1.34338 0.189983
\(51\) 2.69665 + 4.67074i 0.377607 + 0.654035i
\(52\) −0.956115 + 1.65604i −0.132589 + 0.229651i
\(53\) −2.56885 + 4.44938i −0.352859 + 0.611169i −0.986749 0.162254i \(-0.948124\pi\)
0.633890 + 0.773423i \(0.281457\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) −4.48108 −0.604229
\(56\) 2.58392 0.568650i 0.345291 0.0759890i
\(57\) −6.22547 −0.824584
\(58\) 0.500000 + 0.866025i 0.0656532 + 0.113715i
\(59\) 0.343380 0.594751i 0.0447042 0.0774300i −0.842808 0.538215i \(-0.819099\pi\)
0.887512 + 0.460785i \(0.152432\pi\)
\(60\) −0.956115 + 1.65604i −0.123434 + 0.213794i
\(61\) 1.14287 + 1.97952i 0.146330 + 0.253451i 0.929868 0.367892i \(-0.119921\pi\)
−0.783538 + 0.621343i \(0.786587\pi\)
\(62\) −2.88209 −0.366026
\(63\) 1.78442 + 1.95341i 0.224816 + 0.246107i
\(64\) 1.00000 0.125000
\(65\) −1.82831 3.16673i −0.226774 0.392784i
\(66\) −1.17169 + 2.02943i −0.144225 + 0.249805i
\(67\) 3.18158 5.51067i 0.388692 0.673235i −0.603582 0.797301i \(-0.706260\pi\)
0.992274 + 0.124066i \(0.0395935\pi\)
\(68\) 2.69665 + 4.67074i 0.327017 + 0.566411i
\(69\) −2.22547 −0.267915
\(70\) −1.52882 + 4.82277i −0.182728 + 0.576431i
\(71\) −1.37087 −0.162693 −0.0813463 0.996686i \(-0.525922\pi\)
−0.0813463 + 0.996686i \(0.525922\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 5.45611 9.45027i 0.638590 1.10607i −0.347152 0.937809i \(-0.612851\pi\)
0.985742 0.168261i \(-0.0538153\pi\)
\(74\) −0.612735 + 1.06129i −0.0712290 + 0.123372i
\(75\) 0.671690 + 1.16340i 0.0775601 + 0.134338i
\(76\) −6.22547 −0.714110
\(77\) −1.87352 + 5.91015i −0.213507 + 0.673525i
\(78\) −1.91223 −0.216517
\(79\) −5.50989 9.54342i −0.619912 1.07372i −0.989501 0.144523i \(-0.953835\pi\)
0.369590 0.929195i \(-0.379498\pi\)
\(80\) −0.956115 + 1.65604i −0.106897 + 0.185151i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 6.19665 + 10.7329i 0.684306 + 1.18525i
\(83\) 17.8168 1.95564 0.977821 0.209440i \(-0.0671642\pi\)
0.977821 + 0.209440i \(0.0671642\pi\)
\(84\) 1.78442 + 1.95341i 0.194697 + 0.213135i
\(85\) −10.3132 −1.11863
\(86\) 0.156620 + 0.271275i 0.0168888 + 0.0292523i
\(87\) −0.500000 + 0.866025i −0.0536056 + 0.0928477i
\(88\) −1.17169 + 2.02943i −0.124903 + 0.216338i
\(89\) 1.14155 + 1.97722i 0.121004 + 0.209585i 0.920164 0.391533i \(-0.128055\pi\)
−0.799160 + 0.601119i \(0.794722\pi\)
\(90\) −1.91223 −0.201567
\(91\) −4.94105 + 1.08739i −0.517962 + 0.113989i
\(92\) −2.22547 −0.232021
\(93\) −1.44105 2.49596i −0.149429 0.258819i
\(94\) 0.0288161 0.0499109i 0.00297215 0.00514791i
\(95\) 5.95226 10.3096i 0.610689 1.05774i
\(96\) 0.500000 + 0.866025i 0.0510310 + 0.0883883i
\(97\) −9.36581 −0.950954 −0.475477 0.879728i \(-0.657725\pi\)
−0.475477 + 0.879728i \(0.657725\pi\)
\(98\) 5.72162 + 4.03275i 0.577971 + 0.407369i
\(99\) −2.34338 −0.235519
\(100\) 0.671690 + 1.16340i 0.0671690 + 0.116340i
\(101\) 8.97723 15.5490i 0.893267 1.54718i 0.0573332 0.998355i \(-0.481740\pi\)
0.835934 0.548830i \(-0.184926\pi\)
\(102\) −2.69665 + 4.67074i −0.267009 + 0.462472i
\(103\) 8.53871 + 14.7895i 0.841344 + 1.45725i 0.888759 + 0.458376i \(0.151569\pi\)
−0.0474144 + 0.998875i \(0.515098\pi\)
\(104\) −1.91223 −0.187509
\(105\) −4.94105 + 1.08739i −0.482197 + 0.106118i
\(106\) −5.13770 −0.499017
\(107\) −6.54003 11.3277i −0.632249 1.09509i −0.987091 0.160161i \(-0.948799\pi\)
0.354842 0.934926i \(-0.384535\pi\)
\(108\) −0.500000 + 0.866025i −0.0481125 + 0.0833333i
\(109\) 4.14155 7.17338i 0.396689 0.687085i −0.596626 0.802519i \(-0.703493\pi\)
0.993315 + 0.115434i \(0.0368259\pi\)
\(110\) −2.24054 3.88073i −0.213627 0.370013i
\(111\) −1.22547 −0.116316
\(112\) 1.78442 + 1.95341i 0.168612 + 0.184580i
\(113\) −10.1678 −0.956510 −0.478255 0.878221i \(-0.658730\pi\)
−0.478255 + 0.878221i \(0.658730\pi\)
\(114\) −3.11274 5.39142i −0.291534 0.504952i
\(115\) 2.12780 3.68547i 0.198419 0.343671i
\(116\) −0.500000 + 0.866025i −0.0464238 + 0.0804084i
\(117\) −0.956115 1.65604i −0.0883928 0.153101i
\(118\) 0.686759 0.0632213
\(119\) −4.31192 + 13.6023i −0.395273 + 1.24692i
\(120\) −1.91223 −0.174562
\(121\) 2.75429 + 4.77056i 0.250390 + 0.433688i
\(122\) −1.14287 + 1.97952i −0.103471 + 0.179217i
\(123\) −6.19665 + 10.7329i −0.558733 + 0.967755i
\(124\) −1.44105 2.49596i −0.129410 0.224144i
\(125\) −12.1300 −1.08494
\(126\) −0.799494 + 2.52206i −0.0712246 + 0.224683i
\(127\) 4.10756 0.364487 0.182244 0.983253i \(-0.441664\pi\)
0.182244 + 0.983253i \(0.441664\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −0.156620 + 0.271275i −0.0137897 + 0.0238844i
\(130\) 1.82831 3.16673i 0.160353 0.277740i
\(131\) 7.97723 + 13.8170i 0.696974 + 1.20719i 0.969511 + 0.245048i \(0.0788039\pi\)
−0.272537 + 0.962145i \(0.587863\pi\)
\(132\) −2.34338 −0.203965
\(133\) −11.1089 12.1609i −0.963262 1.05449i
\(134\) 6.36317 0.549694
\(135\) −0.956115 1.65604i −0.0822892 0.142529i
\(136\) −2.69665 + 4.67074i −0.231236 + 0.400513i
\(137\) 4.71558 8.16762i 0.402879 0.697807i −0.591193 0.806530i \(-0.701343\pi\)
0.994072 + 0.108723i \(0.0346763\pi\)
\(138\) −1.11274 1.92731i −0.0947223 0.164064i
\(139\) −14.8442 −1.25907 −0.629536 0.776971i \(-0.716755\pi\)
−0.629536 + 0.776971i \(0.716755\pi\)
\(140\) −4.94105 + 1.08739i −0.417595 + 0.0919012i
\(141\) 0.0576321 0.00485350
\(142\) −0.685436 1.18721i −0.0575206 0.0996285i
\(143\) 2.24054 3.88073i 0.187363 0.324523i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −0.956115 1.65604i −0.0794010 0.137527i
\(146\) 10.9122 0.903103
\(147\) −0.631656 + 6.97144i −0.0520981 + 0.574995i
\(148\) −1.22547 −0.100733
\(149\) 9.63770 + 16.6930i 0.789551 + 1.36754i 0.926242 + 0.376929i \(0.123020\pi\)
−0.136691 + 0.990614i \(0.543647\pi\)
\(150\) −0.671690 + 1.16340i −0.0548432 + 0.0949913i
\(151\) −2.19665 + 3.80472i −0.178761 + 0.309623i −0.941456 0.337135i \(-0.890542\pi\)
0.762695 + 0.646758i \(0.223876\pi\)
\(152\) −3.11274 5.39142i −0.252476 0.437302i
\(153\) −5.39331 −0.436023
\(154\) −6.05510 + 1.33256i −0.487934 + 0.107381i
\(155\) 5.51122 0.442672
\(156\) −0.956115 1.65604i −0.0765504 0.132589i
\(157\) 2.54389 4.40614i 0.203024 0.351648i −0.746477 0.665411i \(-0.768256\pi\)
0.949501 + 0.313763i \(0.101590\pi\)
\(158\) 5.50989 9.54342i 0.438344 0.759234i
\(159\) −2.56885 4.44938i −0.203723 0.352859i
\(160\) −1.91223 −0.151175
\(161\) −3.97118 4.34727i −0.312973 0.342613i
\(162\) −1.00000 −0.0785674
\(163\) −8.46216 14.6569i −0.662807 1.14802i −0.979875 0.199613i \(-0.936032\pi\)
