Properties

Label 1218.2.i.d.1045.3
Level $1218$
Weight $2$
Character 1218.1045
Analytic conductor $9.726$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(697,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.697"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-3,-3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1783323.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1045.3
Root \(1.09935 - 1.90412i\) of defining polynomial
Character \(\chi\) \(=\) 1218.1045
Dual form 1218.2.i.d.697.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.09935 - 1.90412i) q^{5} -1.00000 q^{6} +(2.11581 - 1.58850i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.09935 - 1.90412i) q^{10} +(0.582878 + 1.00958i) q^{11} +(-0.500000 + 0.866025i) q^{12} -2.19869 q^{13} +(-0.317776 - 2.62660i) q^{14} -2.19869 q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.88092 - 4.98989i) q^{17} +(0.500000 + 0.866025i) q^{18} +(2.23490 - 3.87096i) q^{19} -2.19869 q^{20} +(-2.43359 - 1.03810i) q^{21} +1.16576 q^{22} +(0.234898 - 0.406855i) q^{23} +(0.500000 + 0.866025i) q^{24} +(0.0828784 + 0.143550i) q^{25} +(-1.09935 + 1.90412i) q^{26} +1.00000 q^{27} +(-2.43359 - 1.03810i) q^{28} +1.00000 q^{29} +(-1.09935 + 1.90412i) q^{30} +(-1.15202 - 1.99536i) q^{31} +(0.500000 + 0.866025i) q^{32} +(0.582878 - 1.00958i) q^{33} -5.76183 q^{34} +(-0.698691 - 5.77508i) q^{35} +1.00000 q^{36} +(-0.265102 + 0.459171i) q^{37} +(-2.23490 - 3.87096i) q^{38} +(1.09935 + 1.90412i) q^{39} +(-1.09935 + 1.90412i) q^{40} +1.23817 q^{41} +(-2.11581 + 1.58850i) q^{42} +2.66849 q^{43} +(0.582878 - 1.00958i) q^{44} +(1.09935 + 1.90412i) q^{45} +(-0.234898 - 0.406855i) q^{46} +(-3.85071 + 6.66963i) q^{47} +1.00000 q^{48} +(1.95333 - 6.72194i) q^{49} +0.165757 q^{50} +(-2.88092 + 4.98989i) q^{51} +(1.09935 + 1.90412i) q^{52} +(0.364448 + 0.631243i) q^{53} +(0.500000 - 0.866025i) q^{54} +2.56314 q^{55} +(-2.11581 + 1.58850i) q^{56} -4.46980 q^{57} +(0.500000 - 0.866025i) q^{58} +(-0.834243 - 1.44495i) q^{59} +(1.09935 + 1.90412i) q^{60} +(-3.26783 + 5.66005i) q^{61} -2.30404 q^{62} +(0.317776 + 2.62660i) q^{63} +1.00000 q^{64} +(-2.41712 + 4.18658i) q^{65} +(-0.582878 - 1.00958i) q^{66} +(-0.629550 - 1.09041i) q^{67} +(-2.88092 + 4.98989i) q^{68} -0.469795 q^{69} +(-5.35071 - 2.28245i) q^{70} -11.3699 q^{71} +(0.500000 - 0.866025i) q^{72} +(3.40065 + 5.89011i) q^{73} +(0.265102 + 0.459171i) q^{74} +(0.0828784 - 0.143550i) q^{75} -4.46980 q^{76} +(2.83697 + 1.21017i) q^{77} +2.19869 q^{78} +(-2.28757 + 3.96219i) q^{79} +(1.09935 + 1.90412i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.619085 - 1.07229i) q^{82} -8.02639 q^{83} +(0.317776 + 2.62660i) q^{84} -12.6685 q^{85} +(1.33424 - 2.31098i) q^{86} +(-0.500000 - 0.866025i) q^{87} +(-0.582878 - 1.00958i) q^{88} +(4.08561 - 7.07648i) q^{89} +2.19869 q^{90} +(-4.65202 + 3.49262i) q^{91} -0.469795 q^{92} +(-1.15202 + 1.99536i) q^{93} +(3.85071 + 6.66963i) q^{94} +(-4.91385 - 8.51104i) q^{95} +(0.500000 - 0.866025i) q^{96} +12.9660 q^{97} +(-4.84471 - 5.05260i) q^{98} -1.16576 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 3 q^{3} - 3 q^{4} + q^{5} - 6 q^{6} - 4 q^{7} - 6 q^{8} - 3 q^{9} - q^{10} + 9 q^{11} - 3 q^{12} - 2 q^{13} - 2 q^{14} - 2 q^{15} - 3 q^{16} - 6 q^{17} + 3 q^{18} + 8 q^{19} - 2 q^{20}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.09935 1.90412i 0.491642 0.851549i −0.508311 0.861173i \(-0.669730\pi\)
0.999954 + 0.00962389i \(0.00306343\pi\)
\(6\) −1.00000 −0.408248
\(7\) 2.11581 1.58850i 0.799702 0.600397i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.09935 1.90412i −0.347644 0.602136i
\(11\) 0.582878 + 1.00958i 0.175744 + 0.304398i 0.940419 0.340019i \(-0.110433\pi\)
−0.764674 + 0.644417i \(0.777100\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −2.19869 −0.609807 −0.304904 0.952383i \(-0.598624\pi\)
−0.304904 + 0.952383i \(0.598624\pi\)
\(14\) −0.317776 2.62660i −0.0849292 0.701988i
\(15\) −2.19869 −0.567700
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.88092 4.98989i −0.698725 1.21023i −0.968909 0.247418i \(-0.920418\pi\)
0.270184 0.962809i \(-0.412915\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) 2.23490 3.87096i 0.512721 0.888058i −0.487171 0.873307i \(-0.661971\pi\)
0.999891 0.0147514i \(-0.00469568\pi\)
\(20\) −2.19869 −0.491642
\(21\) −2.43359 1.03810i −0.531053 0.226531i
\(22\) 1.16576 0.248540
\(23\) 0.234898 0.406855i 0.0489795 0.0848350i −0.840496 0.541817i \(-0.817736\pi\)
0.889476 + 0.456982i \(0.151070\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 0.0828784 + 0.143550i 0.0165757 + 0.0287099i
\(26\) −1.09935 + 1.90412i −0.215599 + 0.373429i
\(27\) 1.00000 0.192450
\(28\) −2.43359 1.03810i −0.459905 0.196182i
\(29\) 1.00000 0.185695
\(30\) −1.09935 + 1.90412i −0.200712 + 0.347644i
\(31\) −1.15202 1.99536i −0.206909 0.358376i 0.743830 0.668368i \(-0.233007\pi\)
−0.950739 + 0.309992i \(0.899674\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0.582878 1.00958i 0.101466 0.175744i
\(34\) −5.76183 −0.988146
\(35\) −0.698691 5.77508i −0.118100 0.976166i
\(36\) 1.00000 0.166667
\(37\) −0.265102 + 0.459171i −0.0435826 + 0.0754872i −0.886994 0.461781i \(-0.847210\pi\)
0.843411 + 0.537269i \(0.180544\pi\)
\(38\) −2.23490 3.87096i −0.362548 0.627952i
\(39\) 1.09935 + 1.90412i 0.176036 + 0.304904i
\(40\) −1.09935 + 1.90412i −0.173822 + 0.301068i
\(41\) 1.23817 0.193370 0.0966848 0.995315i \(-0.469176\pi\)
0.0966848 + 0.995315i \(0.469176\pi\)
\(42\) −2.11581 + 1.58850i −0.326477 + 0.245111i
\(43\) 2.66849 0.406940 0.203470 0.979081i \(-0.434778\pi\)
0.203470 + 0.979081i \(0.434778\pi\)
\(44\) 0.582878 1.00958i 0.0878722 0.152199i
\(45\) 1.09935 + 1.90412i 0.163881 + 0.283850i
\(46\) −0.234898 0.406855i −0.0346338 0.0599874i
\(47\) −3.85071 + 6.66963i −0.561684 + 0.972865i 0.435666 + 0.900108i \(0.356513\pi\)
−0.997350 + 0.0727565i \(0.976820\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.95333 6.72194i 0.279047 0.960277i
\(50\) 0.165757 0.0234416
\(51\) −2.88092 + 4.98989i −0.403409 + 0.698725i
\(52\) 1.09935 + 1.90412i 0.152452 + 0.264054i
\(53\) 0.364448 + 0.631243i 0.0500608 + 0.0867078i 0.889970 0.456019i \(-0.150725\pi\)
−0.839909 + 0.542727i \(0.817392\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) 2.56314 0.345614
\(56\) −2.11581 + 1.58850i −0.282737 + 0.212272i
\(57\) −4.46980 −0.592039
\(58\) 0.500000 0.866025i 0.0656532 0.113715i
\(59\) −0.834243 1.44495i −0.108609 0.188117i 0.806598 0.591101i \(-0.201306\pi\)
−0.915207 + 0.402984i \(0.867973\pi\)
\(60\) 1.09935 + 1.90412i 0.141925 + 0.245821i
\(61\) −3.26783 + 5.66005i −0.418403 + 0.724695i −0.995779 0.0917831i \(-0.970743\pi\)
0.577376 + 0.816478i \(0.304077\pi\)
\(62\) −2.30404 −0.292613
\(63\) 0.317776 + 2.62660i 0.0400360 + 0.330920i
\(64\) 1.00000 0.125000
\(65\) −2.41712 + 4.18658i −0.299807 + 0.519281i
\(66\) −0.582878 1.00958i −0.0717474 0.124270i
\(67\) −0.629550 1.09041i −0.0769118 0.133215i 0.825004 0.565127i \(-0.191173\pi\)
−0.901916 + 0.431911i \(0.857839\pi\)
\(68\) −2.88092 + 4.98989i −0.349362 + 0.605113i
\(69\) −0.469795 −0.0565567
\(70\) −5.35071 2.28245i −0.639532 0.272806i
\(71\) −11.3699 −1.34936 −0.674680 0.738110i \(-0.735718\pi\)
