Properties

Label 1218.2.i.b.1045.1
Level $1218$
Weight $2$
Character 1218.1045
Analytic conductor $9.726$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(697,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.697"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,3,-3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.1783323.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 5x^{4} - 2x^{3} + 19x^{2} - 12x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1045.1
Root \(0.356769 + 0.617942i\) of defining polynomial
Character \(\chi\) \(=\) 1218.1045
Dual form 1218.2.i.b.697.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.60220 + 2.77509i) q^{5} -1.00000 q^{6} +(2.63409 + 0.248083i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.60220 - 2.77509i) q^{10} +(1.64323 + 2.84616i) q^{11} +(0.500000 - 0.866025i) q^{12} +3.77733 q^{13} +(-1.53189 + 2.15715i) q^{14} -3.20440 q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.73630 + 4.73940i) q^{17} +(-0.500000 - 0.866025i) q^{18} +(2.10220 - 3.64112i) q^{19} +3.20440 q^{20} +(1.10220 + 2.40523i) q^{21} -3.28646 q^{22} +(0.897799 - 1.55503i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-2.63409 - 4.56239i) q^{25} +(-1.88866 + 3.27126i) q^{26} -1.00000 q^{27} +(-1.10220 - 2.40523i) q^{28} +1.00000 q^{29} +(1.60220 - 2.77509i) q^{30} +(3.44983 + 5.97529i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-1.64323 + 2.84616i) q^{33} -5.47259 q^{34} +(-4.90880 + 6.91238i) q^{35} +1.00000 q^{36} +(2.31574 - 4.01098i) q^{37} +(2.10220 + 3.64112i) q^{38} +(1.88866 + 3.27126i) q^{39} +(-1.60220 + 2.77509i) q^{40} -5.49086 q^{41} +(-2.63409 - 0.248083i) q^{42} -10.8359 q^{43} +(1.64323 - 2.84616i) q^{44} +(-1.60220 - 2.77509i) q^{45} +(0.897799 + 1.55503i) q^{46} +(4.17251 - 7.22700i) q^{47} -1.00000 q^{48} +(6.87691 + 1.30695i) q^{49} +5.26819 q^{50} +(-2.73630 + 4.73940i) q^{51} +(-1.88866 - 3.27126i) q^{52} +(4.06379 + 7.03869i) q^{53} +(0.500000 - 0.866025i) q^{54} -10.5311 q^{55} +(2.63409 + 0.248083i) q^{56} +4.20440 q^{57} +(-0.500000 + 0.866025i) q^{58} +(-2.14061 - 3.70765i) q^{59} +(1.60220 + 2.77509i) q^{60} +(-3.45245 + 5.97982i) q^{61} -6.89967 q^{62} +(-1.53189 + 2.15715i) q^{63} +1.00000 q^{64} +(-6.05203 + 10.4824i) q^{65} +(-1.64323 - 2.84616i) q^{66} +(-1.37953 - 2.38941i) q^{67} +(2.73630 - 4.73940i) q^{68} +1.79560 q^{69} +(-3.53189 - 7.70734i) q^{70} -15.7355 q^{71} +(-0.500000 + 0.866025i) q^{72} +(-6.10220 - 10.5693i) q^{73} +(2.31574 + 4.01098i) q^{74} +(2.63409 - 4.56239i) q^{75} -4.20440 q^{76} +(3.62234 + 7.90471i) q^{77} -3.77733 q^{78} +(1.54103 - 2.66914i) q^{79} +(-1.60220 - 2.77509i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.74543 - 4.75523i) q^{82} -5.28646 q^{83} +(1.53189 - 2.15715i) q^{84} -17.5364 q^{85} +(5.41794 - 9.38415i) q^{86} +(0.500000 + 0.866025i) q^{87} +(1.64323 + 2.84616i) q^{88} +(1.70702 - 2.95664i) q^{89} +3.20440 q^{90} +(9.94983 + 0.937092i) q^{91} -1.79560 q^{92} +(-3.44983 + 5.97529i) q^{93} +(4.17251 + 7.22700i) q^{94} +(6.73630 + 11.6676i) q^{95} +(0.500000 - 0.866025i) q^{96} +8.99477 q^{97} +(-4.57031 + 5.30210i) q^{98} -3.28646 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 3 q^{3} - 3 q^{4} - q^{5} - 6 q^{6} + 2 q^{7} + 6 q^{8} - 3 q^{9} - q^{10} + 11 q^{11} + 3 q^{12} + 10 q^{13} - 4 q^{14} - 2 q^{15} - 3 q^{16} - 6 q^{17} - 3 q^{18} + 4 q^{19} + 2 q^{20}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.60220 + 2.77509i −0.716526 + 1.24106i 0.245842 + 0.969310i \(0.420936\pi\)
−0.962368 + 0.271749i \(0.912398\pi\)
\(6\) −1.00000 −0.408248
\(7\) 2.63409 + 0.248083i 0.995594 + 0.0937667i
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.60220 2.77509i −0.506660 0.877562i
\(11\) 1.64323 + 2.84616i 0.495453 + 0.858149i 0.999986 0.00524272i \(-0.00166882\pi\)
−0.504533 + 0.863392i \(0.668335\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 3.77733 1.04764 0.523821 0.851828i \(-0.324506\pi\)