0.317067 0.948403i \(-0.397302\pi\)
\(164\) −6.19665 + 10.7329i −0.483877 + 0.838100i
\(165\) 2.24054 3.88073i 0.174426 0.302114i
\(166\) 8.90838 + 15.4298i 0.691424 + 1.19758i
\(167\) 24.3055 1.88082 0.940409 0.340044i \(-0.110442\pi\)
0.940409 + 0.340044i \(0.110442\pi\)
\(168\) −0.799494 + 2.52206i −0.0616823 + 0.194581i
\(169\) −9.34338 −0.718722
\(170\) −5.15662 8.93153i −0.395495 0.685017i
\(171\) 3.11274 5.39142i 0.238037 0.412292i
\(172\) −0.156620 + 0.271275i −0.0119422 + 0.0206845i
\(173\) 7.01375 + 12.1482i 0.533245 + 0.923608i 0.999246 + 0.0388236i \(0.0123611\pi\)
−0.466001 + 0.884784i \(0.654306\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −1.07402 + 3.38809i −0.0811886 + 0.256116i
\(176\) −2.34338 −0.176639
\(177\) 0.343380 + 0.594751i 0.0258100 + 0.0447042i
\(178\) −1.14155 + 1.97722i −0.0855629 + 0.148199i
\(179\) 4.89848 8.48442i 0.366130 0.634155i −0.622827 0.782360i \(-0.714016\pi\)
0.988957 + 0.148204i \(0.0473493\pi\)
\(180\) −0.956115 1.65604i −0.0712646 0.123434i
\(181\) 5.54641 0.412262 0.206131 0.978524i \(-0.433913\pi\)
0.206131 + 0.978524i \(0.433913\pi\)
\(182\) −3.41223 3.73538i −0.252931 0.276885i
\(183\) −2.28575 −0.168967
\(184\) −1.11274 1.92731i −0.0820319 0.142083i
\(185\) 1.17169 2.02943i 0.0861443 0.149206i
\(186\) 1.44105 2.49596i 0.105663 0.183013i
\(187\) −6.31928 10.9453i −0.462112 0.800401i
\(188\) 0.0576321 0.00420325
\(189\) −2.58392 + 0.568650i −0.187952 + 0.0413632i
\(190\) 11.9045 0.863645
\(191\) 6.50604 + 11.2688i 0.470761 + 0.815382i 0.999441 0.0334397i \(-0.0106462\pi\)
−0.528680 + 0.848821i \(0.677313\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) 2.47504 4.28689i 0.178157 0.308577i −0.763092 0.646290i \(-0.776320\pi\)
0.941249 + 0.337713i \(0.109653\pi\)
\(194\) −4.68291 8.11103i −0.336213 0.582338i
\(195\) 3.65662 0.261856
\(196\) −0.631656 + 6.97144i −0.0451183 + 0.497960i
\(197\) −9.73933 −0.693899 −0.346949 0.937884i \(-0.612782\pi\)
−0.346949 + 0.937884i \(0.612782\pi\)
\(198\) −1.17169 2.02943i −0.0832684 0.144225i
\(199\) −5.55125 + 9.61505i −0.393518 + 0.681593i −0.992911 0.118862i \(-0.962075\pi\)
0.599393 + 0.800455i \(0.295409\pi\)
\(200\) −0.671690 + 1.16340i −0.0474956 + 0.0822649i
\(201\) 3.18158 + 5.51067i 0.224412 + 0.388692i
\(202\) 17.9545 1.26327
\(203\) −2.58392 + 0.568650i −0.181356 + 0.0399114i
\(204\) −5.39331 −0.377607
\(205\) −11.8494 20.5238i −0.827600 1.43344i
\(206\) −8.53871 + 14.7895i −0.594920 + 1.03043i
\(207\) 1.11274 1.92731i 0.0773404 0.133958i
\(208\) −0.956115 1.65604i −0.0662946 0.114826i
\(209\) 14.5886 1.00912
\(210\) −3.41223 3.73538i −0.235466 0.257765i
\(211\) −15.8520 −1.09129 −0.545647 0.838015i \(-0.683716\pi\)
−0.545647 + 0.838015i \(0.683716\pi\)
\(212\) −2.56885 4.44938i −0.176429 0.305585i
\(213\) 0.685436 1.18721i 0.0469653 0.0813463i
\(214\) 6.54003 11.3277i 0.447067 0.774344i
\(215\) −0.299494 0.518739i −0.0204253 0.0353777i
\(216\) −1.00000 −0.0680414
\(217\) 2.30421 7.26882i 0.156420 0.493440i
\(218\) 8.28310 0.561002
\(219\) 5.45611 + 9.45027i 0.368690 + 0.638590i
\(220\) 2.24054 3.88073i 0.151057 0.261639i
\(221\) 5.15662 8.93153i 0.346872 0.600800i
\(222\) −0.612735 1.06129i −0.0411241 0.0712290i
\(223\) −24.2479 −1.62376 −0.811880 0.583824i \(-0.801556\pi\)
−0.811880 + 0.583824i \(0.801556\pi\)
\(224\) −0.799494 + 2.52206i −0.0534185 + 0.168513i
\(225\) −1.34338 −0.0895586
\(226\) −5.08392 8.80561i −0.338177 0.585740i
\(227\) −1.68544 + 2.91926i −0.111866 + 0.193758i −0.916523 0.399983i \(-0.869016\pi\)
0.804656 + 0.593741i \(0.202350\pi\)
\(228\) 3.11274 5.39142i 0.206146 0.357055i
\(229\) −3.46601 6.00330i −0.229040 0.396710i 0.728484 0.685063i \(-0.240225\pi\)
−0.957524 + 0.288354i \(0.906892\pi\)
\(230\) 4.25561 0.280607
\(231\) −4.18158 4.57759i −0.275128 0.301183i
\(232\) −1.00000 −0.0656532
\(233\) −8.43334 14.6070i −0.552487 0.956935i −0.998094 0.0617065i \(-0.980346\pi\)
0.445608 0.895228i \(-0.352988\pi\)
\(234\) 0.956115 1.65604i 0.0625032 0.108259i
\(235\) −0.0551029 + 0.0954410i −0.00359452 + 0.00622589i
\(236\) 0.343380 + 0.594751i 0.0223521 + 0.0387150i
\(237\) 11.0198 0.715812
\(238\) −13.9359 + 3.06690i −0.903328 + 0.198798i
\(239\) −4.56115 −0.295036 −0.147518 0.989059i \(-0.547128\pi\)
−0.147518 + 0.989059i \(0.547128\pi\)
\(240\) −0.956115 1.65604i −0.0617169 0.106897i
\(241\) 12.5925 21.8108i 0.811154 1.40496i −0.100903 0.994896i \(-0.532173\pi\)
0.912057 0.410063i \(-0.134493\pi\)
\(242\) −2.75429 + 4.77056i −0.177052 + 0.306663i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −2.28575 −0.146330
\(245\) −10.9410 7.71155i −0.698998 0.492673i
\(246\) −12.3933 −0.790168
\(247\) 5.95226 + 10.3096i 0.378733 + 0.655986i
\(248\) 1.44105 2.49596i 0.0915065 0.158494i
\(249\) −8.90838 + 15.4298i −0.564545 + 0.977821i
\(250\) −6.06500 10.5049i −0.383584 0.664387i
\(251\) 13.0499 0.823704 0.411852 0.911251i \(-0.364882\pi\)
0.411852 + 0.911251i \(0.364882\pi\)
\(252\) −2.58392 + 0.568650i −0.162772 + 0.0358216i
\(253\) 5.21512 0.327872
\(254\) 2.05378 + 3.55725i 0.128866 + 0.223202i
\(255\) 5.15662 8.93153i 0.322920 0.559314i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −4.42212 7.65934i −0.275845 0.477777i 0.694503 0.719489i \(-0.255624\pi\)
−0.970348 + 0.241713i \(0.922291\pi\)
\(258\) −0.313241 −0.0195015
\(259\) −2.18676 2.39385i −0.135879 0.148747i
\(260\) 3.65662 0.226774
\(261\) −0.500000 0.866025i −0.0309492 0.0536056i
\(262\) −7.97723 + 13.8170i −0.492835 + 0.853615i
\(263\) 15.6300 27.0719i 0.963787 1.66933i 0.250947 0.968001i \(-0.419258\pi\)
0.712840 0.701327i \(-0.247409\pi\)
\(264\) −1.17169 2.02943i −0.0721125 0.124903i
\(265\) 9.82446 0.603512
\(266\) 4.97723 15.7010i 0.305173 0.962692i
\(267\) −2.28310 −0.139724
\(268\) 3.18158 + 5.51067i 0.194346 + 0.336618i
\(269\) −2.81709 + 4.87935i −0.171761 + 0.297499i −0.939036 0.343820i \(-0.888279\pi\)
0.767274 + 0.641319i \(0.221612\pi\)
\(270\) 0.956115 1.65604i 0.0581873 0.100783i
\(271\) 2.01892 + 3.49687i 0.122641 + 0.212420i 0.920808 0.390016i \(-0.127530\pi\)
−0.798168 + 0.602436i \(0.794197\pi\)
\(272\) −5.39331 −0.327017
\(273\) 1.52882 4.82277i 0.0925282 0.291887i
\(274\) 9.43115 0.569757
\(275\) −1.57402 2.72629i −0.0949172 0.164401i
\(276\) 1.11274 1.92731i 0.0669788 0.116011i
\(277\) 2.78828 4.82944i 0.167531 0.290173i −0.770020 0.638020i \(-0.779754\pi\)
0.937551 + 0.347847i \(0.113087\pi\)
\(278\) −7.42212 12.8555i −0.445149 0.771021i
\(279\) 2.88209 0.172546