−0.674680 + 0.738110i \(0.735718\pi\)
\(72\) 0.500000 0.866025i 0.0589256 0.102062i
\(73\) 3.40065 + 5.89011i 0.398016 + 0.689385i 0.993481 0.113997i \(-0.0363653\pi\)
−0.595465 + 0.803382i \(0.703032\pi\)
\(74\) 0.265102 + 0.459171i 0.0308175 + 0.0533775i
\(75\) 0.0828784 0.143550i 0.00956997 0.0165757i
\(76\) −4.46980 −0.512721
\(77\) 2.83697 + 1.21017i 0.323303 + 0.137912i
\(78\) 2.19869 0.248953
\(79\) −2.28757 + 3.96219i −0.257372 + 0.445781i −0.965537 0.260266i \(-0.916190\pi\)
0.708165 + 0.706047i \(0.249523\pi\)
\(80\) 1.09935 + 1.90412i 0.122911 + 0.212887i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.619085 1.07229i 0.0683665 0.118414i
\(83\) −8.02639 −0.881011 −0.440505 0.897750i \(-0.645201\pi\)
−0.440505 + 0.897750i \(0.645201\pi\)
\(84\) 0.317776 + 2.62660i 0.0346722 + 0.286585i
\(85\) −12.6685 −1.37409
\(86\) 1.33424 2.31098i 0.143875 0.249199i
\(87\) −0.500000 0.866025i −0.0536056 0.0928477i
\(88\) −0.582878 1.00958i −0.0621350 0.107621i
\(89\) 4.08561 7.07648i 0.433074 0.750105i −0.564063 0.825732i \(-0.690762\pi\)
0.997136 + 0.0756266i \(0.0240957\pi\)
\(90\) 2.19869 0.231762
\(91\) −4.65202 + 3.49262i −0.487664 + 0.366126i
\(92\) −0.469795 −0.0489795
\(93\) −1.15202 + 1.99536i −0.119459 + 0.206909i
\(94\) 3.85071 + 6.66963i 0.397170 + 0.687919i
\(95\) −4.91385 8.51104i −0.504150 0.873214i
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 12.9660 1.31650 0.658248 0.752801i \(-0.271298\pi\)
0.658248 + 0.752801i \(0.271298\pi\)
\(98\) −4.84471 5.05260i −0.489390 0.510390i
\(99\) −1.16576 −0.117163
\(100\) 0.0828784 0.143550i 0.00828784 0.0143550i
\(101\) −6.87764 11.9124i −0.684351 1.18533i −0.973640 0.228089i \(-0.926752\pi\)
0.289289 0.957242i \(-0.406581\pi\)
\(102\) 2.88092 + 4.98989i 0.285253 + 0.494073i
\(103\) 9.13828 15.8280i 0.900422 1.55958i 0.0734740 0.997297i \(-0.476591\pi\)
0.826948 0.562279i \(-0.190075\pi\)
\(104\) 2.19869 0.215599
\(105\) −4.65202 + 3.49262i −0.453991 + 0.340845i
\(106\) 0.728896 0.0707966
\(107\) 0.215158 0.372665i 0.0208002 0.0360269i −0.855438 0.517905i \(-0.826712\pi\)
0.876238 + 0.481878i \(0.160045\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) 7.08561 + 12.2726i 0.678678 + 1.17551i 0.975379 + 0.220535i \(0.0707802\pi\)
−0.296701 + 0.954970i \(0.595886\pi\)
\(110\) 1.28157 2.21974i 0.122193 0.211644i
\(111\) 0.530205 0.0503248
\(112\) 0.317776 + 2.62660i 0.0300270 + 0.248190i
\(113\) −0.768374 −0.0722826 −0.0361413 0.999347i \(-0.511507\pi\)
−0.0361413 + 0.999347i \(0.511507\pi\)
\(114\) −2.23490 + 3.87096i −0.209317 + 0.362548i
\(115\) −0.516467 0.894547i −0.0481608 0.0834170i
\(116\) −0.500000 0.866025i −0.0464238 0.0804084i
\(117\) 1.09935 1.90412i 0.101635 0.176036i
\(118\) −1.66849 −0.153597
\(119\) −14.0219 5.98134i −1.28539 0.548308i
\(120\) 2.19869 0.200712
\(121\) 4.82051 8.34936i 0.438228 0.759033i
\(122\) 3.26783 + 5.66005i 0.295856 + 0.512437i
\(123\) −0.619085 1.07229i −0.0558210 0.0966848i
\(124\) −1.15202 + 1.99536i −0.103454 + 0.179188i
\(125\) 11.3579 1.01588
\(126\) 2.43359 + 1.03810i 0.216801 + 0.0924810i
\(127\) 1.77383 0.157402 0.0787011 0.996898i \(-0.474923\pi\)
0.0787011 + 0.996898i \(0.474923\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −1.33424 2.31098i −0.117474 0.203470i
\(130\) 2.41712 + 4.18658i 0.211996 + 0.367187i
\(131\) −7.87764 + 13.6445i −0.688273 + 1.19212i 0.284123 + 0.958788i \(0.408297\pi\)
−0.972396 + 0.233336i \(0.925036\pi\)
\(132\) −1.16576 −0.101466
\(133\) −1.42039 11.7404i −0.123164 1.01802i
\(134\) −1.25910 −0.108770
\(135\) 1.09935 1.90412i 0.0946166 0.163881i
\(136\) 2.88092 + 4.98989i 0.247036 + 0.427880i
\(137\) 6.18222 + 10.7079i 0.528183 + 0.914840i 0.999460 + 0.0328547i \(0.0104598\pi\)
−0.471277 + 0.881985i \(0.656207\pi\)
\(138\) −0.234898 + 0.406855i −0.0199958 + 0.0346338i
\(139\) −0.177760 −0.0150774 −0.00753869 0.999972i \(-0.502400\pi\)
−0.00753869 + 0.999972i \(0.502400\pi\)
\(140\) −4.65202 + 3.49262i −0.393167 + 0.295181i
\(141\) 7.70142 0.648577
\(142\) −5.68495 + 9.84663i −0.477071 + 0.826311i
\(143\) −1.28157 2.21974i −0.107170 0.185624i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 1.09935 1.90412i 0.0912957 0.158129i
\(146\) 6.80131 0.562880
\(147\) −6.79804 + 1.66934i −0.560693 + 0.137685i
\(148\) 0.530205 0.0435826
\(149\) 3.77110 6.53174i 0.308941 0.535101i −0.669190 0.743091i \(-0.733359\pi\)
0.978131 + 0.207990i \(0.0666921\pi\)
\(150\) −0.0828784 0.143550i −0.00676699 0.0117208i
\(151\) 3.38092 + 5.85592i 0.275135 + 0.476548i 0.970169 0.242429i \(-0.0779441\pi\)
−0.695034 + 0.718977i \(0.744611\pi\)
\(152\) −2.23490 + 3.87096i −0.181274 + 0.313976i
\(153\) 5.76183 0.465816
\(154\) 2.46652 1.85181i 0.198758 0.149223i
\(155\) −5.06587 −0.406900
\(156\) 1.09935 1.90412i 0.0880181 0.152452i
\(157\) 4.59935 + 7.96630i 0.367068 + 0.635780i 0.989106 0.147207i \(-0.0470284\pi\)
−0.622038 + 0.782987i \(0.713695\pi\)
\(158\) 2.28757 + 3.96219i 0.181989 + 0.315215i
\(159\) 0.364448 0.631243i 0.0289026 0.0500608i
\(160\) 2.19869 0.173822
\(161\) −0.149290 1.23396i −0.0117657 0.0972499i
\(162\) −1.00000 −0.0785674
\(163\) 5.62628 9.74500i 0.440684 0.763287i −0.557056 0.830475i \(-0.688069\pi\)
0.997740 + 0.0671874i \(0.0214026\pi\)
\(164\) −0.619085 1.07229i −0.0483424 0.0837315i
\(165\) −1.28157 2.21974i −0.0997701 0.172807i
\(166\) −4.01320 + 6.95106i −0.311484 + 0.539507i
\(167\) 9.03948 0.699496 0.349748 0.936844i \(-0.386267\pi\)
0.349748 + 0.936844i \(0.386267\pi\)
\(168\) 2.43359 + 1.03810i 0.187755 + 0.0800909i
\(169\) −8.16576 −0.628135
\(170\) −6.33424 + 10.9712i −0.485814 + 0.841455i
\(171\) 2.23490 + 3.87096i 0.170907 + 0.296019i
\(172\) −1.33424 2.31098i −0.101735 0.176210i
\(173\) 12.6021 21.8274i 0.958118 1.65951i 0.231052 0.972941i \(-0.425783\pi\)
0.727066 0.686568i \(-0.240883\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 0.403384 + 0.172072i 0.0304930 + 0.0130074i
\(176\) −1.16576 −0.0878722
\(177\) −0.834243 + 1.44495i −0.0627056 + 0.108609i
\(178\) −4.08561 7.07648i −0.306229 0.530405i
\(179\) −4.80077 8.31517i −0.358826 0.621505i 0.628939 0.777455i \(-0.283490\pi\)
−0.987765 + 0.155950i \(0.950156\pi\)
\(180\) 1.09935 1.90412i 0.0819404 0.141925i
\(181\) 23.7673 1.76661 0.883304 0.468800i \(-0.155313\pi\)
0.883304 + 0.468800i \(0.155313\pi\)
\(182\) 0.698691 + 5.77508i 0.0517904 + 0.428077i
\(183\) 6.53566 0.483130
\(184\) −0.234898 + 0.406855i −0.0173169 + 0.0299937i
\(185\) 0.582878 + 1.00958i 0.0428541 + 0.0742254i
\(186\) 1.15202 + 1.99536i 0.0844701 + 0.146307i
\(187\) 3.35845 5.81700i 0.245594 0.425381i
\(188\) 7.70142 0.561684
\(189\) 2.11581 1.58850i 0.153903 0.115546i
\(190\) −9.82770 −0.712976
\(191\) −5.52693 + 9.57293i −0.399915 + 0.692673i −0.993715 0.111940i \(-0.964294\pi\)
0.593800 + 0.804613i \(0.297627\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) 7.46379 + 12.9277i 0.537256 + 0.930554i 0.999050 + 0.0435673i \(0.0138723\pi\)
−0.461795 + 0.886987i \(0.652794\pi\)
\(194\) 6.48299 11.2289i 0.465452 0.806186i
\(195\) 4.83424 0.346187
\(196\) −6.79804 + 1.66934i −0.485574 + 0.119239i
\(197\) 17.3030 1.23278 0.616392 0.787439i \(-0.288594\pi\)
0.616392 + 0.787439i \(0.288594\pi\)
\(198\) −0.582878 + 1.00958i −0.0414234 + 0.0717474i