0.523821 + 0.851828i \(0.324506\pi\)
\(14\) −1.53189 + 2.15715i −0.409416 + 0.576523i
\(15\) −3.20440 −0.827373
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.73630 + 4.73940i 0.663649 + 1.14947i 0.979650 + 0.200715i \(0.0643265\pi\)
−0.316001 + 0.948759i \(0.602340\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 2.10220 3.64112i 0.482278 0.835330i −0.517515 0.855674i \(-0.673143\pi\)
0.999793 + 0.0203442i \(0.00647620\pi\)
\(20\) 3.20440 0.716526
\(21\) 1.10220 + 2.40523i 0.240520 + 0.524865i
\(22\) −3.28646 −0.700676
\(23\) 0.897799 1.55503i 0.187204 0.324247i −0.757113 0.653284i \(-0.773391\pi\)
0.944317 + 0.329037i \(0.106724\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −2.63409 4.56239i −0.526819 0.912477i
\(26\) −1.88866 + 3.27126i −0.370397 + 0.641547i
\(27\) −1.00000 −0.192450
\(28\) −1.10220 2.40523i −0.208296 0.454547i
\(29\) 1.00000 0.185695
\(30\) 1.60220 2.77509i 0.292521 0.506660i
\(31\) 3.44983 + 5.97529i 0.619608 + 1.07319i 0.989557 + 0.144141i \(0.0460419\pi\)
−0.369949 + 0.929052i \(0.620625\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −1.64323 + 2.84616i −0.286050 + 0.495453i
\(34\) −5.47259 −0.938542
\(35\) −4.90880 + 6.91238i −0.829739 + 1.16841i
\(36\) 1.00000 0.166667
\(37\) 2.31574 4.01098i 0.380705 0.659401i −0.610458 0.792049i \(-0.709015\pi\)
0.991163 + 0.132648i \(0.0423480\pi\)
\(38\) 2.10220 + 3.64112i 0.341022 + 0.590667i
\(39\) 1.88866 + 3.27126i 0.302428 + 0.523821i
\(40\) −1.60220 + 2.77509i −0.253330 + 0.438781i
\(41\) −5.49086 −0.857529 −0.428764 0.903416i \(-0.641051\pi\)
−0.428764 + 0.903416i \(0.641051\pi\)
\(42\) −2.63409 0.248083i −0.406450 0.0382801i
\(43\) −10.8359 −1.65246 −0.826228 0.563336i \(-0.809518\pi\)
−0.826228 + 0.563336i \(0.809518\pi\)
\(44\) 1.64323 2.84616i 0.247726 0.429075i
\(45\) −1.60220 2.77509i −0.238842 0.413686i
\(46\) 0.897799 + 1.55503i 0.132373 + 0.229277i
\(47\) 4.17251 7.22700i 0.608623 1.05417i −0.382845 0.923813i \(-0.625056\pi\)
0.991468 0.130353i \(-0.0416110\pi\)
\(48\) −1.00000 −0.144338
\(49\) 6.87691 + 1.30695i 0.982416 + 0.186707i
\(50\) 5.26819 0.745034
\(51\) −2.73630 + 4.73940i −0.383158 + 0.663649i
\(52\) −1.88866 3.27126i −0.261910 0.453642i
\(53\) 4.06379 + 7.03869i 0.558204 + 0.966838i 0.997647 + 0.0685672i \(0.0218428\pi\)
−0.439442 + 0.898271i \(0.644824\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) −10.5311 −1.42002
\(56\) 2.63409 + 0.248083i 0.351996 + 0.0331515i
\(57\) 4.20440 0.556887
\(58\) −0.500000 + 0.866025i −0.0656532 + 0.113715i
\(59\) −2.14061 3.70765i −0.278684 0.482695i 0.692374 0.721539i \(-0.256565\pi\)
−0.971058 + 0.238844i \(0.923232\pi\)
\(60\) 1.60220 + 2.77509i 0.206843 + 0.358263i
\(61\) −3.45245 + 5.97982i −0.442041 + 0.765637i −0.997841 0.0656787i \(-0.979079\pi\)
0.555800 + 0.831316i \(0.312412\pi\)
\(62\) −6.89967 −0.876259
\(63\) −1.53189 + 2.15715i −0.193000 + 0.271776i
\(64\) 1.00000 0.125000
\(65\) −6.05203 + 10.4824i −0.750662 + 1.30019i
\(66\) −1.64323 2.84616i −0.202268 0.350338i
\(67\) −1.37953 2.38941i −0.168536 0.291913i 0.769369 0.638804i \(-0.220571\pi\)
−0.937905 + 0.346891i \(0.887237\pi\)
\(68\) 2.73630 4.73940i 0.331825 0.574737i
\(69\) 1.79560 0.216165
\(70\) −3.53189 7.70734i −0.422142 0.921203i
\(71\) −15.7355 −1.86747 −0.933733 0.357971i \(-0.883469\pi\)
−0.933733 + 0.357971i \(0.883469\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −6.10220 10.5693i −0.714209 1.23705i −0.963264 0.268556i \(-0.913453\pi\)
0.249055 0.968489i \(-0.419880\pi\)
\(74\) 2.31574 + 4.01098i 0.269199 + 0.466267i
\(75\) 2.63409 4.56239i 0.304159 0.526819i
\(76\) −4.20440 −0.482278
\(77\) 3.62234 + 7.90471i 0.412804 + 0.900826i
\(78\) −3.77733 −0.427698
\(79\) 1.54103 2.66914i 0.173379 0.300302i −0.766220 0.642579i \(-0.777865\pi\)
0.939599 + 0.342277i \(0.111198\pi\)