\(280\) −3.41223 3.73538i −0.203920 0.223231i
\(281\) 2.73669 0.163257 0.0816285 0.996663i \(-0.473988\pi\)
0.0816285 + 0.996663i \(0.473988\pi\)
\(282\) 0.0288161 + 0.0499109i 0.00171597 + 0.00297215i
\(283\) −0.0976657 + 0.169162i −0.00580562 + 0.0100556i −0.868914 0.494964i \(-0.835181\pi\)
0.863108 + 0.505019i \(0.168515\pi\)
\(284\) 0.685436 1.18721i 0.0406732 0.0704480i
\(285\) 5.95226 + 10.3096i 0.352582 + 0.610689i
\(286\) 4.48108 0.264972
\(287\) −32.0233 + 7.04745i −1.89028 + 0.415998i
\(288\) −1.00000 −0.0589256
\(289\) −6.04389 10.4683i −0.355523 0.615783i
\(290\) 0.956115 1.65604i 0.0561450 0.0972460i
\(291\) 4.68291 8.11103i 0.274517 0.475477i
\(292\) 5.45611 + 9.45027i 0.319295 + 0.553035i
\(293\) −15.8717 −0.927237 −0.463619 0.886035i \(-0.653449\pi\)
−0.463619 + 0.886035i \(0.653449\pi\)
\(294\) −6.35327 + 2.93869i −0.370530 + 0.171388i
\(295\) −1.31324 −0.0764598
\(296\) −0.612735 1.06129i −0.0356145 0.0616861i
\(297\) 1.17169 2.02943i 0.0679883 0.117759i
\(298\) −9.63770 + 16.6930i −0.558297 + 0.966999i
\(299\) 2.12780 + 3.68547i 0.123054 + 0.213136i
\(300\) −1.34338 −0.0775601
\(301\) −0.809389 + 0.178124i −0.0466524 + 0.0102669i
\(302\) −4.39331 −0.252806
\(303\) 8.97723 + 15.5490i 0.515728 + 0.893267i
\(304\) 3.11274 5.39142i 0.178528 0.309219i
\(305\) 2.18544 3.78529i 0.125138 0.216745i
\(306\) −2.69665 4.67074i −0.154157 0.267009i
\(307\) −8.45359 −0.482472 −0.241236 0.970467i \(-0.577553\pi\)
−0.241236 + 0.970467i \(0.577553\pi\)
\(308\) −4.18158 4.57759i −0.238268 0.260832i
\(309\) −17.0774 −0.971501
\(310\) 2.75561 + 4.77285i 0.156508 + 0.271080i
\(311\) 7.13385 12.3562i 0.404523 0.700655i −0.589743 0.807591i \(-0.700771\pi\)
0.994266 + 0.106936i \(0.0341041\pi\)
\(312\) 0.956115 1.65604i 0.0541293 0.0937547i
\(313\) 6.72932 + 11.6555i 0.380364 + 0.658809i 0.991114 0.133014i \(-0.0424655\pi\)
−0.610750 + 0.791823i \(0.709132\pi\)
\(314\) 5.08777 0.287120
\(315\) 1.52882 4.82277i 0.0861390 0.271732i
\(316\) 11.0198 0.619912
\(317\) −3.50989 6.07932i −0.197135 0.341448i 0.750463 0.660912i \(-0.229831\pi\)
−0.947598 + 0.319464i \(0.896497\pi\)
\(318\) 2.56885 4.44938i 0.144054 0.249509i
\(319\) 1.17169 2.02943i 0.0656020 0.113626i
\(320\) −0.956115 1.65604i −0.0534484 0.0925754i
\(321\) 13.0801 0.730058
\(322\) 1.77925 5.61278i 0.0991537 0.312788i
\(323\) 33.5759 1.86821
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 1.28442 2.22469i 0.0712471 0.123404i
\(326\) 8.46216 14.6569i 0.468676 0.811770i
\(327\) 4.14155 + 7.17338i 0.229028 + 0.396689i
\(328\) −12.3933 −0.684306
\(329\) 0.102840 + 0.112579i 0.00566976 + 0.00620670i
\(330\) 4.48108 0.246675
\(331\) 14.8344 + 25.6939i 0.815370 + 1.41226i 0.909062 + 0.416661i \(0.136800\pi\)
−0.0936923 + 0.995601i \(0.529867\pi\)
\(332\) −8.90838 + 15.4298i −0.488911 + 0.846818i
\(333\) 0.612735 1.06129i 0.0335777 0.0581582i
\(334\) 12.1528 + 21.0492i 0.664970 + 1.15176i
\(335\) −12.1678 −0.664800
\(336\) −2.58392 + 0.568650i −0.140964 + 0.0310224i
\(337\) −32.0147 −1.74395 −0.871977 0.489547i \(-0.837162\pi\)
−0.871977 + 0.489547i \(0.837162\pi\)
\(338\) −4.67169 8.09160i −0.254106 0.440125i
\(339\) 5.08392 8.80561i 0.276121 0.478255i
\(340\) 5.15662 8.93153i 0.279657 0.484380i
\(341\) 3.37692 + 5.84899i 0.182870 + 0.316741i
\(342\) 6.22547 0.336635
\(343\) −14.7453 + 11.2061i −0.796169 + 0.605074i
\(344\) −0.313241 −0.0168888
\(345\) 2.12780 + 3.68547i 0.114557 + 0.198419i
\(346\) −7.01375 + 12.1482i −0.377061 + 0.653089i
\(347\) −8.15277 + 14.1210i −0.437664 + 0.758056i −0.997509 0.0705417i \(-0.977527\pi\)
0.559845 + 0.828597i \(0.310861\pi\)
\(348\) −0.500000 0.866025i −0.0268028 0.0464238i
\(349\) −4.97251 −0.266172 −0.133086 0.991104i \(-0.542489\pi\)
−0.133086 + 0.991104i \(0.542489\pi\)
\(350\) −3.47118 + 0.763913i −0.185543 + 0.0408329i
\(351\) 1.91223 0.102067
\(352\) −1.17169 2.02943i −0.0624513 0.108169i
\(353\) −5.14759 + 8.91589i −0.273979 + 0.474545i −0.969877 0.243595i \(-0.921673\pi\)
0.695898 + 0.718140i \(0.255006\pi\)
\(354\) −0.343380 + 0.594751i −0.0182504 + 0.0316107i
\(355\) 1.31071 + 2.27022i 0.0695654 + 0.120491i
\(356\) −2.28310 −0.121004
\(357\) −9.62395 10.5354i −0.509354 0.557591i
\(358\) 9.79696 0.517786
\(359\) 4.05895 + 7.03032i 0.214223 + 0.371046i 0.953032 0.302869i \(-0.0979446\pi\)
−0.738809 + 0.673915i \(0.764611\pi\)
\(360\) 0.956115 1.65604i 0.0503917 0.0872809i
\(361\) −9.87824 + 17.1096i −0.519907 + 0.900506i
\(362\) 2.77321 + 4.80334i 0.145757 + 0.252458i
\(363\) −5.50857 −0.289125
\(364\) 1.52882 4.82277i 0.0801317 0.252782i
\(365\) −20.8667 −1.09221
\(366\) −1.14287 1.97952i −0.0597390 0.103471i
\(367\) −16.4635 + 28.5156i −0.859387 + 1.48850i 0.0131282 + 0.999914i \(0.495821\pi\)
−0.872515 + 0.488588i \(0.837512\pi\)
\(368\) 1.11274 1.92731i 0.0580053 0.100468i
\(369\) −6.19665 10.7329i −0.322585 0.558733i
\(370\) 2.34338 0.121827
\(371\) 4.10756 12.9576i 0.213254 0.672726i
\(372\) 2.88209 0.149429
\(373\) 9.14892 + 15.8464i 0.473713 + 0.820495i 0.999547 0.0300922i \(-0.00958009\pi\)
−0.525834 + 0.850587i \(0.676247\pi\)
\(374\) 6.31928 10.9453i 0.326762 0.565969i
\(375\) 6.06500 10.5049i 0.313195 0.542470i
\(376\) 0.0288161 + 0.0499109i 0.00148607 + 0.00257396i
\(377\) 1.91223 0.0984848
\(378\) −1.78442 1.95341i −0.0917809 0.100473i
\(379\) 22.0044 1.13029 0.565145 0.824992i \(-0.308820\pi\)
0.565145 + 0.824992i \(0.308820\pi\)
\(380\) 5.95226 + 10.3096i 0.305345 + 0.528872i
\(381\) −2.05378 + 3.55725i −0.105218 + 0.182244i
\(382\) −6.50604 + 11.2688i −0.332878 + 0.576562i
\(383\) −11.4622 19.8530i −0.585689 1.01444i −0.994789 0.101953i \(-0.967491\pi\)
0.409100 0.912489i \(-0.365843\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 11.5787 2.54817i 0.590107 0.129867i
\(386\) 4.95007 0.251952
\(387\) −0.156620 0.271275i −0.00796146 0.0137897i
\(388\) 4.68291 8.11103i 0.237739 0.411775i
\(389\) −5.23536 + 9.06792i −0.265444 + 0.459762i −0.967680 0.252182i \(-0.918852\pi\)
0.702236 + 0.711944i \(0.252185\pi\)
\(390\) 1.82831 + 3.16673i 0.0925801 + 0.160353i
\(391\) 12.0026 0.607000
\(392\) −6.35327 + 2.93869i −0.320889 + 0.148426i
\(393\) −15.9545 −0.804796
\(394\) −4.86967 8.43451i −0.245330 0.424924i
\(395\) −10.5362 + 18.2492i −0.530133 + 0.918217i
\(396\) 1.17169 2.02943i 0.0588796 0.101983i
\(397\) 1.86098 + 3.22331i 0.0933998 + 0.161773i 0.908940 0.416928i \(-0.136893\pi\)
−0.815540 + 0.578701i \(0.803560\pi\)
\(398\) −11.1025 −0.556518