\(199\) 11.7810 + 20.4053i 0.835135 + 1.44650i 0.893921 + 0.448225i \(0.147944\pi\)
−0.0587857 + 0.998271i \(0.518723\pi\)
\(200\) −0.0828784 0.143550i −0.00586039 0.0101505i
\(201\) −0.629550 + 1.09041i −0.0444051 + 0.0769118i
\(202\) −13.7553 −0.967819
\(203\) 2.11581 1.58850i 0.148501 0.111491i
\(204\) 5.76183 0.403409
\(205\) 1.36118 2.35763i 0.0950687 0.164664i
\(206\) −9.13828 15.8280i −0.636694 1.10279i
\(207\) 0.234898 + 0.406855i 0.0163265 + 0.0282783i
\(208\) 1.09935 1.90412i 0.0762259 0.132027i
\(209\) 5.21069 0.360431
\(210\) 0.698691 + 5.77508i 0.0482143 + 0.398518i
\(211\) −18.8068 −1.29471 −0.647356 0.762188i \(-0.724125\pi\)
−0.647356 + 0.762188i \(0.724125\pi\)
\(212\) 0.364448 0.631243i 0.0250304 0.0433539i
\(213\) 5.68495 + 9.84663i 0.389527 + 0.674680i
\(214\) −0.215158 0.372665i −0.0147079 0.0254749i
\(215\) 2.93359 5.08112i 0.200069 0.346530i
\(216\) −1.00000 −0.0680414
\(217\) −5.60708 2.39182i −0.380634 0.162367i
\(218\) 14.1712 0.959796
\(219\) 3.40065 5.89011i 0.229795 0.398016i
\(220\) −1.28157 2.21974i −0.0864034 0.149655i
\(221\) 6.33424 + 10.9712i 0.426087 + 0.738005i
\(222\) 0.265102 0.459171i 0.0177925 0.0308175i
\(223\) −1.33806 −0.0896030 −0.0448015 0.998996i \(-0.514266\pi\)
−0.0448015 + 0.998996i \(0.514266\pi\)
\(224\) 2.43359 + 1.03810i 0.162601 + 0.0693608i
\(225\) −0.165757 −0.0110505
\(226\) −0.384187 + 0.665432i −0.0255558 + 0.0442639i
\(227\) −6.68495 11.5787i −0.443696 0.768504i 0.554264 0.832341i \(-0.313000\pi\)
−0.997960 + 0.0638367i \(0.979666\pi\)
\(228\) 2.23490 + 3.87096i 0.148010 + 0.256360i
\(229\) 1.81177 3.13809i 0.119725 0.207371i −0.799933 0.600089i \(-0.795132\pi\)
0.919659 + 0.392718i \(0.128465\pi\)
\(230\) −1.03293 −0.0681097
\(231\) −0.370450 3.06197i −0.0243738 0.201463i
\(232\) −1.00000 −0.0656532
\(233\) 9.47699 16.4146i 0.620858 1.07536i −0.368468 0.929640i \(-0.620118\pi\)
0.989326 0.145718i \(-0.0465491\pi\)
\(234\) −1.09935 1.90412i −0.0718665 0.124476i
\(235\) 8.46652 + 14.6644i 0.552295 + 0.956603i
\(236\) −0.834243 + 1.44495i −0.0543046 + 0.0940583i
\(237\) 4.57514 0.297187
\(238\) −12.1910 + 9.15267i −0.790222 + 0.593280i
\(239\) 15.9935 1.03453 0.517265 0.855825i \(-0.326950\pi\)
0.517265 + 0.855825i \(0.326950\pi\)
\(240\) 1.09935 1.90412i 0.0709625 0.122911i
\(241\) 12.0252 + 20.8283i 0.774611 + 1.34167i 0.935013 + 0.354614i \(0.115388\pi\)
−0.160402 + 0.987052i \(0.551279\pi\)
\(242\) −4.82051 8.34936i −0.309874 0.536717i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 6.53566 0.418403
\(245\) −10.6520 11.1091i −0.680533 0.709735i
\(246\) −1.23817 −0.0789428
\(247\) −4.91385 + 8.51104i −0.312661 + 0.541544i
\(248\) 1.15202 + 1.99536i 0.0731533 + 0.126705i
\(249\) 4.01320 + 6.95106i 0.254326 + 0.440505i
\(250\) 5.67895 9.83623i 0.359168 0.622098i
\(251\) 3.07241 0.193929 0.0969645 0.995288i \(-0.469087\pi\)
0.0969645 + 0.995288i \(0.469087\pi\)
\(252\) 2.11581 1.58850i 0.133284 0.100066i
\(253\) 0.547667 0.0344315
\(254\) 0.886917 1.53618i 0.0556501 0.0963888i
\(255\) 6.33424 + 10.9712i 0.396666 + 0.687045i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.91112 5.04221i 0.181591 0.314524i −0.760832 0.648949i \(-0.775209\pi\)
0.942422 + 0.334425i \(0.108542\pi\)
\(258\) −2.66849 −0.166133
\(259\) 0.168486 + 1.39264i 0.0104692 + 0.0865341i
\(260\) 4.83424 0.299807
\(261\) −0.500000 + 0.866025i −0.0309492 + 0.0536056i
\(262\) 7.87764 + 13.6445i 0.486682 + 0.842959i
\(263\) −7.85790 13.6103i −0.484539 0.839246i 0.515303 0.857008i \(-0.327679\pi\)
−0.999842 + 0.0177616i \(0.994346\pi\)
\(264\) −0.582878 + 1.00958i −0.0358737 + 0.0621350i
\(265\) 1.60262 0.0984480
\(266\) −10.8776 4.64008i −0.666951 0.284502i
\(267\) −8.17122 −0.500070
\(268\) −0.629550 + 1.09041i −0.0384559 + 0.0666076i
\(269\) −13.9830 24.2192i −0.852558 1.47667i −0.878892 0.477021i \(-0.841717\pi\)
0.0263342 0.999653i \(-0.491617\pi\)
\(270\) −1.09935 1.90412i −0.0669040 0.115881i
\(271\) 9.06314 15.6978i 0.550547 0.953575i −0.447689 0.894190i \(-0.647753\pi\)
0.998235 0.0593850i \(-0.0189140\pi\)
\(272\) 5.76183 0.349362
\(273\) 5.35071 + 2.28245i 0.323840 + 0.138140i
\(274\) 12.3644 0.746964
\(275\) −0.0966161 + 0.167344i −0.00582617 + 0.0100912i
\(276\) 0.234898 + 0.406855i 0.0141392 + 0.0244898i
\(277\) 10.1323 + 17.5496i 0.608790 + 1.05445i 0.991440 + 0.130562i \(0.0416780\pi\)
−0.382651 + 0.923893i \(0.624989\pi\)
\(278\) −0.0888799 + 0.153944i −0.00533066 + 0.00923297i
\(279\) 2.30404 0.137939
\(280\) 0.698691 + 5.77508i 0.0417548 + 0.345127i
\(281\) −9.59607 −0.572454 −0.286227 0.958162i \(-0.592401\pi\)
−0.286227 + 0.958162i \(0.592401\pi\)
\(282\) 3.85071 6.66963i 0.229306 0.397170i
\(283\) −0.986262 1.70826i −0.0586272 0.101545i 0.835222 0.549913i \(-0.185339\pi\)
−0.893849 + 0.448367i \(0.852006\pi\)
\(284\) 5.68495 + 9.84663i 0.337340 + 0.584290i
\(285\) −4.91385 + 8.51104i −0.291071 + 0.504150i
\(286\) −2.56314 −0.151562
\(287\) 2.61973 1.96683i 0.154638 0.116099i
\(288\) −1.00000 −0.0589256
\(289\) −8.09935 + 14.0285i −0.476432 + 0.825205i
\(290\) −1.09935 1.90412i −0.0645558 0.111814i
\(291\) −6.48299 11.2289i −0.380040 0.658248i
\(292\) 3.40065 5.89011i 0.199008 0.344692i
\(293\) −12.3819 −0.723359 −0.361679 0.932303i \(-0.617797\pi\)
−0.361679 + 0.932303i \(0.617797\pi\)
\(294\) −1.95333 + 6.72194i −0.113920 + 0.392032i
\(295\) −3.66849 −0.213588
\(296\) 0.265102 0.459171i 0.0154088 0.0266888i
\(297\) 0.582878 + 1.00958i 0.0338220 + 0.0585815i
\(298\) −3.77110 6.53174i −0.218454 0.378374i
\(299\) −0.516467 + 0.894547i −0.0298681 + 0.0517330i
\(300\) −0.165757 −0.00956997
\(301\) 5.64602 4.23889i 0.325431 0.244326i
\(302\) 6.76183 0.389100
\(303\) −6.87764 + 11.9124i −0.395110 + 0.684351i
\(304\) 2.23490 + 3.87096i 0.128180 + 0.222015i
\(305\) 7.18495 + 12.4447i 0.411409 + 0.712582i
\(306\) 2.88092 4.98989i 0.164691 0.285253i
\(307\) 9.76729 0.557449 0.278724 0.960371i \(-0.410088\pi\)
0.278724 + 0.960371i \(0.410088\pi\)
\(308\) −0.370450 3.06197i −0.0211083 0.174472i
\(309\) −18.2766 −1.03972
\(310\) −2.53293 + 4.38717i −0.143861 + 0.249175i
\(311\) −7.54340 13.0656i −0.427747 0.740880i 0.568926 0.822389i \(-0.307359\pi\)
−0.996673 + 0.0815095i \(0.974026\pi\)
\(312\) −1.09935 1.90412i −0.0622382 0.107800i
\(313\) 13.7843 23.8751i 0.779135 1.34950i −0.153306 0.988179i \(-0.548992\pi\)
0.932441 0.361322i \(-0.117675\pi\)
\(314\) 9.19869 0.519112
\(315\) 5.35071 + 2.28245i 0.301478 + 0.128602i
\(316\) 4.57514 0.257372
\(317\) −0.287571 + 0.498088i −0.0161516 + 0.0279754i −0.873988 0.485947i \(-0.838475\pi\)
0.857837 + 0.513922i \(0.171808\pi\)
\(318\) −0.364448 0.631243i −0.0204372 0.0353983i
\(319\) 0.582878 + 1.00958i 0.0326349 + 0.0565253i
\(320\) 1.09935 1.90412i 0.0614553 0.106444i
\(321\) −0.430317 −0.0240179
\(322\) −1.14329 0.487693i −0.0637130 0.0271781i
\(323\) −25.7542 −1.43300
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −0.182224 0.315621i −0.0101080 0.0175075i
\(326\) −5.62628 9.74500i −0.311611 0.539726i
\(327\) 7.08561 12.2726i 0.391835 0.678678i
\(328\) −1.23817 −0.0683665
\(329\) 2.44733 + 20.2285i 0.134925 + 1.11524i
\(330\) −2.56314 −0.141096
\(331\) 3.39019 5.87198i 0.186342 0.322753i −0.757686 0.652619i \(-0.773670\pi\)
0.944028 + 0.329866i \(0.107004\pi\)