\(80\) −1.60220 2.77509i −0.179131 0.310265i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.74543 4.75523i 0.303182 0.525127i
\(83\) −5.28646 −0.580265 −0.290132 0.956987i \(-0.593699\pi\)
−0.290132 + 0.956987i \(0.593699\pi\)
\(84\) 1.53189 2.15715i 0.167143 0.235364i
\(85\) −17.5364 −1.90209
\(86\) 5.41794 9.38415i 0.584231 1.01192i
\(87\) 0.500000 + 0.866025i 0.0536056 + 0.0928477i
\(88\) 1.64323 + 2.84616i 0.175169 + 0.303402i
\(89\) 1.70702 2.95664i 0.180944 0.313404i −0.761259 0.648449i \(-0.775418\pi\)
0.942202 + 0.335045i \(0.108752\pi\)
\(90\) 3.20440 0.337774
\(91\) 9.94983 + 0.937092i 1.04303 + 0.0982339i
\(92\) −1.79560 −0.187204
\(93\) −3.44983 + 5.97529i −0.357731 + 0.619608i
\(94\) 4.17251 + 7.22700i 0.430361 + 0.745408i
\(95\) 6.73630 + 11.6676i 0.691129 + 1.19707i
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 8.99477 0.913280 0.456640 0.889652i \(-0.349053\pi\)
0.456640 + 0.889652i \(0.349053\pi\)
\(98\) −4.57031 + 5.30210i −0.461671 + 0.535593i
\(99\) −3.28646 −0.330302
\(100\) −2.63409 + 4.56239i −0.263409 + 0.456239i
\(101\) −3.41142 5.90875i −0.339449 0.587943i 0.644880 0.764284i \(-0.276907\pi\)
−0.984329 + 0.176341i \(0.943574\pi\)
\(102\) −2.73630 4.73940i −0.270934 0.469271i
\(103\) −0.222674 + 0.385683i −0.0219408 + 0.0380025i −0.876787 0.480878i \(-0.840318\pi\)
0.854847 + 0.518881i \(0.173651\pi\)
\(104\) 3.77733 0.370397
\(105\) −8.44070 0.794959i −0.823728 0.0775800i
\(106\) −8.12758 −0.789420
\(107\) −0.172508 + 0.298792i −0.0166769 + 0.0288853i −0.874243 0.485488i \(-0.838642\pi\)
0.857566 + 0.514373i \(0.171975\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 6.91142 + 11.9709i 0.661994 + 1.14661i 0.980091 + 0.198549i \(0.0636229\pi\)
−0.318097 + 0.948058i \(0.603044\pi\)
\(110\) 5.26557 9.12024i 0.502053 0.869581i
\(111\) 4.63148 0.439600
\(112\) −1.53189 + 2.15715i −0.144750 + 0.203832i
\(113\) 7.82284 0.735911 0.367955 0.929843i \(-0.380058\pi\)
0.367955 + 0.929843i \(0.380058\pi\)
\(114\) −2.10220 + 3.64112i −0.196889 + 0.341022i
\(115\) 2.87691 + 4.98295i 0.268273 + 0.464663i
\(116\) −0.500000 0.866025i −0.0464238 0.0804084i
\(117\) −1.88866 + 3.27126i −0.174607 + 0.302428i
\(118\) 4.28123 0.394119
\(119\) 6.03189 + 13.1629i 0.552943 + 1.20664i
\(120\) −3.20440 −0.292521
\(121\) 0.0995835 0.172484i 0.00905305 0.0156803i
\(122\) −3.45245 5.97982i −0.312570 0.541387i
\(123\) −2.74543 4.75523i −0.247547 0.428764i
\(124\) 3.44983 5.97529i 0.309804 0.536597i
\(125\) 0.859386 0.0768658
\(126\) −1.10220 2.40523i −0.0981918 0.214275i
\(127\) −20.2682 −1.79851 −0.899255 0.437424i \(-0.855891\pi\)
−0.899255 + 0.437424i \(0.855891\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −5.41794 9.38415i −0.477023 0.826228i
\(130\) −6.05203 10.4824i −0.530799 0.919370i
\(131\) 0.792981 1.37348i 0.0692831 0.120002i −0.829303 0.558799i \(-0.811262\pi\)
0.898586 + 0.438798i \(0.144595\pi\)
\(132\) 3.28646 0.286050
\(133\) 6.44070 9.06953i 0.558479 0.786428i
\(134\) 2.75905 0.238346
\(135\) 1.60220 2.77509i 0.137895 0.238842i
\(136\) 2.73630 + 4.73940i 0.234635 + 0.406400i
\(137\) −2.47724 4.29071i −0.211645 0.366580i 0.740584 0.671963i \(-0.234549\pi\)
−0.952230 + 0.305383i \(0.901215\pi\)
\(138\) −0.897799 + 1.55503i −0.0764257 + 0.132373i
\(139\) 21.2902 1.80581 0.902905 0.429839i \(-0.141430\pi\)
0.902905 + 0.429839i \(0.141430\pi\)
\(140\) 8.44070 + 0.794959i 0.713369 + 0.0671863i
\(141\) 8.34502 0.702777
\(142\) 7.86777 13.6274i 0.660249 1.14358i
\(143\) 6.20702 + 10.7509i 0.519057 + 0.899033i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −1.60220 + 2.77509i −0.133056 + 0.230459i
\(146\) 12.2044 1.01004
\(147\) 2.30660 + 6.60905i 0.190245 + 0.545106i
\(148\) −4.63148 −0.380705
\(149\) 0.518273 0.897675i 0.0424586 0.0735404i −0.844015 0.536319i \(-0.819814\pi\)
0.886474 + 0.462779i \(0.153148\pi\)
\(150\) 2.63409 + 4.56239i 0.215073 + 0.372517i
\(151\) −4.50448 7.80200i −0.366570 0.634917i 0.622457 0.782654i \(-0.286135\pi\)