\(399\) 16.0861 3.54011i 0.805313 0.177227i
\(400\) −1.34338 −0.0671690
\(401\) 8.85460 + 15.3366i 0.442177 + 0.765874i 0.997851 0.0655269i \(-0.0208728\pi\)
−0.555673 + 0.831401i \(0.687539\pi\)
\(402\) −3.18158 + 5.51067i −0.158683 + 0.274847i
\(403\) −2.75561 + 4.77285i −0.137267 + 0.237753i
\(404\) 8.97723 + 15.5490i 0.446634 + 0.773592i
\(405\) 1.91223 0.0950194
\(406\) −1.78442 1.95341i −0.0885595 0.0969463i
\(407\) 2.87174 0.142347
\(408\) −2.69665 4.67074i −0.133504 0.231236i
\(409\) −13.1791 + 22.8268i −0.651662 + 1.12871i 0.331057 + 0.943611i \(0.392595\pi\)
−0.982719 + 0.185102i \(0.940739\pi\)
\(410\) 11.8494 20.5238i 0.585201 1.01360i
\(411\) 4.71558 + 8.16762i 0.232602 + 0.402879i
\(412\) −17.0774 −0.841344
\(413\) −0.549060 + 1.73205i −0.0270175 + 0.0852286i
\(414\) 2.22547 0.109376
\(415\) −17.0349 29.5052i −0.836208 1.44836i
\(416\) 0.956115 1.65604i 0.0468774 0.0811940i
\(417\) 7.42212 12.8555i 0.363463 0.629536i
\(418\) 7.29432 + 12.6341i 0.356777 + 0.617956i
\(419\) 35.0543 1.71252 0.856258 0.516549i \(-0.172784\pi\)
0.856258 + 0.516549i \(0.172784\pi\)
\(420\) 1.52882 4.82277i 0.0745986 0.235327i
\(421\) −9.42851 −0.459517 −0.229759 0.973248i \(-0.573794\pi\)
−0.229759 + 0.973248i \(0.573794\pi\)
\(422\) −7.92598 13.7282i −0.385830 0.668278i
\(423\) −0.0288161 + 0.0499109i −0.00140108 + 0.00242675i
\(424\) 2.56885 4.44938i 0.124754 0.216081i
\(425\) −3.62263 6.27458i −0.175723 0.304362i
\(426\) 1.37087 0.0664190
\(427\) −4.07874 4.46501i −0.197384 0.216077i
\(428\) 13.0801 0.632249
\(429\) 2.24054 + 3.88073i 0.108174 + 0.187363i
\(430\) 0.299494 0.518739i 0.0144429 0.0250158i
\(431\) −7.87053 + 13.6322i −0.379110 + 0.656638i −0.990933 0.134357i \(-0.957103\pi\)
0.611823 + 0.790995i \(0.290437\pi\)
\(432\) −0.500000 0.866025i −0.0240563 0.0416667i
\(433\) 1.69711 0.0815578 0.0407789 0.999168i \(-0.487016\pi\)
0.0407789 + 0.999168i \(0.487016\pi\)
\(434\) 7.44709 1.63890i 0.357472 0.0786697i
\(435\) 1.91223 0.0916844
\(436\) 4.14155 + 7.17338i 0.198344 + 0.343542i
\(437\) −6.92730 + 11.9984i −0.331378 + 0.573963i
\(438\) −5.45611 + 9.45027i −0.260703 + 0.451551i
\(439\) 12.2956 + 21.2967i 0.586839 + 1.01643i 0.994643 + 0.103366i \(0.0329612\pi\)
−0.407804 + 0.913069i \(0.633705\pi\)
\(440\) 4.48108 0.213627
\(441\) −5.72162 4.03275i −0.272458 0.192036i
\(442\) 10.3132 0.490551
\(443\) −10.6240 18.4012i −0.504759 0.874269i −0.999985 0.00550422i \(-0.998248\pi\)
0.495226 0.868764i \(-0.335085\pi\)
\(444\) 0.612735 1.06129i 0.0290791 0.0503665i
\(445\) 2.18291 3.78091i 0.103480 0.179232i
\(446\) −12.1240 20.9993i −0.574086 0.994346i
\(447\) −19.2754 −0.911695
\(448\) −2.58392 + 0.568650i −0.122079 + 0.0268662i
\(449\) −31.3330 −1.47870 −0.739349 0.673323i \(-0.764866\pi\)
−0.739349 + 0.673323i \(0.764866\pi\)
\(450\) −0.671690 1.16340i −0.0316638 0.0548432i
\(451\) 14.5211 25.1513i 0.683772 1.18433i
\(452\) 5.08392 8.80561i 0.239127 0.414181i
\(453\) −2.19665 3.80472i −0.103208 0.178761i
\(454\) −3.37087 −0.158203
\(455\) 6.52496 + 7.14290i 0.305895 + 0.334864i
\(456\) 6.22547 0.291534
\(457\) −11.8705 20.5604i −0.555280 0.961774i −0.997882 0.0650551i \(-0.979278\pi\)
0.442601 0.896718i \(-0.354056\pi\)
\(458\) 3.46601 6.00330i 0.161956 0.280516i
\(459\) 2.69665 4.67074i 0.125869 0.218012i
\(460\) 2.12780 + 3.68547i 0.0992094 + 0.171836i
\(461\) 10.2332 0.476606 0.238303 0.971191i \(-0.423409\pi\)
0.238303 + 0.971191i \(0.423409\pi\)
\(462\) 1.87352 5.91015i 0.0871640 0.274965i
\(463\) 24.8770 1.15613 0.578067 0.815989i \(-0.303807\pi\)
0.578067 + 0.815989i \(0.303807\pi\)
\(464\) −0.500000 0.866025i −0.0232119 0.0402042i
\(465\) −2.75561 + 4.77285i −0.127788 + 0.221336i
\(466\) 8.43334 14.6070i 0.390667 0.676655i
\(467\) 0.540034 + 0.935366i 0.0249898 + 0.0432836i 0.878250 0.478202i \(-0.158711\pi\)
−0.853260 + 0.521486i \(0.825378\pi\)
\(468\) 1.91223 0.0883928
\(469\) −5.08732 + 16.0483i −0.234910 + 0.741043i
\(470\) −0.110206 −0.00508342
\(471\) 2.54389 + 4.40614i 0.117216 + 0.203024i
\(472\) −0.343380 + 0.594751i −0.0158053 + 0.0273756i
\(473\) 0.367021 0.635699i 0.0168756 0.0292295i
\(474\) 5.50989 + 9.54342i 0.253078 + 0.438344i
\(475\) 8.36317 0.383729
\(476\) −9.62395 10.5354i −0.441113 0.482888i
\(477\) 5.13770 0.235239
\(478\) −2.28057 3.95007i −0.104311 0.180672i
\(479\) −8.09514 + 14.0212i −0.369876 + 0.640644i −0.989546 0.144218i \(-0.953933\pi\)
0.619670 + 0.784863i \(0.287267\pi\)
\(480\) 0.956115 1.65604i 0.0436405 0.0755875i
\(481\) 1.17169 + 2.02943i 0.0534245 + 0.0925339i
\(482\) 25.1850 1.14714
\(483\) 5.75043 1.26551i 0.261654 0.0575829i
\(484\) −5.50857 −0.250390
\(485\) 8.95479 + 15.5102i 0.406616 + 0.704280i
\(486\) 0.500000 0.866025i 0.0226805 0.0392837i
\(487\) 2.22932 3.86130i 0.101020 0.174972i −0.811085 0.584928i \(-0.801123\pi\)
0.912105 + 0.409956i \(0.134456\pi\)
\(488\) −1.14287 1.97952i −0.0517355 0.0896085i
\(489\) 16.9243 0.765344
\(490\) 1.20787 13.3310i 0.0545661 0.602233i
\(491\) 13.5337 0.610765 0.305383 0.952230i \(-0.401216\pi\)
0.305383 + 0.952230i \(0.401216\pi\)
\(492\) −6.19665 10.7329i −0.279367 0.483877i
\(493\) 2.69665 4.67074i 0.121451 0.210360i
\(494\) −5.95226 + 10.3096i −0.267805 + 0.463852i
\(495\) 2.24054 + 3.88073i 0.100705 + 0.174426i
\(496\) 2.88209 0.129410
\(497\) 3.54222 0.779547i 0.158890 0.0349675i
\(498\) −17.8168 −0.798388
\(499\) 2.12010 + 3.67212i 0.0949087 + 0.164387i 0.909571 0.415550i \(-0.136411\pi\)
−0.814662 + 0.579936i \(0.803077\pi\)
\(500\) 6.06500 10.5049i 0.271235 0.469793i
\(501\) −12.1528 + 21.0492i −0.542946 + 0.940409i
\(502\) 6.52496 + 11.3016i 0.291223 + 0.504414i
\(503\) 5.02243 0.223939 0.111970 0.993712i \(-0.464284\pi\)
0.111970 + 0.993712i \(0.464284\pi\)
\(504\) −1.78442 1.95341i −0.0794846 0.0870120i
\(505\) −34.3330 −1.52780
\(506\) 2.60756 + 4.51643i 0.115920 + 0.200780i
\(507\) 4.67169 8.09160i 0.207477 0.359361i
\(508\) −2.05378 + 3.55725i −0.0911218 + 0.157828i
\(509\) −13.9057 24.0854i −0.616361 1.06757i −0.990144 0.140052i \(-0.955273\pi\)
0.373783 0.927516i \(-0.378060\pi\)
\(510\) 10.3132 0.456678
\(511\) −8.72426 + 27.5213i −0.385939 + 1.21747i
\(512\) −1.00000 −0.0441942
\(513\) 3.11274 + 5.39142i 0.137431 + 0.238037i
\(514\) 4.42212 7.65934i 0.195052 0.337839i
\(515\) 16.3280 28.2809i 0.719496 1.24620i
\(516\) −0.156620 0.271275i −0.00689483 0.0119422i
\(517\) −0.135054 −0.00593966
\(518\) 0.979756 3.09071i 0.0430480 0.135798i
\(519\) −14.0275 −0.615739