\(332\) 4.01320 + 6.95106i 0.220253 + 0.381489i
\(333\) −0.265102 0.459171i −0.0145275 0.0251624i
\(334\) 4.51974 7.82842i 0.247309 0.428352i
\(335\) −2.76837 −0.151252
\(336\) 2.11581 1.58850i 0.115427 0.0866598i
\(337\) 6.76075 0.368281 0.184141 0.982900i \(-0.441050\pi\)
0.184141 + 0.982900i \(0.441050\pi\)
\(338\) −4.08288 + 7.07175i −0.222079 + 0.384653i
\(339\) 0.384187 + 0.665432i 0.0208662 + 0.0361413i
\(340\) 6.33424 + 10.9712i 0.343523 + 0.594999i
\(341\) 1.34297 2.32610i 0.0727261 0.125965i
\(342\) 4.46980 0.241699
\(343\) −6.54494 17.3252i −0.353393 0.935475i
\(344\) −2.66849 −0.143875
\(345\) −0.516467 + 0.894547i −0.0278057 + 0.0481608i
\(346\) −12.6021 21.8274i −0.677492 1.17345i
\(347\) −0.519739 0.900215i −0.0279011 0.0483260i 0.851738 0.523968i \(-0.175549\pi\)
−0.879639 + 0.475642i \(0.842216\pi\)
\(348\) −0.500000 + 0.866025i −0.0268028 + 0.0464238i
\(349\) 6.20415 0.332101 0.166050 0.986117i \(-0.446899\pi\)
0.166050 + 0.986117i \(0.446899\pi\)
\(350\) 0.350710 0.263305i 0.0187463 0.0140742i
\(351\) −2.19869 −0.117357
\(352\) −0.582878 + 1.00958i −0.0310675 + 0.0538105i
\(353\) 3.94133 + 6.82658i 0.209776 + 0.363342i 0.951644 0.307204i \(-0.0993933\pi\)
−0.741868 + 0.670546i \(0.766060\pi\)
\(354\) 0.834243 + 1.44495i 0.0443395 + 0.0767983i
\(355\) −12.4995 + 21.6497i −0.663402 + 1.14905i
\(356\) −8.17122 −0.433074
\(357\) 1.83097 + 15.1340i 0.0969053 + 0.800977i
\(358\) −9.60153 −0.507457
\(359\) 4.34798 7.53092i 0.229478 0.397467i −0.728176 0.685390i \(-0.759632\pi\)
0.957653 + 0.287923i \(0.0929649\pi\)
\(360\) −1.09935 1.90412i −0.0579406 0.100356i
\(361\) −0.489534 0.847898i −0.0257650 0.0446262i
\(362\) 11.8836 20.5831i 0.624591 1.08182i
\(363\) −9.64101 −0.506022
\(364\) 5.35071 + 2.28245i 0.280453 + 0.119633i
\(365\) 14.9540 0.782727
\(366\) 3.26783 5.66005i 0.170812 0.295856i
\(367\) 4.97972 + 8.62513i 0.259939 + 0.450228i 0.966225 0.257699i \(-0.0829641\pi\)
−0.706286 + 0.707926i \(0.749631\pi\)
\(368\) 0.234898 + 0.406855i 0.0122449 + 0.0212088i
\(369\) −0.619085 + 1.07229i −0.0322283 + 0.0558210i
\(370\) 1.16576 0.0606048
\(371\) 1.77383 + 0.756665i 0.0920928 + 0.0392841i
\(372\) 2.30404 0.119459
\(373\) −7.29476 + 12.6349i −0.377709 + 0.654211i −0.990728 0.135857i \(-0.956621\pi\)
0.613020 + 0.790068i \(0.289955\pi\)
\(374\) −3.35845 5.81700i −0.173661 0.300790i
\(375\) −5.67895 9.83623i −0.293260 0.507941i
\(376\) 3.85071 6.66963i 0.198585 0.343960i
\(377\) −2.19869 −0.113238
\(378\) −0.317776 2.62660i −0.0163446 0.135098i
\(379\) −19.6829 −1.01104 −0.505521 0.862814i \(-0.668700\pi\)
−0.505521 + 0.862814i \(0.668700\pi\)
\(380\) −4.91385 + 8.51104i −0.252075 + 0.436607i
\(381\) −0.886917 1.53618i −0.0454381 0.0787011i
\(382\) 5.52693 + 9.57293i 0.282782 + 0.489794i
\(383\) 2.62628 4.54885i 0.134197 0.232435i −0.791094 0.611695i \(-0.790488\pi\)
0.925290 + 0.379260i \(0.123821\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 5.42312 4.07155i 0.276388 0.207505i
\(386\) 14.9276 0.759794
\(387\) −1.33424 + 2.31098i −0.0678234 + 0.117474i
\(388\) −6.48299 11.2289i −0.329124 0.570059i
\(389\) −0.257366 0.445771i −0.0130490 0.0226015i 0.859427 0.511258i \(-0.170820\pi\)
−0.872476 + 0.488657i \(0.837487\pi\)
\(390\) 2.41712 4.18658i 0.122396 0.211996i
\(391\) −2.70688 −0.136893
\(392\) −1.95333 + 6.72194i −0.0986580 + 0.339509i
\(393\) 15.7553 0.794749
\(394\) 8.65148 14.9848i 0.435855 0.754923i
\(395\) 5.02966 + 8.71163i 0.253070 + 0.438330i
\(396\) 0.582878 + 1.00958i 0.0292907 + 0.0507331i
\(397\) 15.0823 26.1234i 0.756961 1.31109i −0.187433 0.982277i \(-0.560017\pi\)
0.944394 0.328817i \(-0.106650\pi\)
\(398\) 23.5621 1.18106
\(399\) −9.45725 + 7.10027i −0.473455 + 0.355458i
\(400\) −0.165757 −0.00828784
\(401\) −2.90011 + 5.02314i −0.144825 + 0.250844i −0.929308 0.369307i \(-0.879595\pi\)
0.784483 + 0.620151i \(0.212928\pi\)
\(402\) 0.629550 + 1.09041i 0.0313991 + 0.0543849i
\(403\) 2.53293 + 4.38717i 0.126174 + 0.218541i
\(404\) −6.87764 + 11.9124i −0.342176 + 0.592665i
\(405\) −2.19869 −0.109254
\(406\) −0.317776 2.62660i −0.0157710 0.130356i
\(407\) −0.618090 −0.0306376
\(408\) 2.88092 4.98989i 0.142627 0.247036i
\(409\) 6.79749 + 11.7736i 0.336114 + 0.582167i 0.983698 0.179827i \(-0.0575538\pi\)
−0.647584 + 0.761994i \(0.724220\pi\)
\(410\) −1.36118 2.35763i −0.0672237 0.116435i
\(411\) 6.18222 10.7079i 0.304947 0.528183i
\(412\) −18.2766 −0.900422
\(413\) −4.06041 1.73205i −0.199800 0.0852286i
\(414\) 0.469795 0.0230892
\(415\) −8.82378 + 15.2832i −0.433142 + 0.750224i
\(416\) −1.09935 1.90412i −0.0538999 0.0933573i
\(417\) 0.0888799 + 0.153944i 0.00435247 + 0.00753869i
\(418\) 2.60535 4.51259i 0.127432 0.220718i
\(419\) −16.6105 −0.811474 −0.405737 0.913990i \(-0.632985\pi\)
−0.405737 + 0.913990i \(0.632985\pi\)
\(420\) 5.35071 + 2.28245i 0.261088 + 0.111372i
\(421\) −27.0713 −1.31938 −0.659688 0.751540i \(-0.729312\pi\)
−0.659688 + 0.751540i \(0.729312\pi\)
\(422\) −9.40338 + 16.2871i −0.457750 + 0.792846i
\(423\) −3.85071 6.66963i −0.187228 0.324288i
\(424\) −0.364448 0.631243i −0.0176992 0.0306558i
\(425\) 0.477531 0.827109i 0.0231637 0.0401207i
\(426\) 11.3699 0.550874
\(427\) 2.07688 + 17.1666i 0.100507 + 0.830748i
\(428\) −0.430317 −0.0208002
\(429\) −1.28157 + 2.21974i −0.0618748 + 0.107170i
\(430\) −2.93359 5.08112i −0.141470 0.245034i
\(431\) 19.1395 + 33.1505i 0.921916 + 1.59681i 0.796447 + 0.604708i \(0.206710\pi\)
0.125469 + 0.992098i \(0.459957\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) 2.25364 0.108303 0.0541516 0.998533i \(-0.482755\pi\)
0.0541516 + 0.998533i \(0.482755\pi\)
\(434\) −4.87491 + 3.65997i −0.234003 + 0.175684i
\(435\) −2.19869 −0.105419
\(436\) 7.08561 12.2726i 0.339339 0.587753i
\(437\) −1.04994 1.81856i −0.0502256 0.0869933i
\(438\) −3.40065 5.89011i −0.162490 0.281440i
\(439\) 0.251907 0.436316i 0.0120229 0.0208242i −0.859951 0.510376i \(-0.829506\pi\)
0.871974 + 0.489552i \(0.162840\pi\)
\(440\) −2.56314 −0.122193
\(441\) 4.84471 + 5.05260i 0.230700 + 0.240600i
\(442\) 12.6685 0.602578
\(443\) 0.830971 1.43928i 0.0394806 0.0683825i −0.845610 0.533801i \(-0.820763\pi\)
0.885091 + 0.465419i \(0.154096\pi\)
\(444\) −0.265102 0.459171i −0.0125812 0.0217913i
\(445\) −8.98299 15.5590i −0.425835 0.737567i
\(446\) −0.669029 + 1.15879i −0.0316794 + 0.0548704i
\(447\) −7.54221 −0.356734
\(448\) 2.11581 1.58850i 0.0999628 0.0750496i
\(449\) −27.2436 −1.28571 −0.642853 0.765989i \(-0.722249\pi\)
−0.642853 + 0.765989i \(0.722249\pi\)
\(450\) −0.0828784 + 0.143550i −0.00390693 + 0.00676699i
\(451\) 0.721702 + 1.25002i 0.0339836 + 0.0588614i
\(452\) 0.384187 + 0.665432i 0.0180706 + 0.0312993i
\(453\) 3.38092 5.85592i 0.158849 0.275135i
\(454\) −13.3699 −0.627481
\(455\) 1.53621 + 12.6976i 0.0720185 + 0.595273i
\(456\) 4.46980 0.209317
\(457\) 15.1395 26.2223i 0.708195 1.22663i −0.257331 0.966323i \(-0.582843\pi\)
0.965526 0.260306i \(-0.0838235\pi\)
\(458\) −1.81177 3.13809i −0.0846587 0.146633i
\(459\) −2.88092 4.98989i −0.134470 0.232908i
\(460\) −0.516467 + 0.894547i −0.0240804 + 0.0417085i
\(461\) 26.0988 1.21554 0.607771 0.794112i \(-0.292064\pi\)
0.607771 + 0.794112i \(0.292064\pi\)
\(462\) −2.83697 1.21017i −0.131988 0.0563021i
\(463\) −8.03185 −0.373272 −0.186636 0.982429i \(-0.559758\pi\)