−0.989027 + 0.147737i \(0.952801\pi\)
\(152\) 2.10220 3.64112i 0.170511 0.295334i
\(153\) −5.47259 −0.442433
\(154\) −8.65685 0.815317i −0.697589 0.0657001i
\(155\) −22.1093 −1.77586
\(156\) 1.88866 3.27126i 0.151214 0.261910i
\(157\) −6.65685 11.5300i −0.531275 0.920195i −0.999334 0.0364975i \(-0.988380\pi\)
0.468059 0.883697i \(-0.344953\pi\)
\(158\) 1.54103 + 2.66914i 0.122598 + 0.212346i
\(159\) −4.06379 + 7.03869i −0.322279 + 0.558204i
\(160\) 3.20440 0.253330
\(161\) 2.75067 3.87338i 0.216783 0.305265i
\(162\) 1.00000 0.0785674
\(163\) −6.13148 + 10.6200i −0.480254 + 0.831825i −0.999743 0.0226521i \(-0.992789\pi\)
0.519489 + 0.854477i \(0.326122\pi\)
\(164\) 2.74543 + 4.75523i 0.214382 + 0.371321i
\(165\) −5.26557 9.12024i −0.409924 0.710010i
\(166\) 2.64323 4.57821i 0.205155 0.355338i
\(167\) 20.3775 1.57686 0.788429 0.615126i \(-0.210895\pi\)
0.788429 + 0.615126i \(0.210895\pi\)
\(168\) 1.10220 + 2.40523i 0.0850366 + 0.185568i
\(169\) 1.26819 0.0975530
\(170\) 8.76819 15.1869i 0.672489 1.16479i
\(171\) 2.10220 + 3.64112i 0.160759 + 0.278443i
\(172\) 5.41794 + 9.38415i 0.413114 + 0.715534i
\(173\) 5.53841 9.59281i 0.421078 0.729328i −0.574967 0.818176i \(-0.694985\pi\)
0.996045 + 0.0888483i \(0.0283186\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −5.80660 12.6712i −0.438938 0.957855i
\(176\) −3.28646 −0.247726
\(177\) 2.14061 3.70765i 0.160898 0.278684i
\(178\) 1.70702 + 2.95664i 0.127946 + 0.221610i
\(179\) 3.58393 + 6.20755i 0.267875 + 0.463974i 0.968313 0.249740i \(-0.0803451\pi\)
−0.700438 + 0.713714i \(0.747012\pi\)
\(180\) −1.60220 + 2.77509i −0.119421 + 0.206843i
\(181\) −13.0455 −0.969665 −0.484833 0.874607i \(-0.661120\pi\)
−0.484833 + 0.874607i \(0.661120\pi\)
\(182\) −5.78646 + 8.14826i −0.428921 + 0.603989i
\(183\) −6.90490 −0.510425
\(184\) 0.897799 1.55503i 0.0661866 0.114639i
\(185\) 7.42056 + 12.8528i 0.545570 + 0.944955i
\(186\) −3.44983 5.97529i −0.252954 0.438129i
\(187\) −8.99273 + 15.5759i −0.657614 + 1.13902i
\(188\) −8.34502 −0.608623
\(189\) −2.63409 0.248083i −0.191602 0.0180454i
\(190\) −13.4726 −0.977404
\(191\) 6.51624 11.2865i 0.471498 0.816659i −0.527970 0.849263i \(-0.677047\pi\)
0.999468 + 0.0326038i \(0.0103800\pi\)
\(192\) 0.500000 + 0.866025i 0.0360844 + 0.0625000i
\(193\) 7.66075 + 13.2688i 0.551433 + 0.955110i 0.998171 + 0.0604456i \(0.0192522\pi\)
−0.446738 + 0.894665i \(0.647415\pi\)
\(194\) −4.49738 + 7.78970i −0.322893 + 0.559268i
\(195\) −12.1041 −0.866790
\(196\) −2.30660 6.60905i −0.164757 0.472075i
\(197\) −16.0858 −1.14607 −0.573033 0.819532i \(-0.694233\pi\)
−0.573033 + 0.819532i \(0.694233\pi\)
\(198\) 1.64323 2.84616i 0.116779 0.202268i
\(199\) −7.51362 13.0140i −0.532626 0.922536i −0.999274 0.0380929i \(-0.987872\pi\)
0.466648 0.884443i \(-0.345462\pi\)
\(200\) −2.63409 4.56239i −0.186259 0.322609i
\(201\) 1.37953 2.38941i 0.0973043 0.168536i
\(202\) 6.82284 0.480053
\(203\) 2.63409 + 0.248083i 0.184877 + 0.0174120i
\(204\) 5.47259 0.383158
\(205\) 8.79747 15.2377i 0.614442 1.06424i
\(206\) −0.222674 0.385683i −0.0155145 0.0268718i
\(207\) 0.897799 + 1.55503i 0.0624014 + 0.108082i
\(208\) −1.88866 + 3.27126i −0.130955 + 0.226821i
\(209\) 13.8176 0.955784
\(210\) 4.90880 6.91238i 0.338740 0.476999i
\(211\) 23.1313 1.59243 0.796213 0.605017i \(-0.206834\pi\)
0.796213 + 0.605017i \(0.206834\pi\)
\(212\) 4.06379 7.03869i 0.279102 0.483419i
\(213\) −7.86777 13.6274i −0.539091 0.933733i
\(214\) −0.172508 0.298792i −0.0117924 0.0204250i
\(215\) 17.3613 30.0706i 1.18403 2.05080i
\(216\) −1.00000 −0.0680414
\(217\) 7.60482 + 16.5953i 0.516249 + 1.12656i
\(218\) −13.8228 −0.936201
\(219\) 6.10220 10.5693i 0.412349 0.714209i
\(220\) 5.26557 + 9.12024i 0.355005 + 0.614886i
\(221\) 10.3359 + 17.9023i 0.695266 + 1.20424i
\(222\) −2.31574 + 4.01098i −0.155422 + 0.269199i
\(223\) −0.386795 −0.0259017 −0.0129509 0.999916i \(-0.504123\pi\)