\(520\) 1.82831 + 3.16673i 0.0801767 + 0.138870i
\(521\) −15.1201 + 26.1888i −0.662424 + 1.14735i 0.317553 + 0.948240i \(0.397139\pi\)
−0.979977 + 0.199111i \(0.936195\pi\)
\(522\) 0.500000 0.866025i 0.0218844 0.0379049i
\(523\) −15.4045 26.6814i −0.673593 1.16670i −0.976878 0.213797i \(-0.931417\pi\)
0.303285 0.952900i \(-0.401917\pi\)
\(524\) −15.9545 −0.696974
\(525\) −2.39716 2.62418i −0.104621 0.114528i
\(526\) 31.2600 1.36300
\(527\) 7.77200 + 13.4615i 0.338554 + 0.586392i
\(528\) 1.17169 2.02943i 0.0509913 0.0883194i
\(529\) 9.02364 15.6294i 0.392332 0.679539i
\(530\) 4.91223 + 8.50823i 0.213374 + 0.369574i
\(531\) −0.686759 −0.0298028
\(532\) 16.0861 3.54011i 0.697421 0.153483i
\(533\) 23.6988 1.02651
\(534\) −1.14155 1.97722i −0.0493997 0.0855629i
\(535\) −12.5060 + 21.6611i −0.540683 + 0.936491i
\(536\) −3.18158 + 5.51067i −0.137424 + 0.238025i
\(537\) 4.89848 + 8.48442i 0.211385 + 0.366130i
\(538\) −5.63419 −0.242907
\(539\) 1.48021 16.3367i 0.0637572 0.703673i
\(540\) 1.91223 0.0822892
\(541\) 6.95359 + 12.0440i 0.298958 + 0.517810i 0.975898 0.218228i \(-0.0700276\pi\)
−0.676940 + 0.736038i \(0.736694\pi\)
\(542\) −2.01892 + 3.49687i −0.0867201 + 0.150204i
\(543\) −2.77321 + 4.80334i −0.119010 + 0.206131i
\(544\) −2.69665 4.67074i −0.115618 0.200256i
\(545\) −15.8392 −0.678476
\(546\) 4.94105 1.08739i 0.211457 0.0465360i
\(547\) −18.6885 −0.799062 −0.399531 0.916720i \(-0.630827\pi\)
−0.399531 + 0.916720i \(0.630827\pi\)
\(548\) 4.71558 + 8.16762i 0.201439 + 0.348903i
\(549\) 1.14287 1.97952i 0.0487767 0.0844837i
\(550\) 1.57402 2.72629i 0.0671166 0.116249i
\(551\) 3.11274 + 5.39142i 0.132607 + 0.229682i
\(552\) 2.22547 0.0947223
\(553\) 19.6640 + 21.5262i 0.836198 + 0.915388i
\(554\) 5.57655 0.236925
\(555\) 1.17169 + 2.02943i 0.0497355 + 0.0861443i
\(556\) 7.42212 12.8555i 0.314768 0.545194i
\(557\) −4.52243 + 7.83309i −0.191622 + 0.331899i −0.945788 0.324785i \(-0.894708\pi\)
0.754166 + 0.656684i \(0.228041\pi\)
\(558\) 1.44105 + 2.49596i 0.0610043 + 0.105663i
\(559\) 0.598988 0.0253345
\(560\) 1.52882 4.82277i 0.0646043 0.203799i
\(561\) 12.6386 0.533601
\(562\) 1.36834 + 2.37004i 0.0577201 + 0.0999741i
\(563\) 8.14287 14.1039i 0.343181 0.594407i −0.641840 0.766838i \(-0.721829\pi\)
0.985022 + 0.172431i \(0.0551622\pi\)
\(564\) −0.0288161 + 0.0499109i −0.00121337 + 0.00210163i
\(565\) 9.72162 + 16.8383i 0.408992 + 0.708394i
\(566\) −0.195331 −0.00821039
\(567\) 0.799494 2.52206i 0.0335756 0.105917i
\(568\) 1.37087 0.0575206
\(569\) 8.98625 + 15.5646i 0.376723 + 0.652504i 0.990583 0.136911i \(-0.0437174\pi\)
−0.613860 + 0.789415i \(0.710384\pi\)
\(570\) −5.95226 + 10.3096i −0.249313 + 0.431823i
\(571\) −3.88594 + 6.73065i −0.162622 + 0.281669i −0.935808 0.352510i \(-0.885328\pi\)
0.773186 + 0.634179i \(0.218662\pi\)
\(572\) 2.24054 + 3.88073i 0.0936817 + 0.162261i
\(573\) −13.0121 −0.543588
\(574\) −22.1149 24.2093i −0.923059 1.01048i
\(575\) 2.98965 0.124677
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −15.4320 + 26.7290i −0.642443 + 1.11274i 0.342442 + 0.939539i \(0.388746\pi\)
−0.984886 + 0.173206i \(0.944587\pi\)
\(578\) 6.04389 10.4683i 0.251392 0.435425i
\(579\) 2.47504 + 4.28689i 0.102859 + 0.178157i
\(580\) 1.91223 0.0794010
\(581\) −46.0371 + 10.1315i −1.90994 + 0.420325i
\(582\) 9.36581 0.388226
\(583\) 6.01979 + 10.4266i 0.249314 + 0.431825i
\(584\) −5.45611 + 9.45027i −0.225776 + 0.391055i
\(585\) −1.82831 + 3.16673i −0.0755913 + 0.130928i
\(586\) −7.93587 13.7453i −0.327828 0.567814i
\(587\) −8.56115 −0.353356 −0.176678 0.984269i \(-0.556535\pi\)
−0.176678 + 0.984269i \(0.556535\pi\)
\(588\) −5.72162 4.03275i −0.235956 0.166308i
\(589\) −17.9424 −0.739302
\(590\) −0.656620 1.13730i −0.0270326 0.0468219i
\(591\) 4.86967 8.43451i 0.200311 0.346949i
\(592\) 0.612735 1.06129i 0.0251833 0.0436187i
\(593\) −14.5826 25.2578i −0.598835 1.03721i −0.992993 0.118171i \(-0.962297\pi\)
0.394158 0.919043i \(-0.371036\pi\)
\(594\) 2.34338 0.0961500
\(595\) 26.6486 5.86462i 1.09249 0.240426i
\(596\) −19.2754 −0.789551
\(597\) −5.55125 9.61505i −0.227198 0.393518i
\(598\) −2.12780 + 3.68547i −0.0870124 + 0.150710i
\(599\) −11.4833 + 19.8896i −0.469194 + 0.812667i −0.999380 0.0352140i \(-0.988789\pi\)
0.530186 + 0.847881i \(0.322122\pi\)
\(600\) −0.671690 1.16340i −0.0274216 0.0474956i
\(601\) 16.2151 0.661429 0.330714 0.943731i \(-0.392710\pi\)
0.330714 + 0.943731i \(0.392710\pi\)
\(602\) −0.558955 0.611889i −0.0227813 0.0249387i
\(603\) −6.36317 −0.259128
\(604\) −2.19665 3.80472i −0.0893806 0.154812i
\(605\) 5.26683 9.12241i 0.214127 0.370879i
\(606\) −8.97723 + 15.5490i −0.364675 + 0.631635i
\(607\) 24.0474 + 41.6513i 0.976054 + 1.69057i 0.676413 + 0.736523i \(0.263534\pi\)
0.299641 + 0.954052i \(0.403133\pi\)
\(608\) 6.22547 0.252476
\(609\) 0.799494 2.52206i 0.0323971 0.102199i
\(610\) 4.37087 0.176971
\(611\) −0.0551029 0.0954410i −0.00222922 0.00386113i
\(612\) 2.69665 4.67074i 0.109006 0.188804i
\(613\) 16.7479 29.0082i 0.676442 1.17163i −0.299604 0.954064i \(-0.596854\pi\)
0.976045 0.217567i \(-0.0698122\pi\)
\(614\) −4.22679 7.32102i −0.170579 0.295452i
\(615\) 23.6988 0.955630
\(616\) 1.87352 5.91015i 0.0754862 0.238127i
\(617\) −8.69885 −0.350202 −0.175101 0.984550i \(-0.556025\pi\)
−0.175101 + 0.984550i \(0.556025\pi\)
\(618\) −8.53871 14.7895i −0.343477 0.594920i
\(619\) −7.45226 + 12.9077i −0.299532 + 0.518804i −0.976029 0.217641i \(-0.930164\pi\)
0.676497 + 0.736445i \(0.263497\pi\)
\(620\) −2.75561 + 4.77285i −0.110668 + 0.191682i
\(621\) 1.11274 + 1.92731i 0.0446525 + 0.0773404i
\(622\) 14.2677 0.572082
\(623\) −4.07402 4.45984i −0.163222 0.178680i
\(624\) 1.91223 0.0765504
\(625\) 8.23922 + 14.2707i 0.329569 + 0.570830i
\(626\) −6.72932 + 11.6555i −0.268958 + 0.465849i
\(627\) −7.29432 + 12.6341i −0.291307 + 0.504559i
\(628\) 2.54389 + 4.40614i 0.101512 + 0.175824i
\(629\) 6.60934 0.263532
\(630\) 4.94105 1.08739i 0.196856 0.0433226i
\(631\) −23.5035 −0.935660 −0.467830 0.883818i \(-0.654964\pi\)
−0.467830 + 0.883818i \(0.654964\pi\)
\(632\) 5.50989 + 9.54342i 0.219172 + 0.379617i
\(633\) 7.92598 13.7282i 0.315029 0.545647i
\(634\) 3.50989 6.07932i 0.139396 0.241440i
\(635\) −3.92730 6.80228i −0.155850 0.269940i
\(636\) 5.13770 0.203723
\(637\) 12.1489 5.61945i 0.481358 0.222651i
\(638\) 2.34338 0.0927753
\(639\) 0.685436 + 1.18721i 0.0271154 + 0.0469653i
\(640\) 0.956115 1.65604i 0.0377937 0.0654607i
\(641\) −7.89331 + 13.6716i −0.311767 + 0.539996i −0.978745 0.205081i \(-0.934254\pi\)