−0.186636 + 0.982429i \(0.559758\pi\)
\(464\) −0.500000 + 0.866025i −0.0232119 + 0.0402042i
\(465\) 2.53293 + 4.38717i 0.117462 + 0.203450i
\(466\) −9.47699 16.4146i −0.439013 0.760393i
\(467\) −6.21516 + 10.7650i −0.287603 + 0.498143i −0.973237 0.229803i \(-0.926192\pi\)
0.685634 + 0.727947i \(0.259525\pi\)
\(468\) −2.19869 −0.101635
\(469\) −3.06413 1.30707i −0.141489 0.0603548i
\(470\) 16.9330 0.781063
\(471\) 4.59935 7.96630i 0.211927 0.367068i
\(472\) 0.834243 + 1.44495i 0.0383992 + 0.0665093i
\(473\) 1.55540 + 2.69404i 0.0715175 + 0.123872i
\(474\) 2.28757 3.96219i 0.105072 0.181989i
\(475\) 0.740899 0.0339948
\(476\) 1.83097 + 15.1340i 0.0839224 + 0.693666i
\(477\) −0.728896 −0.0333739
\(478\) 7.99673 13.8507i 0.365762 0.633518i
\(479\) 7.18168 + 12.4390i 0.328139 + 0.568354i 0.982143 0.188138i \(-0.0602451\pi\)
−0.654003 + 0.756492i \(0.726912\pi\)
\(480\) −1.09935 1.90412i −0.0501780 0.0869109i
\(481\) 0.582878 1.00958i 0.0265770 0.0460327i
\(482\) 24.0504 1.09547
\(483\) −0.993999 + 0.746270i −0.0452285 + 0.0339565i
\(484\) −9.64101 −0.438228
\(485\) 14.2541 24.6888i 0.647245 1.12106i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) 9.28430 + 16.0809i 0.420712 + 0.728694i 0.996009 0.0892501i \(-0.0284470\pi\)
−0.575297 + 0.817944i \(0.695114\pi\)
\(488\) 3.26783 5.66005i 0.147928 0.256218i
\(489\) −11.2526 −0.508858
\(490\) −14.9468 + 3.67036i −0.675227 + 0.165810i
\(491\) −18.1976 −0.821246 −0.410623 0.911805i \(-0.634689\pi\)
−0.410623 + 0.911805i \(0.634689\pi\)
\(492\) −0.619085 + 1.07229i −0.0279105 + 0.0483424i
\(493\) −2.88092 4.98989i −0.129750 0.224733i
\(494\) 4.91385 + 8.51104i 0.221085 + 0.382930i
\(495\) −1.28157 + 2.21974i −0.0576023 + 0.0997701i
\(496\) 2.30404 0.103454
\(497\) −24.0566 + 18.0611i −1.07909 + 0.810152i
\(498\) 8.02639 0.359671
\(499\) −18.1455 + 31.4289i −0.812303 + 1.40695i 0.0989453 + 0.995093i \(0.468453\pi\)
−0.911248 + 0.411857i \(0.864880\pi\)
\(500\) −5.67895 9.83623i −0.253970 0.439890i
\(501\) −4.51974 7.82842i −0.201927 0.349748i
\(502\) 1.53621 2.66079i 0.0685642 0.118757i
\(503\) −16.1317 −0.719279 −0.359639 0.933091i \(-0.617100\pi\)
−0.359639 + 0.933091i \(0.617100\pi\)
\(504\) −0.317776 2.62660i −0.0141549 0.116998i
\(505\) −30.2436 −1.34582
\(506\) 0.273833 0.474293i 0.0121734 0.0210849i
\(507\) 4.08288 + 7.07175i 0.181327 + 0.314068i
\(508\) −0.886917 1.53618i −0.0393506 0.0681572i
\(509\) −15.6937 + 27.1823i −0.695610 + 1.20483i 0.274364 + 0.961626i \(0.411533\pi\)
−0.969975 + 0.243207i \(0.921801\pi\)
\(510\) 12.6685 0.560970
\(511\) 16.5516 + 7.06042i 0.732199 + 0.312335i
\(512\) −1.00000 −0.0441942
\(513\) 2.23490 3.87096i 0.0986731 0.170907i
\(514\) −2.91112 5.04221i −0.128404 0.222402i
\(515\) −20.0923 34.8008i −0.885371 1.53351i
\(516\) −1.33424 + 2.31098i −0.0587368 + 0.101735i
\(517\) −8.97798 −0.394851
\(518\) 1.29030 + 0.550404i 0.0566926 + 0.0241834i
\(519\) −25.2042 −1.10634
\(520\) 2.41712 4.18658i 0.105998 0.183594i
\(521\) 5.14548 + 8.91222i 0.225427 + 0.390452i 0.956448 0.291904i \(-0.0942888\pi\)
−0.731020 + 0.682356i \(0.760955\pi\)
\(522\) 0.500000 + 0.866025i 0.0218844 + 0.0379049i
\(523\) 6.32770 10.9599i 0.276691 0.479243i −0.693869 0.720101i \(-0.744095\pi\)
0.970560 + 0.240858i \(0.0774288\pi\)
\(524\) 15.7553 0.688273
\(525\) −0.0526735 0.435377i −0.00229886 0.0190014i
\(526\) −15.7158 −0.685242
\(527\) −6.63774 + 11.4969i −0.289144 + 0.500813i
\(528\) 0.582878 + 1.00958i 0.0253665 + 0.0439361i
\(529\) 11.3896 + 19.7274i 0.495202 + 0.857715i
\(530\) 0.801309 1.38791i 0.0348066 0.0602868i
\(531\) 1.66849 0.0724061
\(532\) −9.45725 + 7.10027i −0.410024 + 0.307836i
\(533\) −2.72235 −0.117918
\(534\) −4.08561 + 7.07648i −0.176802 + 0.306229i
\(535\) −0.473067 0.819376i −0.0204525 0.0354247i
\(536\) 0.629550 + 1.09041i 0.0271924 + 0.0470987i
\(537\) −4.80077 + 8.31517i −0.207168 + 0.358826i
\(538\) −27.9660 −1.20570
\(539\) 7.92486 1.94604i 0.341348 0.0838221i
\(540\) −2.19869 −0.0946166
\(541\) −11.2673 + 19.5155i −0.484419 + 0.839038i −0.999840 0.0178993i \(-0.994302\pi\)
0.515421 + 0.856937i \(0.327635\pi\)
\(542\) −9.06314 15.6978i −0.389295 0.674279i
\(543\) −11.8836 20.5831i −0.509976 0.883304i
\(544\) 2.88092 4.98989i 0.123518 0.213940i
\(545\) 31.1581 1.33467
\(546\) 4.65202 3.49262i 0.199088 0.149470i
\(547\) 10.6445 0.455125 0.227563 0.973763i \(-0.426924\pi\)
0.227563 + 0.973763i \(0.426924\pi\)
\(548\) 6.18222 10.7079i 0.264092 0.457420i
\(549\) −3.26783 5.66005i −0.139468 0.241565i
\(550\) 0.0966161 + 0.167344i 0.00411972 + 0.00713557i
\(551\) 2.23490 3.87096i 0.0952098 0.164908i
\(552\) 0.469795 0.0199958
\(553\) 1.45387 + 12.0171i 0.0618249 + 0.511017i
\(554\) 20.2646 0.860959
\(555\) 0.582878 1.00958i 0.0247418 0.0428541i
\(556\) 0.0888799 + 0.153944i 0.00376935 + 0.00652870i
\(557\) 16.6317 + 28.8070i 0.704709 + 1.22059i 0.966796 + 0.255548i \(0.0822559\pi\)
−0.262087 + 0.965044i \(0.584411\pi\)
\(558\) 1.15202 1.99536i 0.0487689 0.0844701i
\(559\) −5.86718 −0.248155
\(560\) 5.35071 + 2.28245i 0.226109 + 0.0964513i
\(561\) −6.71689 −0.283587
\(562\) −4.79804 + 8.31044i −0.202393 + 0.350555i
\(563\) 3.73217 + 6.46430i 0.157292 + 0.272438i 0.933891 0.357557i \(-0.116390\pi\)
−0.776599 + 0.629995i \(0.783057\pi\)
\(564\) −3.85071 6.66963i −0.162144 0.280842i
\(565\) −0.844709 + 1.46308i −0.0355372 + 0.0615522i
\(566\) −1.97252 −0.0829114
\(567\) −2.43359 1.03810i −0.102201 0.0435960i
\(568\) 11.3699 0.477071
\(569\) 3.39792 5.88538i 0.142448 0.246728i −0.785970 0.618265i \(-0.787836\pi\)
0.928418 + 0.371537i \(0.121169\pi\)
\(570\) 4.91385 + 8.51104i 0.205819 + 0.356488i
\(571\) −12.1185 20.9899i −0.507145 0.878401i −0.999966 0.00827033i \(-0.997367\pi\)
0.492821 0.870131i \(-0.335966\pi\)
\(572\) −1.28157 + 2.21974i −0.0535851 + 0.0928121i
\(573\) 11.0539 0.461782
\(574\) −0.393460 3.25217i −0.0164227 0.135743i
\(575\) 0.0778717 0.00324748
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −4.87645 8.44626i −0.203009 0.351622i 0.746487 0.665400i \(-0.231739\pi\)
−0.949497 + 0.313777i \(0.898406\pi\)
\(578\) 8.09935 + 14.0285i 0.336888 + 0.583508i
\(579\) 7.46379 12.9277i 0.310185 0.537256i
\(580\) −2.19869 −0.0912957
\(581\) −16.9823 + 12.7499i −0.704546 + 0.528956i
\(582\) −12.9660 −0.537457
\(583\) −0.424858 + 0.735875i −0.0175958 + 0.0304768i
\(584\) −3.40065 5.89011i −0.140720 0.243734i
\(585\) −2.41712 4.18658i −0.0999357 0.173094i
\(586\) −6.19096 + 10.7230i −0.255746 + 0.442965i
\(587\) 11.9935 0.495023 0.247511 0.968885i \(-0.420387\pi\)
0.247511 + 0.968885i \(0.420387\pi\)
\(588\) 4.84471 + 5.05260i 0.199792 + 0.208366i
\(589\) −10.2986 −0.424346
\(590\) −1.83424 + 3.17700i −0.0755146 + 0.130795i
\(591\) −8.65148 14.9848i −0.355874 0.616392i
\(592\) −0.265102 0.459171i −0.0108956 0.0188718i
\(593\) −17.2376 + 29.8564i −0.707865 + 1.22606i 0.257783 + 0.966203i \(0.417008\pi\)
−0.965648 + 0.259855i \(0.916325\pi\)
\(594\) 1.16576 0.0478316
\(595\) −26.8041 + 20.1239i −1.09886 + 0.825000i
\(596\) −7.54221 −0.308941
\(597\) 11.7810 20.4053i 0.482165 0.835135i
\(598\) 0.516467 + 0.894547i 0.0211199 + 0.0365808i
\(599\) 16.4046 + 28.4136i 0.670273 + 1.16095i 0.977827 + 0.209416i \(0.0671562\pi\)