−0.0129509 + 0.999916i \(0.504123\pi\)
\(224\) −1.10220 2.40523i −0.0736439 0.160706i
\(225\) 5.26819 0.351213
\(226\) −3.91142 + 6.77478i −0.260184 + 0.450652i
\(227\) −7.86777 13.6274i −0.522202 0.904481i −0.999666 0.0258298i \(-0.991777\pi\)
0.477464 0.878651i \(-0.341556\pi\)
\(228\) −2.10220 3.64112i −0.139222 0.241139i
\(229\) −8.20178 + 14.2059i −0.541989 + 0.938753i 0.456801 + 0.889569i \(0.348995\pi\)
−0.998790 + 0.0491836i \(0.984338\pi\)
\(230\) −5.75382 −0.379396
\(231\) −5.03451 + 7.08940i −0.331247 + 0.466448i
\(232\) 1.00000 0.0656532
\(233\) −4.32749 + 7.49544i −0.283503 + 0.491042i −0.972245 0.233964i \(-0.924830\pi\)
0.688742 + 0.725007i \(0.258163\pi\)
\(234\) −1.88866 3.27126i −0.123466 0.213849i
\(235\) 13.3704 + 23.1582i 0.872188 + 1.51067i
\(236\) −2.14061 + 3.70765i −0.139342 + 0.241348i
\(237\) 3.08206 0.200201
\(238\) −14.4153 1.35766i −0.934407 0.0880040i
\(239\) 8.74078 0.565394 0.282697 0.959209i \(-0.408771\pi\)
0.282697 + 0.959209i \(0.408771\pi\)
\(240\) 1.60220 2.77509i 0.103422 0.179131i
\(241\) −1.29298 2.23951i −0.0832882 0.144259i 0.821372 0.570392i \(-0.193209\pi\)
−0.904661 + 0.426133i \(0.859876\pi\)
\(242\) 0.0995835 + 0.172484i 0.00640147 + 0.0110877i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 6.90490 0.442041
\(245\) −14.6451 + 16.9901i −0.935641 + 1.08546i
\(246\) 5.49086 0.350085
\(247\) 7.94070 13.7537i 0.505254 0.875126i
\(248\) 3.44983 + 5.97529i 0.219065 + 0.379431i
\(249\) −2.64323 4.57821i −0.167508 0.290132i
\(250\) −0.429693 + 0.744250i −0.0271762 + 0.0470705i
\(251\) 15.4491 0.975138 0.487569 0.873085i \(-0.337884\pi\)
0.487569 + 0.873085i \(0.337884\pi\)
\(252\) 2.63409 + 0.248083i 0.165932 + 0.0156278i
\(253\) 5.90117 0.371003
\(254\) 10.1341 17.5528i 0.635870 1.10136i
\(255\) −8.76819 15.1869i −0.549085 0.951044i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.35864 + 11.0135i −0.396641 + 0.687002i −0.993309 0.115486i \(-0.963157\pi\)
0.596668 + 0.802488i \(0.296491\pi\)
\(258\) 10.8359 0.674612
\(259\) 7.09493 9.99080i 0.440858 0.620798i
\(260\) 12.1041 0.750662
\(261\) −0.500000 + 0.866025i −0.0309492 + 0.0536056i
\(262\) 0.792981 + 1.37348i 0.0489905 + 0.0848541i
\(263\) −6.41794 11.1162i −0.395747 0.685454i 0.597449 0.801907i \(-0.296181\pi\)
−0.993196 + 0.116453i \(0.962848\pi\)
\(264\) −1.64323 + 2.84616i −0.101134 + 0.175169i
\(265\) −26.0440 −1.59987
\(266\) 4.63409 + 10.1126i 0.284135 + 0.620042i
\(267\) 3.41404 0.208936
\(268\) −1.37953 + 2.38941i −0.0842680 + 0.145956i
\(269\) 5.69265 + 9.85996i 0.347087 + 0.601172i 0.985731 0.168330i \(-0.0538376\pi\)
−0.638644 + 0.769503i \(0.720504\pi\)
\(270\) 1.60220 + 2.77509i 0.0975068 + 0.168887i
\(271\) 10.6861 18.5089i 0.649136 1.12434i −0.334193 0.942504i \(-0.608464\pi\)
0.983330 0.181832i \(-0.0582028\pi\)
\(272\) −5.47259 −0.331825
\(273\) 4.16337 + 9.08535i 0.251979 + 0.549871i
\(274\) 4.95449 0.299311
\(275\) 8.65685 14.9941i 0.522028 0.904179i
\(276\) −0.897799 1.55503i −0.0540412 0.0936020i
\(277\) −0.251951 0.436392i −0.0151383 0.0262202i 0.858357 0.513053i \(-0.171486\pi\)
−0.873495 + 0.486833i \(0.838152\pi\)
\(278\) −10.6451 + 18.4379i −0.638451 + 1.10583i
\(279\) −6.89967 −0.413072
\(280\) −4.90880 + 6.91238i −0.293357 + 0.413094i
\(281\) 26.9489 1.60764 0.803819 0.594874i \(-0.202798\pi\)
0.803819 + 0.594874i \(0.202798\pi\)
\(282\) −4.17251 + 7.22700i −0.248469 + 0.430361i
\(283\) 2.80008 + 4.84989i 0.166448 + 0.288296i 0.937168 0.348877i \(-0.113437\pi\)
−0.770721 + 0.637173i \(0.780104\pi\)
\(284\) 7.86777 + 13.6274i 0.466866 + 0.808636i
\(285\) −6.73630 + 11.6676i −0.399024 + 0.691129i
\(286\) −12.4140 −0.734057
\(287\) −14.4635 1.36219i −0.853751 0.0804077i
\(288\) 1.00000 0.0589256
\(289\) −6.47463 + 11.2144i −0.380860 + 0.659669i
\(290\) −1.60220 2.77509i −0.0940845 0.162959i
\(291\) 4.49738 + 7.78970i 0.263641 + 0.456640i
\(292\) −6.10220 + 10.5693i −0.357104 + 0.618523i
