Properties

Label 1218.2.i
Level $1218$
Weight $2$
Character orbit 1218.i
Rep. character $\chi_{1218}(697,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $72$
Newform subspaces $9$
Sturm bound $480$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 9 \)
Sturm bound: \(480\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1218, [\chi])\).

Total New Old
Modular forms 496 72 424
Cusp forms 464 72 392
Eisenstein series 32 0 32

Trace form

\( 72 q - 36 q^{4} + 8 q^{5} - 8 q^{7} - 36 q^{9} - 8 q^{10} + 16 q^{11} - 8 q^{14} - 36 q^{16} - 16 q^{17} + 8 q^{19} - 16 q^{20} - 8 q^{21} + 16 q^{22} + 8 q^{23} - 28 q^{25} + 8 q^{26} + 16 q^{28} - 8 q^{30}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1218, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1218.2.i.a 1218.i 7.c $6$ $9.726$ 6.0.64827.1 None 1218.2.i.a \(-3\) \(-3\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{5})q^{2}-\beta _{5}q^{3}-\beta _{5}q^{4}+\beta _{1}q^{5}+\cdots\)
1218.2.i.b 1218.i 7.c $6$ $9.726$ 6.0.1783323.2 None 1218.2.i.b \(-3\) \(3\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(1-\beta _{4})q^{3}+(-1+\beta _{4})q^{4}+\cdots\)
1218.2.i.c 1218.i 7.c $6$ $9.726$ 6.0.64827.1 None 1218.2.i.c \(3\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{5}q^{2}+(-1+\beta _{5})q^{3}+(-1+\beta _{5})q^{4}+\cdots\)
1218.2.i.d 1218.i 7.c $6$ $9.726$ 6.0.1783323.2 None 1218.2.i.d \(3\) \(-3\) \(1\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{4})q^{2}-\beta _{4}q^{3}-\beta _{4}q^{4}+\beta _{1}q^{5}+\cdots\)
1218.2.i.e 1218.i 7.c $6$ $9.726$ 6.0.18825075.4 None 1218.2.i.e \(3\) \(-3\) \(5\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{3})q^{2}+\beta _{3}q^{3}+\beta _{3}q^{4}+(2-\beta _{1}+\cdots)q^{5}+\cdots\)
1218.2.i.f 1218.i 7.c $6$ $9.726$ 6.0.1783323.2 None 1218.2.i.f \(3\) \(3\) \(3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{4})q^{2}+\beta _{4}q^{3}-\beta _{4}q^{4}+(1-\beta _{4}+\cdots)q^{5}+\cdots\)
1218.2.i.g 1218.i 7.c $12$ $9.726$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1218.2.i.g \(-6\) \(-6\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{8}q^{2}+(-1+\beta _{8})q^{3}+(-1+\beta _{8}+\cdots)q^{4}+\cdots\)
1218.2.i.h 1218.i 7.c $12$ $9.726$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1218.2.i.h \(-6\) \(6\) \(3\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{4}q^{2}+(1-\beta _{4})q^{3}+(-1+\beta _{4})q^{4}+\cdots\)
1218.2.i.i 1218.i 7.c $12$ $9.726$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1218.2.i.i \(6\) \(6\) \(-1\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{6}q^{2}+(1-\beta _{6})q^{3}+(-1+\beta _{6})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1218, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1218, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(203, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(406, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(609, [\chi])\)\(^{\oplus 2}\)