−0.307554 + 0.951531i \(0.599510\pi\)
\(600\) −0.0828784 + 0.143550i −0.00338350 + 0.00586039i
\(601\) 11.5477 0.471039 0.235520 0.971870i \(-0.424321\pi\)
0.235520 + 0.971870i \(0.424321\pi\)
\(602\) −0.847981 7.00904i −0.0345611 0.285667i
\(603\) 1.25910 0.0512746
\(604\) 3.38092 5.85592i 0.137567 0.238274i
\(605\) −10.5988 18.3577i −0.430903 0.746345i
\(606\) 6.87764 + 11.9124i 0.279385 + 0.483909i
\(607\) −2.09553 + 3.62957i −0.0850550 + 0.147320i −0.905415 0.424528i \(-0.860440\pi\)
0.820360 + 0.571848i \(0.193773\pi\)
\(608\) 4.46980 0.181274
\(609\) −2.43359 1.03810i −0.0986140 0.0420658i
\(610\) 14.3699 0.581821
\(611\) 8.46652 14.6644i 0.342519 0.593260i
\(612\) −2.88092 4.98989i −0.116454 0.201704i
\(613\) −6.16194 10.6728i −0.248879 0.431070i 0.714336 0.699802i \(-0.246729\pi\)
−0.963215 + 0.268732i \(0.913395\pi\)
\(614\) 4.88364 8.45872i 0.197088 0.341366i
\(615\) −2.72235 −0.109776
\(616\) −2.83697 1.21017i −0.114305 0.0487591i
\(617\) 17.7224 0.713475 0.356738 0.934205i \(-0.383889\pi\)
0.356738 + 0.934205i \(0.383889\pi\)
\(618\) −9.13828 + 15.8280i −0.367596 + 0.636694i
\(619\) 3.41385 + 5.91296i 0.137214 + 0.237662i 0.926441 0.376440i \(-0.122852\pi\)
−0.789227 + 0.614102i \(0.789518\pi\)
\(620\) 2.53293 + 4.38717i 0.101725 + 0.176193i
\(621\) 0.234898 0.406855i 0.00942611 0.0163265i
\(622\) −15.0868 −0.604926
\(623\) −2.59662 21.4625i −0.104031 0.859877i
\(624\) −2.19869 −0.0880181
\(625\) 12.0719 20.9091i 0.482875 0.836364i
\(626\) −13.7843 23.8751i −0.550931 0.954241i
\(627\) −2.60535 4.51259i −0.104048 0.180216i
\(628\) 4.59935 7.96630i 0.183534 0.317890i
\(629\) 3.05495 0.121809
\(630\) 4.65202 3.49262i 0.185341 0.139149i
\(631\) 4.69488 0.186900 0.0934501 0.995624i \(-0.470210\pi\)
0.0934501 + 0.995624i \(0.470210\pi\)
\(632\) 2.28757 3.96219i 0.0909947 0.157607i
\(633\) 9.40338 + 16.2871i 0.373751 + 0.647356i
\(634\) 0.287571 + 0.498088i 0.0114209 + 0.0197816i
\(635\) 1.95006 3.37760i 0.0773856 0.134036i
\(636\) −0.728896 −0.0289026
\(637\) −4.29476 + 14.7795i −0.170165 + 0.585584i
\(638\) 1.16576 0.0461528
\(639\) 5.68495 9.84663i 0.224893 0.389527i
\(640\) −1.09935 1.90412i −0.0434555 0.0752670i
\(641\) 3.26183 + 5.64966i 0.128835 + 0.223148i 0.923225 0.384259i \(-0.125543\pi\)
−0.794391 + 0.607407i \(0.792210\pi\)
\(642\) −0.215158 + 0.372665i −0.00849163 + 0.0147079i
\(643\) −37.0617 −1.46157 −0.730786 0.682607i \(-0.760846\pi\)
−0.730786 + 0.682607i \(0.760846\pi\)
\(644\) −0.993999 + 0.746270i −0.0391690 + 0.0294072i
\(645\) −5.86718 −0.231020
\(646\) −12.8771 + 22.3038i −0.506643 + 0.877531i
\(647\) 22.2910 + 38.6091i 0.876348 + 1.51788i 0.855320 + 0.518100i \(0.173360\pi\)
0.0210276 + 0.999779i \(0.493306\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 0.972525 1.68446i 0.0381749 0.0661209i
\(650\) −0.364448 −0.0142948
\(651\) 0.732168 + 6.05178i 0.0286959 + 0.237188i
\(652\) −11.2526 −0.440684
\(653\) 2.91766 5.05354i 0.114177 0.197760i −0.803273 0.595610i \(-0.796910\pi\)
0.917450 + 0.397850i \(0.130244\pi\)
\(654\) −7.08561 12.2726i −0.277069 0.479898i
\(655\) 17.3205 + 30.0000i 0.676768 + 1.17220i
\(656\) −0.619085 + 1.07229i −0.0241712 + 0.0418657i
\(657\) −6.80131 −0.265344
\(658\) 18.7421 + 7.99482i 0.730643 + 0.311671i
\(659\) −17.4018 −0.677876 −0.338938 0.940809i \(-0.610068\pi\)
−0.338938 + 0.940809i \(0.610068\pi\)
\(660\) −1.28157 + 2.21974i −0.0498850 + 0.0864034i
\(661\) −17.0988 29.6160i −0.665066 1.15193i −0.979267 0.202572i \(-0.935070\pi\)
0.314201 0.949356i \(-0.398263\pi\)
\(662\) −3.39019 5.87198i −0.131763 0.228221i
\(663\) 6.33424 10.9712i 0.246002 0.426087i
\(664\) 8.02639 0.311484
\(665\) −23.9166 10.2021i −0.927445 0.395621i
\(666\) −0.530205 −0.0205450
\(667\) 0.234898 0.406855i 0.00909527 0.0157535i
\(668\) −4.51974 7.82842i −0.174874 0.302891i
\(669\) 0.669029 + 1.15879i 0.0258661 + 0.0448015i
\(670\) −1.38419 + 2.39748i −0.0534758 + 0.0926228i
\(671\) −7.61899 −0.294128
\(672\) −0.317776 2.62660i −0.0122585 0.101323i
\(673\) 37.8111 1.45751 0.728756 0.684773i \(-0.240099\pi\)
0.728756 + 0.684773i \(0.240099\pi\)
\(674\) 3.38037 5.85498i 0.130207 0.225525i
\(675\) 0.0828784 + 0.143550i 0.00318999 + 0.00552523i
\(676\) 4.08288 + 7.07175i 0.157034 + 0.271990i
\(677\) −18.3337 + 31.7549i −0.704621 + 1.22044i 0.262207 + 0.965012i \(0.415550\pi\)
−0.966828 + 0.255428i \(0.917784\pi\)
\(678\) 0.768374 0.0295092
\(679\) 27.4336 20.5965i 1.05280 0.790420i
\(680\) 12.6685 0.485814
\(681\) −6.68495 + 11.5787i −0.256168 + 0.443696i
\(682\) −1.34297 2.32610i −0.0514251 0.0890710i
\(683\) 2.93359 + 5.08112i 0.112251 + 0.194424i 0.916677 0.399628i \(-0.130861\pi\)
−0.804427 + 0.594052i \(0.797527\pi\)
\(684\) 2.23490 3.87096i 0.0854534 0.148010i
\(685\) 27.1856 1.03871
\(686\) −18.2766 2.99454i −0.697802 0.114332i
\(687\) −3.62355 −0.138247
\(688\) −1.33424 + 2.31098i −0.0508675 + 0.0881052i
\(689\) −0.801309 1.38791i −0.0305274 0.0528751i
\(690\) 0.516467 + 0.894547i 0.0196616 + 0.0340548i
\(691\) −3.96106 + 6.86076i −0.150686 + 0.260996i −0.931480 0.363793i \(-0.881482\pi\)
0.780794 + 0.624789i \(0.214815\pi\)
\(692\) −25.2042 −0.958118
\(693\) −2.46652 + 1.85181i −0.0936955 + 0.0703443i
\(694\) −1.03948 −0.0394581
\(695\) −0.195419 + 0.338476i −0.00741268 + 0.0128391i
\(696\) 0.500000 + 0.866025i 0.0189525 + 0.0328266i
\(697\) −3.56706 6.17833i −0.135112 0.234021i
\(698\) 3.10208 5.37295i 0.117415 0.203369i
\(699\) −18.9540 −0.716905
\(700\) −0.0526735 0.435377i −0.00199087 0.0164557i
\(701\) −22.8092 −0.861490 −0.430745 0.902474i \(-0.641749\pi\)
−0.430745 + 0.902474i \(0.641749\pi\)
\(702\) −1.09935 + 1.90412i −0.0414921 + 0.0718665i
\(703\) 1.18495 + 2.05240i 0.0446914 + 0.0774077i
\(704\) 0.582878 + 1.00958i 0.0219681 + 0.0380498i
\(705\) 8.46652 14.6644i 0.318868 0.552295i
\(706\) 7.88265 0.296667
\(707\) −33.4747 14.2793i −1.25895 0.537029i
\(708\) 1.66849 0.0627056
\(709\) −0.0197391 + 0.0341891i −0.000741318 + 0.00128400i −0.866396 0.499358i \(-0.833569\pi\)
0.865655 + 0.500642i \(0.166903\pi\)
\(710\) 12.4995 + 21.6497i 0.469096 + 0.812499i
\(711\) −2.28757 3.96219i −0.0857906 0.148594i
\(712\) −4.08561 + 7.07648i −0.153115 + 0.265202i
\(713\) −1.08243 −0.0405372
\(714\) 14.0219 + 5.98134i 0.524757 + 0.223846i
\(715\) −5.63555 −0.210758
\(716\) −4.80077 + 8.31517i −0.179413 + 0.310753i
\(717\) −7.99673 13.8507i −0.298643 0.517265i
\(718\) −4.34798 7.53092i −0.162265 0.281052i
\(719\) −12.6021 + 21.8274i −0.469978 + 0.814026i −0.999411 0.0343261i \(-0.989072\pi\)
0.529433 + 0.848352i \(0.322405\pi\)
\(720\) −2.19869 −0.0819404
\(721\) −5.80785 48.0052i −0.216296 1.78781i
\(722\) −0.979068 −0.0364372
\(723\) 12.0252 20.8283i 0.447222 0.774611i
\(724\) −11.8836 20.5831i −0.441652 0.764964i
\(725\) 0.0828784 + 0.143550i 0.00307803 + 0.00533130i
\(726\) −4.82051 + 8.34936i −0.178906 + 0.309874i
\(727\) 6.57207 0.243745 0.121872 0.992546i \(-0.461110\pi\)
0.121872 + 0.992546i \(0.461110\pi\)
\(728\) 4.65202 3.49262i 0.172415 0.129445i
\(729\) 1.00000 0.0370370
\(730\) 7.47699 12.9505i 0.276736 0.479320i
\(731\) −7.68768 13.3155i −0.284339 0.492490i
\(732\) −3.26783 5.66005i −0.120783 0.209202i
\(733\) −26.1192 + 45.2398i −0.964734 + 1.67097i −0.254407 + 0.967097i \(0.581880\pi\)