\(293\) 11.4946 0.671522 0.335761 0.941947i \(-0.391007\pi\)
0.335761 + 0.941947i \(0.391007\pi\)
\(294\) −6.87691 1.30695i −0.401069 0.0762229i
\(295\) 13.7188 0.798738
\(296\) 2.31574 4.01098i 0.134600 0.233133i
\(297\) −1.64323 2.84616i −0.0953499 0.165151i
\(298\) 0.518273 + 0.897675i 0.0300227 + 0.0520009i
\(299\) 3.39128 5.87387i 0.196123 0.339695i
\(300\) −5.26819 −0.304159
\(301\) −28.5427 2.68820i −1.64518 0.154945i
\(302\) 9.00897 0.518408
\(303\) 3.41142 5.90875i 0.195981 0.339449i
\(304\) 2.10220 + 3.64112i 0.120569 + 0.208832i
\(305\) −11.0630 19.1617i −0.633468 1.09720i
\(306\) 2.73630 4.73940i 0.156424 0.270934i
\(307\) 24.6912 1.40920 0.704601 0.709604i \(-0.251126\pi\)
0.704601 + 0.709604i \(0.251126\pi\)
\(308\) 5.03451 7.08940i 0.286868 0.403956i
\(309\) −0.445349 −0.0253350
\(310\) 11.0547 19.1472i 0.627862 1.08749i
\(311\) 1.70178 + 2.94758i 0.0964993 + 0.167142i 0.910233 0.414096i \(-0.135902\pi\)
−0.813734 + 0.581237i \(0.802569\pi\)
\(312\) 1.88866 + 3.27126i 0.106924 + 0.185199i
\(313\) 13.8385 23.9690i 0.782198 1.35481i −0.148461 0.988918i \(-0.547432\pi\)
0.930659 0.365888i \(-0.119235\pi\)
\(314\) 13.3137 0.751336
\(315\) −3.53189 7.70734i −0.199000 0.434259i
\(316\) −3.08206 −0.173379
\(317\) −15.7727 + 27.3191i −0.885882 + 1.53439i −0.0411818 + 0.999152i \(0.513112\pi\)
−0.844700 + 0.535240i \(0.820221\pi\)
\(318\) −4.06379 7.03869i −0.227886 0.394710i
\(319\) 1.64323 + 2.84616i 0.0920033 + 0.159354i
\(320\) −1.60220 + 2.77509i −0.0895657 + 0.155132i
\(321\) −0.345015 −0.0192569
\(322\) 1.97911 + 4.31884i 0.110291 + 0.240679i
\(323\) 23.0090 1.28025
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −9.94983 17.2336i −0.551917 0.955949i
\(326\) −6.13148 10.6200i −0.339591 0.588189i
\(327\) −6.91142 + 11.9709i −0.382202 + 0.661994i
\(328\) −5.49086 −0.303182
\(329\) 12.7837 18.0015i 0.704787 0.992453i
\(330\) 10.5311 0.579720
\(331\) −6.08131 + 10.5331i −0.334259 + 0.578954i −0.983342 0.181764i \(-0.941819\pi\)
0.649083 + 0.760717i \(0.275153\pi\)
\(332\) 2.64323 + 4.57821i 0.145066 + 0.251262i
\(333\) 2.31574 + 4.01098i 0.126902 + 0.219800i
\(334\) −10.1887 + 17.6474i −0.557503 + 0.965624i
\(335\) 8.84111 0.483042
\(336\) −2.63409 0.248083i −0.143702 0.0135341i
\(337\) −0.578159 −0.0314943 −0.0157472 0.999876i \(-0.505013\pi\)
−0.0157472 + 0.999876i \(0.505013\pi\)
\(338\) −0.634095 + 1.09828i −0.0344902 + 0.0597388i
\(339\) 3.91142 + 6.77478i 0.212439 + 0.367955i
\(340\) 8.76819 + 15.1869i 0.475522 + 0.823628i
\(341\) −11.3377 + 19.6376i −0.613973 + 1.06343i
\(342\) −4.20440 −0.227348
\(343\) 17.7902 + 5.14868i 0.960580 + 0.278003i
\(344\) −10.8359 −0.584231
\(345\) −2.87691 + 4.98295i −0.154888 + 0.268273i
\(346\) 5.53841 + 9.59281i 0.297747 + 0.515713i
\(347\) 5.44797 + 9.43615i 0.292462 + 0.506559i 0.974391 0.224859i \(-0.0721921\pi\)
−0.681929 + 0.731418i \(0.738859\pi\)
\(348\) 0.500000 0.866025i 0.0268028 0.0464238i
\(349\) 14.8579 0.795324 0.397662 0.917532i \(-0.369822\pi\)
0.397662 + 0.917532i \(0.369822\pi\)
\(350\) 13.8769 + 1.30695i 0.741752 + 0.0698594i
\(351\) −3.77733 −0.201619
\(352\) 1.64323 2.84616i 0.0875845 0.151701i
\(353\) 2.02276 + 3.50352i 0.107661 + 0.186473i 0.914822 0.403857i \(-0.132331\pi\)
−0.807162 + 0.590331i \(0.798997\pi\)
\(354\) 2.14061 + 3.70765i 0.113772 + 0.197059i
\(355\) 25.2115 43.6676i 1.33809 2.31764i
\(356\) −3.41404 −0.180944
\(357\) −8.38343 + 11.8052i −0.443698 + 0.624798i
\(358\) −7.16786 −0.378833
\(359\) 13.3769 23.1695i 0.706006 1.22284i −0.260321 0.965522i \(-0.583828\pi\)
0.966327 0.257317i \(-0.0828383\pi\)
\(360\) −1.60220 2.77509i −0.0844434 0.146260i
\(361\) 0.661504 + 1.14576i 0.0348160 + 0.0603031i
\(362\) 6.52276 11.2977i 0.342829 0.593796i
\(363\) 0.199167 0.0104536
\(364\) −4.16337 9.08535i −0.218220 0.476202i
\(365\) 39.1078 2.04700
\(366\) 3.45245 5.97982i 0.180462 0.312570i