0.666978 + 0.745077i \(0.267587\pi\)
\(642\) 6.54003 + 11.3277i 0.258115 + 0.447067i
\(643\) 46.8909 1.84919 0.924597 0.380946i \(-0.124402\pi\)
0.924597 + 0.380946i \(0.124402\pi\)
\(644\) 5.75043 1.26551i 0.226599 0.0498682i
\(645\) 0.598988 0.0235851
\(646\) 16.7879 + 29.0776i 0.660513 + 1.14404i
\(647\) −18.2402 + 31.5930i −0.717096 + 1.24205i 0.245049 + 0.969511i \(0.421196\pi\)
−0.962145 + 0.272537i \(0.912137\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −0.804669 1.39373i −0.0315860 0.0547086i
\(650\) 2.56885 0.100759
\(651\) 5.14287 + 5.62992i 0.201565 + 0.220654i
\(652\) 16.9243 0.662807
\(653\) 16.1390 + 27.9536i 0.631569 + 1.09391i 0.987231 + 0.159295i \(0.0509220\pi\)
−0.355662 + 0.934615i \(0.615745\pi\)
\(654\) −4.14155 + 7.17338i −0.161947 + 0.280501i
\(655\) 15.2543 26.4212i 0.596034 1.03236i
\(656\) −6.19665 10.7329i −0.241939 0.419050i
\(657\) −10.9122 −0.425727
\(658\) −0.0460765 + 0.145352i −0.00179625 + 0.00566641i
\(659\) 25.5062 0.993579 0.496789 0.867871i \(-0.334512\pi\)
0.496789 + 0.867871i \(0.334512\pi\)
\(660\) 2.24054 + 3.88073i 0.0872129 + 0.151057i
\(661\) −1.23317 + 2.13592i −0.0479649 + 0.0830776i −0.889011 0.457886i \(-0.848607\pi\)
0.841046 + 0.540963i \(0.181940\pi\)
\(662\) −14.8344 + 25.6939i −0.576554 + 0.998620i
\(663\) 5.15662 + 8.93153i 0.200267 + 0.346872i
\(664\) −17.8168 −0.691424
\(665\) −9.51760 + 30.0240i −0.369077 + 1.16428i
\(666\) 1.22547 0.0474860
\(667\) 1.11274 + 1.92731i 0.0430853 + 0.0746259i
\(668\) −12.1528 + 21.0492i −0.470205 + 0.814418i
\(669\) 12.1240 20.9993i 0.468739 0.811880i
\(670\) −6.08392 10.5377i −0.235042 0.407105i
\(671\) 5.35637 0.206781
\(672\) −1.78442 1.95341i −0.0688357 0.0753546i
\(673\) 0.170251 0.00656270 0.00328135 0.999995i \(-0.498956\pi\)
0.00328135 + 0.999995i \(0.498956\pi\)
\(674\) −16.0074 27.7256i −0.616581 1.06795i
\(675\) 0.671690 1.16340i 0.0258534 0.0447793i
\(676\) 4.67169 8.09160i 0.179680 0.311216i
\(677\) −3.34591 5.79528i −0.128594 0.222731i 0.794538 0.607214i \(-0.207713\pi\)
−0.923132 + 0.384483i \(0.874380\pi\)
\(678\) 10.1678 0.390493
\(679\) 24.2005 5.32587i 0.928730 0.204388i
\(680\) 10.3132 0.395495
\(681\) −1.68544 2.91926i −0.0645861 0.111866i
\(682\) −3.37692 + 5.84899i −0.129309 + 0.223969i
\(683\) −0.299494 + 0.518739i −0.0114598 + 0.0198490i −0.871698 0.490043i \(-0.836981\pi\)
0.860239 + 0.509892i \(0.170315\pi\)
\(684\) 3.11274 + 5.39142i 0.119018 + 0.206146i
\(685\) −18.0345 −0.689064
\(686\) −17.0774 7.16671i −0.652019 0.273626i
\(687\) 6.93202 0.264473
\(688\) −0.156620 0.271275i −0.00597110 0.0103422i
\(689\) −4.91223 + 8.50823i −0.187141 + 0.324138i
\(690\) −2.12780 + 3.68547i −0.0810041 + 0.140303i
\(691\) −2.50517 4.33909i −0.0953013 0.165067i 0.814433 0.580258i \(-0.197048\pi\)
−0.909734 + 0.415191i \(0.863715\pi\)
\(692\) −14.0275 −0.533245
\(693\) 6.05510 1.33256i 0.230014 0.0506199i
\(694\) −16.3055 −0.618950
\(695\) 14.1928 + 24.5827i 0.538364 + 0.932473i
\(696\) 0.500000 0.866025i 0.0189525 0.0328266i
\(697\) 33.4205 57.8859i 1.26589 2.19259i
\(698\) −2.48625 4.30632i −0.0941061 0.162997i
\(699\) 16.8667 0.637957
\(700\) −2.39716 2.62418i −0.0906041 0.0991846i
\(701\) 32.9665 1.24513 0.622565 0.782568i \(-0.286091\pi\)
0.622565 + 0.782568i \(0.286091\pi\)
\(702\) 0.956115 + 1.65604i 0.0360862 + 0.0625032i
\(703\) −3.81456 + 6.60702i −0.143869 + 0.249188i
\(704\) 1.17169 2.02943i 0.0441597 0.0764869i
\(705\) −0.0551029 0.0954410i −0.00207530 0.00359452i
\(706\) −10.2952 −0.387465
\(707\) −14.3545 + 45.2823i −0.539856 + 1.70302i
\(708\) −0.686759 −0.0258100
\(709\) −7.65277 13.2550i −0.287406 0.497801i 0.685784 0.727805i \(-0.259459\pi\)
−0.973190 + 0.230004i \(0.926126\pi\)
\(710\) −1.31071 + 2.27022i −0.0491901 + 0.0851998i
\(711\) −5.50989 + 9.54342i −0.206637 + 0.357906i
\(712\) −1.14155 1.97722i −0.0427814 0.0740996i
\(713\) −6.41401 −0.240206
\(714\) 4.31192 13.6023i 0.161369 0.509052i
\(715\) −8.56885 −0.320457
\(716\) 4.89848 + 8.48442i 0.183065 + 0.317078i
\(717\) 2.28057 3.95007i 0.0851696 0.147518i
\(718\) −4.05895 + 7.03032i −0.151479 + 0.262369i
\(719\) −7.01375 12.1482i −0.261569 0.453050i 0.705090 0.709118i \(-0.250906\pi\)
−0.966659 + 0.256067i \(0.917573\pi\)
\(720\) 1.91223 0.0712646
\(721\) −30.4734 33.3593i −1.13489 1.24236i
\(722\) −19.7565 −0.735260
\(723\) 12.5925 + 21.8108i 0.468320 + 0.811154i
\(724\) −2.77321 + 4.80334i −0.103065 + 0.178515i
\(725\) 0.671690 1.16340i 0.0249459 0.0432076i
\(726\) −2.75429 4.77056i −0.102221 0.177052i
\(727\) −32.7384 −1.21420 −0.607100 0.794625i \(-0.707667\pi\)
−0.607100 + 0.794625i \(0.707667\pi\)
\(728\) 4.94105 1.08739i 0.183127 0.0403013i
\(729\) 1.00000 0.0370370
\(730\) −10.4333 18.0711i −0.386155 0.668841i
\(731\) 0.844702 1.46307i 0.0312424 0.0541135i
\(732\) 1.14287 1.97952i 0.0422418 0.0731650i
\(733\) 22.3340 + 38.6836i 0.824926 + 1.42881i 0.901976 + 0.431786i \(0.142116\pi\)
−0.0770504 + 0.997027i \(0.524550\pi\)
\(734\) −32.9270 −1.21536
\(735\) 12.1489 5.61945i 0.448120 0.207277i
\(736\) 2.22547 0.0820319
\(737\) −7.45566 12.9136i −0.274633 0.475678i
\(738\) 6.19665 10.7329i 0.228102 0.395084i
\(739\) −7.64759 + 13.2460i −0.281321 + 0.487263i −0.971710 0.236175i \(-0.924106\pi\)
0.690389 + 0.723438i \(0.257439\pi\)
\(740\) 1.17169 + 2.02943i 0.0430722 + 0.0746032i
\(741\) −11.9045 −0.437324
\(742\) 13.2754 2.92155i 0.487355 0.107254i
\(743\) −35.5233 −1.30322 −0.651612 0.758553i \(-0.725907\pi\)
−0.651612 + 0.758553i \(0.725907\pi\)
\(744\) 1.44105 + 2.49596i 0.0528313 + 0.0915065i
\(745\) 18.4295 31.9208i 0.675204 1.16949i
\(746\) −9.14892 + 15.8464i −0.334966 + 0.580178i
\(747\) −8.90838 15.4298i −0.325940 0.564545i
\(748\) 12.6386 0.462112
\(749\) 23.3404 + 25.5508i 0.852840 + 0.933606i
\(750\) 12.1300 0.442925
\(751\) −0.502529 0.870406i −0.0183376 0.0317616i 0.856711 0.515797i \(-0.172504\pi\)
−0.875049 + 0.484035i \(0.839171\pi\)
\(752\) −0.0288161 + 0.0499109i −0.00105081 + 0.00182006i
\(753\) −6.52496 + 11.3016i −0.237783 + 0.411852i
\(754\) 0.956115 + 1.65604i 0.0348196 + 0.0603094i
\(755\) 8.40101 0.305744
\(756\) 0.799494 2.52206i 0.0290773 0.0917266i
\(757\) −30.2151 −1.09819 −0.549094 0.835761i \(-0.685027\pi\)
−0.549094 + 0.835761i \(0.685027\pi\)
\(758\) 11.0022 + 19.0564i 0.399618 + 0.692158i
\(759\) −2.60756 + 4.51643i −0.0946485 + 0.163936i
\(760\) −5.95226 + 10.3096i −0.215911 + 0.373969i