−0.710327 + 0.703872i \(0.751453\pi\)
\(734\) 9.95944 0.367610
\(735\) −4.29476 + 14.7795i −0.158415 + 0.545149i
\(736\) 0.469795 0.0173169
\(737\) 0.733903 1.27116i 0.0270337 0.0468237i
\(738\) 0.619085 + 1.07229i 0.0227888 + 0.0394714i
\(739\) 1.44133 + 2.49645i 0.0530200 + 0.0918333i 0.891317 0.453380i \(-0.149782\pi\)
−0.838297 + 0.545213i \(0.816449\pi\)
\(740\) 0.582878 1.00958i 0.0214270 0.0371127i
\(741\) 9.82770 0.361030
\(742\) 1.54221 1.15785i 0.0566162 0.0425061i
\(743\) −0.880265 −0.0322938 −0.0161469 0.999870i \(-0.505140\pi\)
−0.0161469 + 0.999870i \(0.505140\pi\)
\(744\) 1.15202 1.99536i 0.0422351 0.0731533i
\(745\) −8.29149 14.3613i −0.303777 0.526157i
\(746\) 7.29476 + 12.6349i 0.267080 + 0.462597i
\(747\) 4.01320 6.95106i 0.146835 0.254326i
\(748\) −6.71689 −0.245594
\(749\) −0.136744 1.13027i −0.00499653 0.0412992i
\(750\) −11.3579 −0.414732
\(751\) −16.6679 + 28.8697i −0.608222 + 1.05347i 0.383311 + 0.923619i \(0.374784\pi\)
−0.991533 + 0.129852i \(0.958550\pi\)
\(752\) −3.85071 6.66963i −0.140421 0.243216i
\(753\) −1.53621 2.66079i −0.0559825 0.0969645i
\(754\) −1.09935 + 1.90412i −0.0400358 + 0.0693441i
\(755\) 14.8672 0.541072
\(756\) −2.43359 1.03810i −0.0885088 0.0377552i
\(757\) −25.5477 −0.928546 −0.464273 0.885692i \(-0.653684\pi\)
−0.464273 + 0.885692i \(0.653684\pi\)
\(758\) −9.84144 + 17.0459i −0.357457 + 0.619134i
\(759\) −0.273833 0.474293i −0.00993952 0.0172158i
\(760\) 4.91385 + 8.51104i 0.178244 + 0.308728i
\(761\) −16.7256 + 28.9696i −0.606303 + 1.05015i 0.385541 + 0.922691i \(0.374015\pi\)
−0.991844 + 0.127457i \(0.959318\pi\)
\(762\) −1.77383 −0.0642592
\(763\) 34.4869 + 14.7111i 1.24851 + 0.532577i
\(764\) 11.0539 0.399915
\(765\) 6.33424 10.9712i 0.229015 0.396666i
\(766\) −2.62628 4.54885i −0.0948913 0.164357i
\(767\) 1.83424 + 3.17700i 0.0662307 + 0.114715i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) −43.2175 −1.55846 −0.779231 0.626737i \(-0.784390\pi\)
−0.779231 + 0.626737i \(0.784390\pi\)
\(770\) −0.814504 6.73234i −0.0293527 0.242617i
\(771\) −5.82224 −0.209683
\(772\) 7.46379 12.9277i 0.268628 0.465277i
\(773\) −7.71962 13.3708i −0.277656 0.480913i 0.693146 0.720797i \(-0.256224\pi\)
−0.970802 + 0.239884i \(0.922891\pi\)
\(774\) 1.33424 + 2.31098i 0.0479584 + 0.0830664i
\(775\) 0.190955 0.330744i 0.00685931 0.0118807i
\(776\) −12.9660 −0.465452
\(777\) 1.12181 0.842231i 0.0402449 0.0302149i
\(778\) −0.514732 −0.0184541
\(779\) 2.76718 4.79290i 0.0991446 0.171723i
\(780\) −2.41712 4.18658i −0.0865468 0.149904i
\(781\) −6.62727 11.4788i −0.237142 0.410743i
\(782\) −1.35344 + 2.34423i −0.0483989 + 0.0838294i
\(783\) 1.00000 0.0357371
\(784\) 4.84471 + 5.05260i 0.173025 + 0.180450i
\(785\) 20.2251 0.721864
\(786\) 7.87764 13.6445i 0.280986 0.486682i
\(787\) −11.6317 20.1468i −0.414627 0.718154i 0.580763 0.814073i \(-0.302754\pi\)
−0.995389 + 0.0959186i \(0.969421\pi\)
\(788\) −8.65148 14.9848i −0.308196 0.533811i
\(789\) −7.85790 + 13.6103i −0.279749 + 0.484539i
\(790\) 10.0593 0.357895
\(791\) −1.62574 + 1.22056i −0.0578045 + 0.0433982i
\(792\) 1.16576 0.0414234
\(793\) 7.18495 12.4447i 0.255145 0.441924i
\(794\) −15.0823 26.1234i −0.535252 0.927084i
\(795\) −0.801309 1.38791i −0.0284195 0.0492240i
\(796\) 11.7810 20.4053i 0.417567 0.723248i
\(797\) 46.7224 1.65499 0.827495 0.561473i \(-0.189765\pi\)
0.827495 + 0.561473i \(0.189765\pi\)
\(798\) 1.42039 + 11.7404i 0.0502814 + 0.415604i
\(799\) 44.3743 1.56985
\(800\) −0.0828784 + 0.143550i −0.00293019 + 0.00507525i
\(801\) 4.08561 + 7.07648i 0.144358 + 0.250035i
\(802\) 2.90011 + 5.02314i 0.102407 + 0.177373i
\(803\) −3.96434 + 6.86643i −0.139898 + 0.242311i
\(804\) 1.25910 0.0444051
\(805\) −2.51374 1.07229i −0.0885976 0.0377931i
\(806\) 5.06587 0.178438
\(807\) −13.9830 + 24.2192i −0.492225 + 0.852558i
\(808\) 6.87764 + 11.9124i 0.241955 + 0.419078i
\(809\) 16.2838 + 28.2043i 0.572506 + 0.991610i 0.996308 + 0.0858550i \(0.0273622\pi\)
−0.423801 + 0.905755i \(0.639304\pi\)
\(810\) −1.09935 + 1.90412i −0.0386271 + 0.0669040i
\(811\) −36.6094 −1.28553 −0.642765 0.766064i \(-0.722213\pi\)
−0.642765 + 0.766064i \(0.722213\pi\)
\(812\) −2.43359 1.03810i −0.0854022 0.0364301i
\(813\) −18.1263 −0.635716
\(814\) −0.309045 + 0.535282i −0.0108320 + 0.0187616i
\(815\) −12.3704 21.4262i −0.433318 0.750529i
\(816\) −2.88092 4.98989i −0.100852 0.174681i
\(817\) 5.96379 10.3296i 0.208647 0.361387i
\(818\) 13.5950 0.475338
\(819\) −0.698691 5.77508i −0.0244142 0.201798i
\(820\) −2.72235 −0.0950687
\(821\) 13.1185 22.7220i 0.457840 0.793003i −0.541006 0.841019i \(-0.681956\pi\)
0.998847 + 0.0480159i \(0.0152898\pi\)
\(822\) −6.18222 10.7079i −0.215630 0.373482i
\(823\) 0.613083 + 1.06189i 0.0213707 + 0.0370152i 0.876513 0.481378i \(-0.159864\pi\)
−0.855142 + 0.518393i \(0.826530\pi\)
\(824\) −9.13828 + 15.8280i −0.318347 + 0.551393i
\(825\) 0.193232 0.00672748
\(826\) −3.53020 + 2.65039i −0.122832 + 0.0922190i
\(827\) −38.8692 −1.35161 −0.675807 0.737079i \(-0.736205\pi\)
−0.675807 + 0.737079i \(0.736205\pi\)
\(828\) 0.234898 0.406855i 0.00816325 0.0141392i
\(829\) −15.4830 26.8173i −0.537746 0.931404i −0.999025 0.0441488i \(-0.985942\pi\)
0.461278 0.887255i \(-0.347391\pi\)
\(830\) 8.82378 + 15.2832i 0.306278 + 0.530489i
\(831\) 10.1323 17.5496i 0.351485 0.608790i
\(832\) −2.19869 −0.0762259
\(833\) −39.1691 + 9.61845i −1.35713 + 0.333260i
\(834\) 0.177760 0.00615532
\(835\) 9.93751 17.2123i 0.343902 0.595655i
\(836\) −2.60535 4.51259i −0.0901078 0.156071i
\(837\) −1.15202 1.99536i −0.0398196 0.0689696i
\(838\) −8.30523 + 14.3851i −0.286899 + 0.496924i
\(839\) −31.5291 −1.08851 −0.544253 0.838921i \(-0.683187\pi\)
−0.544253 + 0.838921i \(0.683187\pi\)
\(840\) 4.65202 3.49262i 0.160510 0.120507i
\(841\) 1.00000 0.0344828
\(842\) −13.5357 + 23.4445i −0.466470 + 0.807949i
\(843\) 4.79804 + 8.31044i 0.165253 + 0.286227i
\(844\) 9.40338 + 16.2871i 0.323678 + 0.560626i
\(845\) −8.97699 + 15.5486i −0.308818 + 0.534888i
\(846\) −7.70142 −0.264780
\(847\) −3.06368 25.3231i −0.105269 0.870111i
\(848\) −0.728896 −0.0250304
\(849\) −0.986262 + 1.70826i −0.0338484 + 0.0586272i
\(850\) −0.477531 0.827109i −0.0163792 0.0283696i
\(851\) 0.124544 + 0.215716i 0.00426931 + 0.00739466i
\(852\) 5.68495 9.84663i 0.194763 0.337340i
\(853\) −34.9858 −1.19789 −0.598946 0.800789i \(-0.704414\pi\)
−0.598946 + 0.800789i \(0.704414\pi\)
\(854\) 15.9051 + 6.78465i 0.544262 + 0.232166i
\(855\) 9.82770 0.336100
\(856\) −0.215158 + 0.372665i −0.00735396 + 0.0127374i
\(857\) 20.3002 + 35.1610i 0.693442 + 1.20108i 0.970703 + 0.240283i \(0.0772402\pi\)
−0.277260 + 0.960795i \(0.589427\pi\)
\(858\) 1.28157 + 2.21974i 0.0437521 + 0.0757808i
\(859\) 5.10327 8.83912i 0.174121 0.301587i −0.765736 0.643156i \(-0.777625\pi\)
0.939857 + 0.341569i \(0.110958\pi\)
\(860\) −5.86718 −0.200069
\(861\) −3.01320 1.28534i −0.102689 0.0438043i
\(862\) 38.2789 1.30379
\(863\) 27.1719 47.0631i 0.924941 1.60204i 0.133285 0.991078i \(-0.457447\pi\)
0.791656 0.610967i \(-0.209219\pi\)
\(864\) 0.500000 + 0.866025i 0.0170103 + 0.0294628i
\(865\) −27.7081 47.9918i −0.942103 1.63177i
\(866\) 1.12682 1.95171i 0.0382909 0.0663218i
\(867\) 16.1987 0.550136
\(868\) 0.732168 + 6.05178i 0.0248514 + 0.205411i