\(367\) 1.16861 + 2.02408i 0.0610007 + 0.105656i 0.894913 0.446241i \(-0.147237\pi\)
−0.833912 + 0.551897i \(0.813904\pi\)
\(368\) 0.897799 + 1.55503i 0.0468010 + 0.0810617i
\(369\) 2.74543 4.75523i 0.142921 0.247547i
\(370\) −14.8411 −0.771553
\(371\) 8.95822 + 19.5487i 0.465088 + 1.01492i
\(372\) 6.89967 0.357731
\(373\) 6.19527 10.7305i 0.320779 0.555605i −0.659870 0.751380i \(-0.729389\pi\)
0.980649 + 0.195775i \(0.0627221\pi\)
\(374\) −8.99273 15.5759i −0.465003 0.805409i
\(375\) 0.429693 + 0.744250i 0.0221893 + 0.0384329i
\(376\) 4.17251 7.22700i 0.215181 0.372704i
\(377\) 3.77733 0.194542
\(378\) 1.53189 2.15715i 0.0787921 0.110952i
\(379\) 34.8266 1.78892 0.894461 0.447147i \(-0.147560\pi\)
0.894461 + 0.447147i \(0.147560\pi\)
\(380\) 6.73630 11.6676i 0.345565 0.598536i
\(381\) −10.1341 17.5528i −0.519185 0.899255i
\(382\) 6.51624 + 11.2865i 0.333400 + 0.577465i
\(383\) 16.9543 29.3657i 0.866325 1.50052i 0.000599873 1.00000i \(-0.499809\pi\)
0.865725 0.500519i \(-0.166858\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −27.7400 2.61260i −1.41376 0.133151i
\(386\) −15.3215 −0.779844
\(387\) 5.41794 9.38415i 0.275409 0.477023i
\(388\) −4.49738 7.78970i −0.228320 0.395462i
\(389\) 7.01752 + 12.1547i 0.355803 + 0.616268i 0.987255 0.159147i \(-0.0508742\pi\)
−0.631452 + 0.775415i \(0.717541\pi\)
\(390\) 6.05203 10.4824i 0.306457 0.530799i
\(391\) 9.82658 0.496951
\(392\) 6.87691 + 1.30695i 0.347336 + 0.0660110i
\(393\) 1.58596 0.0800012
\(394\) 8.04290 13.9307i 0.405195 0.701819i
\(395\) 4.93808 + 8.55301i 0.248462 + 0.430348i
\(396\) 1.64323 + 2.84616i 0.0825755 + 0.143025i
\(397\) 11.8092 20.4542i 0.592688 1.02657i −0.401181 0.915999i \(-0.631400\pi\)
0.993869 0.110566i \(-0.0352665\pi\)
\(398\) 15.0272 0.753248
\(399\) 11.0748 + 1.04304i 0.554433 + 0.0522174i
\(400\) 5.26819 0.263409
\(401\) −5.28646 + 9.15642i −0.263993 + 0.457250i −0.967299 0.253637i \(-0.918373\pi\)
0.703306 + 0.710887i \(0.251706\pi\)
\(402\) 1.37953 + 2.38941i 0.0688045 + 0.119173i
\(403\) 13.0311 + 22.5706i 0.649128 + 1.12432i
\(404\) −3.41142 + 5.90875i −0.169725 + 0.293971i
\(405\) 3.20440 0.159228
\(406\) −1.53189 + 2.15715i −0.0760266 + 0.107058i
\(407\) 15.2212 0.754486
\(408\) −2.73630 + 4.73940i −0.135467 + 0.234635i
\(409\) −18.5910 32.2006i −0.919267 1.59222i −0.800531 0.599292i \(-0.795449\pi\)
−0.118737 0.992926i \(-0.537884\pi\)
\(410\) 8.79747 + 15.2377i 0.434476 + 0.752534i
\(411\) 2.47724 4.29071i 0.122193 0.211645i
\(412\) 0.445349 0.0219408
\(413\) −4.71877 10.2974i −0.232196 0.506700i
\(414\) −1.79560 −0.0882488
\(415\) 8.46997 14.6704i 0.415775 0.720143i
\(416\) −1.88866 3.27126i −0.0925993 0.160387i
\(417\) 10.6451 + 18.4379i 0.521293 + 0.902905i
\(418\) −6.90880 + 11.9664i −0.337921 + 0.585296i
\(419\) −19.8594 −0.970195 −0.485097 0.874460i \(-0.661216\pi\)
−0.485097 + 0.874460i \(0.661216\pi\)
\(420\) 3.53189 + 7.70734i 0.172339 + 0.376080i
\(421\) −40.2992 −1.96406 −0.982031 0.188722i \(-0.939566\pi\)
−0.982031 + 0.188722i \(0.939566\pi\)
\(422\) −11.5657 + 20.0323i −0.563007 + 0.975157i
\(423\) 4.17251 + 7.22700i 0.202874 + 0.351389i
\(424\) 4.06379 + 7.03869i 0.197355 + 0.341829i
\(425\) 14.4153 24.9681i 0.699246 1.21113i
\(426\) 15.7355 0.762390
\(427\) −10.5776 + 14.8949i −0.511885 + 0.720815i
\(428\) 0.345015 0.0166769
\(429\) −6.20702 + 10.7509i −0.299678 + 0.519057i
\(430\) 17.3613 + 30.0706i 0.837234 + 1.45013i
\(431\) −8.83459 15.3020i −0.425547 0.737070i 0.570924 0.821003i \(-0.306585\pi\)
−0.996471 + 0.0839332i \(0.973252\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −25.9489 −1.24703 −0.623513 0.781813i \(-0.714295\pi\)
−0.623513 + 0.781813i \(0.714295\pi\)
\(434\) −18.1744 1.71169i −0.872398 0.0821639i
\(435\) −3.20440 −0.153639
\(436\) 6.91142 11.9709i 0.330997 0.573304i
\(437\) −3.77471 6.53799i −0.180569 0.312754i
\(438\) 6.10220 + 10.5693i 0.291574 + 0.505022i
\(439\) −7.94070 + 13.7537i −0.378989 + 0.656428i −0.990915 0.134487i \(-0.957061\pi\)