\(761\) −0.581728 1.00758i −0.0210876 0.0365248i 0.855289 0.518151i \(-0.173380\pi\)
−0.876377 + 0.481626i \(0.840046\pi\)
\(762\) −4.10756 −0.148801
\(763\) −6.62229 + 20.8905i −0.239743 + 0.756288i
\(764\) −13.0121 −0.470761
\(765\) 5.15662 + 8.93153i 0.186438 + 0.322920i
\(766\) 11.4622 19.8530i 0.414145 0.717319i
\(767\) 0.656620 1.13730i 0.0237092 0.0410655i
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) 34.9116 1.25894 0.629471 0.777024i \(-0.283271\pi\)
0.629471 + 0.777024i \(0.283271\pi\)
\(770\) 7.99615 + 8.75340i 0.288161 + 0.315451i
\(771\) 8.84425 0.318518
\(772\) 2.47504 + 4.28689i 0.0890785 + 0.154288i
\(773\) 15.1687 26.2730i 0.545580 0.944973i −0.452990 0.891516i \(-0.649643\pi\)
0.998570 0.0534573i \(-0.0170241\pi\)
\(774\) 0.156620 0.271275i 0.00562961 0.00975076i
\(775\) 1.93587 + 3.35303i 0.0695385 + 0.120444i
\(776\) 9.36581 0.336213
\(777\) 3.16652 0.696864i 0.113598 0.0249998i
\(778\) −10.4707 −0.375394
\(779\) 38.5771 + 66.8175i 1.38217 + 2.39398i
\(780\) −1.82831 + 3.16673i −0.0654640 + 0.113387i
\(781\) −1.60624 + 2.78209i −0.0574757 + 0.0995508i
\(782\) 6.00132 + 10.3946i 0.214607 + 0.371710i
\(783\) 1.00000 0.0357371
\(784\) −5.72162 4.03275i −0.204344 0.144027i
\(785\) −9.72898 −0.347242
\(786\) −7.97723 13.8170i −0.284538 0.492835i
\(787\) 9.52243 16.4933i 0.339438 0.587924i −0.644889 0.764276i \(-0.723096\pi\)
0.984327 + 0.176352i \(0.0564297\pi\)
\(788\) 4.86967 8.43451i 0.173475 0.300467i
\(789\) 15.6300 + 27.0719i 0.556443 + 0.963787i
\(790\) −21.0724 −0.749721
\(791\) 26.2729 5.78194i 0.934156 0.205582i
\(792\) 2.34338 0.0832684
\(793\) 2.18544 + 3.78529i 0.0776071 + 0.134419i
\(794\) −1.86098 + 3.22331i −0.0660436 + 0.114391i
\(795\) −4.91223 + 8.50823i −0.174219 + 0.301756i
\(796\) −5.55125 9.61505i −0.196759 0.340796i
\(797\) 20.3012 0.719104 0.359552 0.933125i \(-0.382930\pi\)
0.359552 + 0.933125i \(0.382930\pi\)
\(798\) 11.1089 + 12.1609i 0.393250 + 0.430492i
\(799\) −0.310828 −0.0109963
\(800\) −0.671690 1.16340i −0.0237478 0.0411324i
\(801\) 1.14155 1.97722i 0.0403347 0.0698618i
\(802\) −8.85460 + 15.3366i −0.312667 + 0.541555i
\(803\) −12.7857 22.1456i −0.451199 0.781500i
\(804\) −6.36317 −0.224412
\(805\) −3.40233 + 10.7329i −0.119917 + 0.378286i
\(806\) −5.51122 −0.194124
\(807\) −2.81709 4.87935i −0.0991664 0.171761i
\(808\) −8.97723 + 15.5490i −0.315818 + 0.547012i
\(809\) −4.58139 + 7.93520i −0.161073 + 0.278987i −0.935254 0.353978i \(-0.884829\pi\)
0.774181 + 0.632965i \(0.218162\pi\)
\(810\) 0.956115 + 1.65604i 0.0335944 + 0.0581873i
\(811\) 42.6757 1.49855 0.749274 0.662260i \(-0.230403\pi\)
0.749274 + 0.662260i \(0.230403\pi\)
\(812\) 0.799494 2.52206i 0.0280567 0.0885071i
\(813\) −4.03784 −0.141613
\(814\) 1.43587 + 2.48700i 0.0503272 + 0.0871693i
\(815\) −16.1816 + 28.0273i −0.566816 + 0.981754i
\(816\) 2.69665 4.67074i 0.0944018 0.163509i
\(817\) 0.975036 + 1.68881i 0.0341122 + 0.0590840i
\(818\) −26.3581 −0.921590
\(819\) 3.41223 + 3.73538i 0.119233 + 0.130525i
\(820\) 23.6988 0.827600
\(821\) 4.88594 + 8.46270i 0.170521 + 0.295350i 0.938602 0.345002i \(-0.112122\pi\)
−0.768081 + 0.640352i \(0.778788\pi\)
\(822\) −4.71558 + 8.16762i −0.164475 + 0.284878i
\(823\) −0.553780 + 0.959176i −0.0193036 + 0.0334348i −0.875516 0.483189i \(-0.839478\pi\)
0.856212 + 0.516624i \(0.172812\pi\)
\(824\) −8.53871 14.7895i −0.297460 0.515216i
\(825\) 3.14805 0.109601
\(826\) −1.77453 + 0.390526i −0.0617438 + 0.0135881i
\(827\) −50.5378 −1.75737 −0.878686 0.477401i \(-0.841579\pi\)
−0.878686 + 0.477401i \(0.841579\pi\)
\(828\) 1.11274 + 1.92731i 0.0386702 + 0.0669788i
\(829\) −4.31709 + 7.47742i −0.149939 + 0.259702i −0.931205 0.364497i \(-0.881241\pi\)
0.781266 + 0.624198i \(0.214574\pi\)
\(830\) 17.0349 29.5052i 0.591289 1.02414i
\(831\) 2.78828 + 4.82944i 0.0967242 + 0.167531i
\(832\) 1.91223 0.0662946
\(833\) 3.40672 37.5991i 0.118036 1.30273i
\(834\) 14.8442 0.514014
\(835\) −23.2389 40.2509i −0.804215 1.39294i
\(836\) −7.29432 + 12.6341i −0.252279 + 0.436961i
\(837\) −1.44105 + 2.49596i −0.0498098 + 0.0862731i
\(838\) 17.5272 + 30.3579i 0.605466 + 1.04870i
\(839\) −2.15311 −0.0743335 −0.0371667 0.999309i \(-0.511833\pi\)
−0.0371667 + 0.999309i \(0.511833\pi\)
\(840\) 4.94105 1.08739i 0.170482 0.0375185i
\(841\) 1.00000 0.0344828
\(842\) −4.71425 8.16532i −0.162464 0.281396i
\(843\) −1.36834 + 2.37004i −0.0471283 + 0.0816285i
\(844\) 7.92598 13.7282i 0.272823 0.472544i
\(845\) 8.93334 + 15.4730i 0.307316 + 0.532287i
\(846\) −0.0576321 −0.00198143
\(847\) −9.82963 10.7605i −0.337750 0.369736i
\(848\) 5.13770 0.176429
\(849\) −0.0976657 0.169162i −0.00335188 0.00580562i
\(850\) 3.62263 6.27458i 0.124255 0.215216i
\(851\) −1.36362 + 2.36187i −0.0467444 + 0.0809637i
\(852\) 0.685436 + 1.18721i 0.0234827 + 0.0406732i
\(853\) 33.7437 1.15536 0.577681 0.816262i \(-0.303958\pi\)
0.577681 + 0.816262i \(0.303958\pi\)
\(854\) 1.82744 5.76480i 0.0625338 0.197267i
\(855\) −11.9045 −0.407126
\(856\) 6.54003 + 11.3277i 0.223534 + 0.387172i
\(857\) −3.20919 + 5.55849i −0.109624 + 0.189874i −0.915618 0.402049i \(-0.868298\pi\)
0.805994 + 0.591924i \(0.201631\pi\)
\(858\) −2.24054 + 3.88073i −0.0764908 + 0.132486i
\(859\) −26.8955 46.5844i −0.917663 1.58944i −0.802956 0.596039i \(-0.796740\pi\)
−0.114707 0.993399i \(-0.536593\pi\)
\(860\) 0.598988 0.0204253
\(861\) 9.90838 31.2567i 0.337677 1.06523i
\(862\) −15.7411 −0.536143
\(863\) −18.9369 32.7996i −0.644618 1.11651i −0.984390 0.176003i \(-0.943683\pi\)
0.339772 0.940508i \(-0.389650\pi\)
\(864\) 0.500000 0.866025i 0.0170103 0.0294628i
\(865\) 13.4119 23.2301i 0.456018 0.789846i
\(866\) 0.848554 + 1.46974i 0.0288350 + 0.0499438i
\(867\) 12.0878 0.410522
\(868\) 5.14287 + 5.62992i 0.174561 + 0.191092i
\(869\) −25.8236 −0.876004
\(870\) 0.956115 + 1.65604i 0.0324153 + 0.0561450i
\(871\) 6.08392 10.5377i 0.206146 0.357055i
\(872\) −4.14155 + 7.17338i −0.140251 + 0.242921i
\(873\) 4.68291 + 8.11103i 0.158492 + 0.274517i
\(874\) −13.8546 −0.468639
\(875\) 31.3429 6.89772i 1.05958 0.233186i
\(876\) −10.9122 −0.368690
\(877\) −6.06885 10.5116i −0.204930 0.354950i 0.745180 0.666863i \(-0.232364\pi\)
−0.950111 + 0.311913i \(0.899030\pi\)
\(878\) −12.2956 + 21.2967i −0.414958 + 0.718728i
\(879\) 7.93587 13.7453i 0.267670 0.463619i
\(880\) 2.24054 + 3.88073i 0.0755286 + 0.130819i
\(881\) 21.1403 0.712236 0.356118 0.934441i \(-0.384100\pi\)
0.356118 + 0.934441i \(0.384100\pi\)
\(882\) 0.631656 6.97144i 0.0212690 0.234741i