\(869\) −5.33350 −0.180927
\(870\) −1.09935 + 1.90412i −0.0372713 + 0.0645558i
\(871\) 1.38419 + 2.39748i 0.0469014 + 0.0812356i
\(872\) −7.08561 12.2726i −0.239949 0.415604i
\(873\) −6.48299 + 11.2289i −0.219416 + 0.380040i
\(874\) −2.09989 −0.0710298
\(875\) 24.0312 18.0420i 0.812403 0.609932i
\(876\) −6.80131 −0.229795
\(877\) −3.13555 + 5.43094i −0.105880 + 0.183390i −0.914097 0.405495i \(-0.867099\pi\)
0.808217 + 0.588884i \(0.200433\pi\)
\(878\) −0.251907 0.436316i −0.00850145 0.0147249i
\(879\) 6.19096 + 10.7230i 0.208816 + 0.361679i
\(880\) −1.28157 + 2.21974i −0.0432017 + 0.0748275i
\(881\) 0.564224 0.0190092 0.00950459 0.999955i \(-0.496975\pi\)
0.00950459 + 0.999955i \(0.496975\pi\)
\(882\) 6.79804 1.66934i 0.228902 0.0562096i
\(883\) −1.82116 −0.0612868 −0.0306434 0.999530i \(-0.509756\pi\)
−0.0306434 + 0.999530i \(0.509756\pi\)
\(884\) 6.33424 10.9712i 0.213044 0.369002i
\(885\) 1.83424 + 3.17700i 0.0616574 + 0.106794i
\(886\) −0.830971 1.43928i −0.0279170 0.0483537i
\(887\) −16.4138 + 28.4296i −0.551123 + 0.954573i 0.447071 + 0.894499i \(0.352467\pi\)
−0.998194 + 0.0600747i \(0.980866\pi\)
\(888\) −0.530205 −0.0177925
\(889\) 3.75310 2.81774i 0.125875 0.0945039i
\(890\) −17.9660 −0.602221
\(891\) 0.582878 1.00958i 0.0195272 0.0338220i
\(892\) 0.669029 + 1.15879i 0.0224007 + 0.0387992i
\(893\) 17.2119 + 29.8119i 0.575974 + 0.997616i
\(894\) −3.77110 + 6.53174i −0.126125 + 0.218454i
\(895\) −21.1108 −0.705656
\(896\) −0.317776 2.62660i −0.0106162 0.0877485i
\(897\) 1.03293 0.0344887
\(898\) −13.6218 + 23.5937i −0.454566 + 0.787331i
\(899\) −1.15202 1.99536i −0.0384220 0.0665488i
\(900\) 0.0828784 + 0.143550i 0.00276261 + 0.00478499i
\(901\) 2.09989 3.63711i 0.0699574 0.121170i
\(902\) 1.44340 0.0480601
\(903\) −6.49400 2.77015i −0.216107 0.0921847i
\(904\) 0.768374 0.0255558
\(905\) 26.1285 45.2558i 0.868540 1.50435i
\(906\) −3.38092 5.85592i −0.112323 0.194550i
\(907\) −6.97426 12.0798i −0.231576 0.401102i 0.726696 0.686959i \(-0.241055\pi\)
−0.958272 + 0.285857i \(0.907722\pi\)
\(908\) −6.68495 + 11.5787i −0.221848 + 0.384252i
\(909\) 13.7553 0.456234
\(910\) 11.7646 + 5.01841i 0.389991 + 0.166359i
\(911\) −42.8881 −1.42095 −0.710473 0.703724i \(-0.751519\pi\)
−0.710473 + 0.703724i \(0.751519\pi\)
\(912\) 2.23490 3.87096i 0.0740049 0.128180i
\(913\) −4.67841 8.10324i −0.154833 0.268178i
\(914\) −15.1395 26.2223i −0.500769 0.867358i
\(915\) 7.18495 12.4447i 0.237527 0.411409i
\(916\) −3.62355 −0.119725
\(917\) 5.00665 + 41.3828i 0.165334 + 1.36658i
\(918\) −5.76183 −0.190169
\(919\) 15.6904 27.1766i 0.517579 0.896473i −0.482213 0.876054i \(-0.660167\pi\)
0.999792 0.0204188i \(-0.00649996\pi\)
\(920\) 0.516467 + 0.894547i 0.0170274 + 0.0294924i
\(921\) −4.88364 8.45872i −0.160922 0.278724i
\(922\) 13.0494 22.6022i 0.429759 0.744365i
\(923\) 24.9989 0.822849
\(924\) −2.46652 + 1.85181i −0.0811427 + 0.0609199i
\(925\) −0.0878851 −0.00288964
\(926\) −4.01592 + 6.95579i −0.131971 + 0.228581i
\(927\) 9.13828 + 15.8280i 0.300141 + 0.519859i
\(928\) 0.500000 + 0.866025i 0.0164133 + 0.0284287i
\(929\) 5.61973 9.73367i 0.184378 0.319351i −0.758989 0.651103i \(-0.774306\pi\)
0.943367 + 0.331752i \(0.107640\pi\)
\(930\) 5.06587 0.166116
\(931\) −21.6549 22.5841i −0.709709 0.740164i
\(932\) −18.9540 −0.620858
\(933\) −7.54340 + 13.0656i −0.246960 + 0.427747i
\(934\) 6.21516 + 10.7650i 0.203366 + 0.352241i
\(935\) −7.38419 12.7898i −0.241489 0.418271i
\(936\) −1.09935 + 1.90412i −0.0359332 + 0.0622382i
\(937\) 29.9978 0.979986 0.489993 0.871726i \(-0.336999\pi\)
0.489993 + 0.871726i \(0.336999\pi\)
\(938\) −2.66402 + 2.00008i −0.0869834 + 0.0653050i
\(939\) −27.5686 −0.899667
\(940\) 8.46652 14.6644i 0.276148 0.478302i
\(941\) 4.82051 + 8.34936i 0.157144 + 0.272181i 0.933838 0.357697i \(-0.116438\pi\)
−0.776694 + 0.629879i \(0.783105\pi\)
\(942\) −4.59935 7.96630i −0.149855 0.259556i
\(943\) 0.290843 0.503755i 0.00947115 0.0164045i
\(944\) 1.66849 0.0543046
\(945\) −0.698691 5.77508i −0.0227284 0.187863i
\(946\) 3.11081 0.101141
\(947\) 9.19815 15.9317i 0.298900 0.517709i −0.676985 0.735997i \(-0.736714\pi\)
0.975884 + 0.218288i \(0.0700471\pi\)
\(948\) −2.28757 3.96219i −0.0742969 0.128686i
\(949\) −7.47699 12.9505i −0.242713 0.420392i
\(950\) 0.370450 0.641637i 0.0120190 0.0208175i
\(951\) 0.575142 0.0186503
\(952\) 14.0219 + 5.98134i 0.454453 + 0.193856i
\(953\) 21.4807 0.695829 0.347914 0.937526i \(-0.386890\pi\)
0.347914 + 0.937526i \(0.386890\pi\)
\(954\) −0.364448 + 0.631243i −0.0117994 + 0.0204372i
\(955\) 12.1520 + 21.0479i 0.393230 + 0.681095i
\(956\) −7.99673 13.8507i −0.258633 0.447965i
\(957\) 0.582878 1.00958i 0.0188418 0.0326349i
\(958\) 14.3634 0.464059
\(959\) 30.0900 + 12.8355i 0.971656 + 0.414480i
\(960\) −2.19869 −0.0709625
\(961\) 12.8457 22.2494i 0.414378 0.717723i
\(962\) −0.582878 1.00958i −0.0187928 0.0325500i
\(963\) 0.215158 + 0.372665i 0.00693338 + 0.0120090i
\(964\) 12.0252 20.8283i 0.387306 0.670833i
\(965\) 32.8212 1.05655
\(966\) 0.149290 + 1.23396i 0.00480331 + 0.0397021i
\(967\) −29.0779 −0.935081 −0.467541 0.883972i \(-0.654860\pi\)
−0.467541 + 0.883972i \(0.654860\pi\)
\(968\) −4.82051 + 8.34936i −0.154937 + 0.268359i
\(969\) 12.8771 + 22.3038i 0.413672 + 0.716501i
\(970\) −14.2541 24.6888i −0.457671 0.792710i
\(971\) 8.71069 15.0874i 0.279539 0.484177i −0.691731 0.722155i \(-0.743152\pi\)
0.971270 + 0.237979i \(0.0764849\pi\)
\(972\) 1.00000 0.0320750
\(973\) −0.376106 + 0.282372i −0.0120574 + 0.00905241i
\(974\) 18.5686 0.594976
\(975\) −0.182224 + 0.315621i −0.00583584 + 0.0101080i
\(976\) −3.26783 5.66005i −0.104601 0.181174i
\(977\) 18.0291 + 31.2274i 0.576803 + 0.999052i 0.995843 + 0.0910840i \(0.0290332\pi\)
−0.419041 + 0.907968i \(0.637633\pi\)
\(978\) −5.62628 + 9.74500i −0.179909 + 0.311611i
\(979\) 9.52565 0.304441
\(980\) −4.29476 + 14.7795i −0.137191 + 0.472113i
\(981\) −14.1712 −0.452452
\(982\) −9.09880 + 15.7596i −0.290354 + 0.502909i
\(983\) 12.3644 + 21.4159i 0.394365 + 0.683060i 0.993020 0.117947i \(-0.0376314\pi\)
−0.598655 + 0.801007i \(0.704298\pi\)
\(984\) 0.619085 + 1.07229i 0.0197357 + 0.0341832i
\(985\) 19.0219 32.9469i 0.606089 1.04978i
\(986\) −5.76183 −0.183494
\(987\) 16.2948 12.2337i 0.518668 0.389403i
\(988\) 9.82770 0.312661
\(989\) 0.626821 1.08569i 0.0199317 0.0345228i
\(990\) 1.28157 + 2.21974i 0.0407310 + 0.0705481i
\(991\) −5.69096 9.85702i −0.180779 0.313119i 0.761367 0.648321i \(-0.224529\pi\)
−0.942146 + 0.335203i \(0.891195\pi\)
\(992\) 1.15202 1.99536i 0.0365766 0.0633526i
\(993\) −6.78038 −0.215169
\(994\) 3.61308 + 29.8642i 0.114600 + 0.947234i
\(995\) 51.8057 1.64235
\(996\) 4.01320 6.95106i 0.127163 0.220253i
\(997\) 21.2179 + 36.7505i 0.671977 + 1.16390i 0.977343 + 0.211663i \(0.0678881\pi\)
−0.305365 + 0.952235i \(0.598779\pi\)
\(998\) 18.1455 + 31.4289i 0.574385 + 0.994864i
\(999\) −0.265102 + 0.459171i −0.00838747 + 0.0145275i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.i.d.1045.3 yes 6
7.2 even 3 8526.2.a.bs.1.1 3
7.4 even 3 inner 1218.2.i.d.697.3 6
7.5 odd 6 8526.2.a.bp.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.i.d.697.3 6 7.4 even 3 inner
1218.2.i.d.1045.3 yes 6 1.1 even 1 trivial
8526.2.a.bp.1.3 3 7.5 odd 6
8526.2.a.bs.1.1 3 7.2 even 3