\(883\) 40.4657 1.36178 0.680889 0.732387i \(-0.261594\pi\)
0.680889 + 0.732387i \(0.261594\pi\)
\(884\) 5.15662 + 8.93153i 0.173436 + 0.300400i
\(885\) 0.656620 1.13730i 0.0220721 0.0382299i
\(886\) 10.6240 18.4012i 0.356919 0.618201i
\(887\) −5.54774 9.60896i −0.186275 0.322637i 0.757731 0.652568i \(-0.226308\pi\)
−0.944005 + 0.329930i \(0.892975\pi\)
\(888\) 1.22547 0.0411241
\(889\) −10.6136 + 2.33576i −0.355969 + 0.0783390i
\(890\) 4.36581 0.146342
\(891\) 1.17169 + 2.02943i 0.0392531 + 0.0679883i
\(892\) 12.1240 20.9993i 0.405940 0.703109i
\(893\) 0.179394 0.310719i 0.00600317 0.0103978i
\(894\) −9.63770 16.6930i −0.322333 0.558297i
\(895\) −18.7340 −0.626210
\(896\) −1.78442 1.95341i −0.0596134 0.0652590i
\(897\) −4.25561 −0.142091
\(898\) −15.6665 27.1352i −0.522798 0.905513i
\(899\) −1.44105 + 2.49596i −0.0480615 + 0.0832450i
\(900\) 0.671690 1.16340i 0.0223897 0.0387800i
\(901\) 13.8546 + 23.9969i 0.461564 + 0.799452i
\(902\) 29.0422 0.967000
\(903\) 0.250434 0.790014i 0.00833393 0.0262900i
\(904\) 10.1678 0.338177
\(905\) −5.30301 9.18508i −0.176278 0.305322i
\(906\) 2.19665 3.80472i 0.0729789 0.126403i
\(907\) 7.40320 12.8227i 0.245819 0.425772i −0.716542 0.697544i \(-0.754276\pi\)
0.962362 + 0.271772i \(0.0876097\pi\)
\(908\) −1.68544 2.91926i −0.0559332 0.0968791i
\(909\) −17.9545 −0.595512
\(910\) −2.92345 + 9.22223i −0.0969113 + 0.305714i
\(911\) −17.6445 −0.584590 −0.292295 0.956328i \(-0.594419\pi\)
−0.292295 + 0.956328i \(0.594419\pi\)
\(912\) 3.11274 + 5.39142i 0.103073 + 0.178528i
\(913\) 20.8757 36.1578i 0.690885 1.19665i
\(914\) 11.8705 20.5604i 0.392642 0.680077i
\(915\) 2.18544 + 3.78529i 0.0722483 + 0.125138i
\(916\) 6.93202 0.229040
\(917\) −28.4695 31.1657i −0.940146 1.02918i
\(918\) 5.39331 0.178006
\(919\) 3.62516 + 6.27896i 0.119583 + 0.207124i 0.919602 0.392850i \(-0.128511\pi\)
−0.800020 + 0.599974i \(0.795178\pi\)
\(920\) −2.12780 + 3.68547i −0.0701516 + 0.121506i
\(921\) 4.22679 7.32102i 0.139278 0.241236i
\(922\) 5.11659 + 8.86219i 0.168506 + 0.291861i
\(923\) −2.62142 −0.0862852
\(924\) 6.05510 1.33256i 0.199198 0.0438381i
\(925\) 1.64627 0.0541291
\(926\) 12.4385 + 21.5441i 0.408755 + 0.707984i
\(927\) 8.53871 14.7895i 0.280448 0.485750i
\(928\) 0.500000 0.866025i 0.0164133 0.0284287i
\(929\) −29.0233 50.2698i −0.952224 1.64930i −0.740597 0.671949i \(-0.765457\pi\)
−0.211626 0.977351i \(-0.567876\pi\)
\(930\) −5.51122 −0.180720
\(931\) 35.6198 + 25.1058i 1.16739 + 0.822809i
\(932\) 16.8667 0.552487
\(933\) 7.13385 + 12.3562i 0.233552 + 0.404523i
\(934\) −0.540034 + 0.935366i −0.0176704 + 0.0306061i
\(935\) −12.0839 + 20.9300i −0.395186 + 0.684483i
\(936\) 0.956115 + 1.65604i 0.0312516 + 0.0541293i
\(937\) −25.2428 −0.824648 −0.412324 0.911037i \(-0.635283\pi\)
−0.412324 + 0.911037i \(0.635283\pi\)
\(938\) −16.4419 + 3.61842i −0.536848 + 0.118145i
\(939\) −13.4586 −0.439206
\(940\) −0.0551029 0.0954410i −0.00179726 0.00311294i
\(941\) 2.75429 4.77056i 0.0897872 0.155516i −0.817634 0.575738i \(-0.804715\pi\)
0.907421 + 0.420223i \(0.138048\pi\)
\(942\) −2.54389 + 4.40614i −0.0828843 + 0.143560i
\(943\) 13.7905 + 23.8858i 0.449079 + 0.777828i
\(944\) −0.686759 −0.0223521
\(945\) 3.41223 + 3.73538i 0.111000 + 0.121512i
\(946\) 0.734042 0.0238658
\(947\) −8.72294 15.1086i −0.283457 0.490963i 0.688776 0.724974i \(-0.258148\pi\)
−0.972234 + 0.234011i \(0.924815\pi\)
\(948\) −5.50989 + 9.54342i −0.178953 + 0.309956i
\(949\) 10.4333 18.0711i 0.338681 0.586612i
\(950\) 4.18158 + 7.24272i 0.135669 + 0.234985i
\(951\) 7.01979 0.227632
\(952\) 4.31192 13.6023i 0.139750 0.440852i
\(953\) 9.10492 0.294937 0.147469 0.989067i \(-0.452887\pi\)
0.147469 + 0.989067i \(0.452887\pi\)
\(954\) 2.56885 + 4.44938i 0.0831696 + 0.144054i
\(955\) 12.4410 21.5485i 0.402583 0.697294i
\(956\) 2.28057 3.95007i 0.0737590 0.127754i
\(957\) 1.17169 + 2.02943i 0.0378754 + 0.0656020i
\(958\) −16.1903 −0.523084
\(959\) −7.54015 + 23.7860i −0.243484 + 0.768089i
\(960\) 1.91223 0.0617169
\(961\) 11.3468 + 19.6532i 0.366025 + 0.633974i
\(962\) −1.17169 + 2.02943i −0.0377768 + 0.0654313i
\(963\) −6.54003 + 11.3277i −0.210750 + 0.365029i
\(964\) 12.5925 + 21.8108i 0.405577 + 0.702480i
\(965\) −9.46567 −0.304711
\(966\) 3.97118 + 4.34727i 0.127771 + 0.139871i
\(967\) −31.9897 −1.02872 −0.514359 0.857575i \(-0.671970\pi\)
−0.514359 + 0.857575i \(0.671970\pi\)
\(968\) −2.75429 4.77056i −0.0885261 0.153332i
\(969\) −16.7879 + 29.0776i −0.539306 + 0.934106i
\(970\) −8.95479 + 15.5102i −0.287521 + 0.498001i
\(971\) 18.0886 + 31.3304i 0.580492 + 1.00544i 0.995421 + 0.0955879i \(0.0304731\pi\)
−0.414929 + 0.909854i \(0.636194\pi\)
\(972\) 1.00000 0.0320750
\(973\) 38.3563 8.44118i 1.22965 0.270612i
\(974\) 4.45864 0.142864
\(975\) 1.28442 + 2.22469i 0.0411345 + 0.0712471i
\(976\) 1.14287 1.97952i 0.0365825 0.0633627i
\(977\) −11.3469 + 19.6534i −0.363019 + 0.628768i −0.988456 0.151507i \(-0.951587\pi\)
0.625437 + 0.780275i \(0.284921\pi\)
\(978\) 8.46216 + 14.6569i 0.270590 + 0.468676i
\(979\) 5.35017 0.170992
\(980\) 12.1489 5.61945i 0.388083 0.179507i
\(981\) −8.28310 −0.264459
\(982\) 6.76683 + 11.7205i 0.215938 + 0.374016i
\(983\) 9.43115 16.3352i 0.300807 0.521013i −0.675512 0.737349i \(-0.736077\pi\)
0.976319 + 0.216336i \(0.0694107\pi\)
\(984\) 6.19665 10.7329i 0.197542 0.342153i
\(985\) 9.31192 + 16.1287i 0.296702 + 0.513904i
\(986\) 5.39331 0.171758
\(987\) −0.148917 + 0.0327725i −0.00474007 + 0.00104316i
\(988\) −11.9045 −0.378733
\(989\) 0.348554 + 0.603713i 0.0110834 + 0.0191970i
\(990\) −2.24054 + 3.88073i −0.0712090 + 0.123338i
\(991\) −7.43587 + 12.8793i −0.236208 + 0.409125i −0.959623 0.281289i \(-0.909238\pi\)
0.723415 + 0.690414i \(0.242571\pi\)
\(992\) 1.44105 + 2.49596i 0.0457532 + 0.0792469i
\(993\) −29.6687 −0.941508
\(994\) 2.44622 + 2.67788i 0.0775894 + 0.0849373i
\(995\) 21.2305 0.673053
\(996\) −8.90838 15.4298i −0.282273 0.488911i
\(997\) 10.9298 18.9310i 0.346151 0.599551i −0.639411 0.768865i \(-0.720822\pi\)
0.985562 + 0.169314i \(0.0541551\pi\)
\(998\) −2.12010 + 3.67212i −0.0671106 + 0.116239i
\(999\) 0.612735 + 1.06129i 0.0193861 + 0.0335777i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.i.d.697.1 6
7.2 even 3 inner 1218.2.i.d.1045.1 yes 6
7.3 odd 6 8526.2.a.bp.1.1 3
7.4 even 3 8526.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.i.d.697.1 6 1.1 even 1 trivial
1218.2.i.d.1045.1 yes 6 7.2 even 3 inner
8526.2.a.bp.1.1 3 7.3 odd 6
8526.2.a.bs.1.3 3 7.4 even 3