0.611927 + 0.790915i \(0.290395\pi\)
\(440\) −10.5311 −0.502053
\(441\) −4.57031 + 5.30210i −0.217634 + 0.252481i
\(442\) −20.6718 −0.983255
\(443\) −14.0657 + 24.3624i −0.668279 + 1.15749i 0.310106 + 0.950702i \(0.399636\pi\)
−0.978385 + 0.206792i \(0.933698\pi\)
\(444\) −2.31574 4.01098i −0.109900 0.190353i
\(445\) 5.46997 + 9.47427i 0.259302 + 0.449124i
\(446\) 0.193398 0.334975i 0.00915765 0.0158615i
\(447\) 1.03655 0.0490269
\(448\) 2.63409 + 0.248083i 0.124449 + 0.0117208i
\(449\) −29.6807 −1.40072 −0.700360 0.713790i \(-0.746977\pi\)
−0.700360 + 0.713790i \(0.746977\pi\)
\(450\) −2.63409 + 4.56239i −0.124172 + 0.215073i
\(451\) −9.02276 15.6279i −0.424865 0.735888i
\(452\) −3.91142 6.77478i −0.183978 0.318659i
\(453\) 4.50448 7.80200i 0.211639 0.366570i
\(454\) 15.7355 0.738506
\(455\) −18.5421 + 26.1103i −0.869269 + 1.22407i
\(456\) 4.20440 0.196889
\(457\) −8.46084 + 14.6546i −0.395781 + 0.685513i −0.993201 0.116416i \(-0.962859\pi\)
0.597419 + 0.801929i \(0.296193\pi\)
\(458\) −8.20178 14.2059i −0.383244 0.663798i
\(459\) −2.73630 4.73940i −0.127719 0.221216i
\(460\) 2.87691 4.98295i 0.134137 0.232331i
\(461\) −29.5088 −1.37436 −0.687181 0.726486i \(-0.741152\pi\)
−0.687181 + 0.726486i \(0.741152\pi\)
\(462\) −3.62234 7.90471i −0.168527 0.367760i
\(463\) −5.51287 −0.256205 −0.128102 0.991761i \(-0.540889\pi\)
−0.128102 + 0.991761i \(0.540889\pi\)
\(464\) −0.500000 + 0.866025i −0.0232119 + 0.0402042i
\(465\) −11.0547 19.1472i −0.512647 0.887931i
\(466\) −4.32749 7.49544i −0.200467 0.347219i
\(467\) 14.2180 24.6263i 0.657932 1.13957i −0.323219 0.946324i \(-0.604765\pi\)
0.981150 0.193247i \(-0.0619018\pi\)
\(468\) 3.77733 0.174607
\(469\) −3.04103 6.63617i −0.140422 0.306430i
\(470\) −26.7408 −1.23346
\(471\) 6.65685 11.5300i 0.306732 0.531275i
\(472\) −2.14061 3.70765i −0.0985297 0.170659i
\(473\) −17.8059 30.8406i −0.818714 1.41805i
\(474\) −1.54103 + 2.66914i −0.0707819 + 0.122598i
\(475\) −22.1496 −1.01629
\(476\) 8.38343 11.8052i 0.384254 0.541091i
\(477\) −8.12758 −0.372136
\(478\) −4.37039 + 7.56974i −0.199897 + 0.346232i
\(479\) 4.65237 + 8.05814i 0.212572 + 0.368186i 0.952519 0.304480i \(-0.0984826\pi\)
−0.739947 + 0.672666i \(0.765149\pi\)
\(480\) 1.60220 + 2.77509i 0.0731301 + 0.126665i
\(481\) 8.74730 15.1508i 0.398843 0.690816i
\(482\) 2.58596 0.117787
\(483\) 4.72978 + 0.445458i 0.215212 + 0.0202691i
\(484\) −0.199167 −0.00905305
\(485\) −14.4114 + 24.9613i −0.654389 + 1.13343i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) 13.3568 + 23.1346i 0.605253 + 1.04833i 0.992011 + 0.126148i \(0.0402614\pi\)
−0.386758 + 0.922181i \(0.626405\pi\)
\(488\) −3.45245 + 5.97982i −0.156285 + 0.270694i
\(489\) −12.2630 −0.554550
\(490\) −7.39128 21.1781i −0.333904 0.956727i
\(491\) −16.9817 −0.766375 −0.383187 0.923671i \(-0.625174\pi\)
−0.383187 + 0.923671i \(0.625174\pi\)
\(492\) −2.74543 + 4.75523i −0.123774 + 0.214382i
\(493\) 2.73630 + 4.73940i 0.123237 + 0.213452i
\(494\) 7.94070 + 13.7537i 0.357269 + 0.618808i
\(495\) 5.26557 9.12024i 0.236670 0.409924i
\(496\) −6.89967 −0.309804
\(497\) −41.4489 3.90373i −1.85924 0.175106i
\(498\) 5.28646 0.236892
\(499\) 8.29095 14.3603i 0.371154 0.642857i −0.618590 0.785714i \(-0.712296\pi\)
0.989743 + 0.142857i \(0.0456289\pi\)
\(500\) −0.429693 0.744250i −0.0192165 0.0332839i
\(501\) 10.1887 + 17.6474i 0.455200 + 0.788429i
\(502\) −7.72454 + 13.3793i −0.344763 + 0.597147i
\(503\) −41.5621 −1.85316 −0.926582 0.376094i \(-0.877267\pi\)
−0.926582 + 0.376094i \(0.877267\pi\)
\(504\) −1.53189 + 2.15715i −0.0682360 + 0.0960872i
\(505\) 21.8631 0.972896
\(506\) −2.95058 + 5.11056i −0.131169 + 0.227192i
\(507\) 0.634095 + 1.09828i 0.0281611 + 0.0487765i
\(508\) 10.1341 + 17.5528i 0.449628 + 0.778778i
\(509\) −13.9569 + 24.1741i −0.618630 + 1.07150i 0.371106 + 0.928591i \(0.378979\pi\)
−0.989736 + 0.142908i \(0.954355\pi\)
\(510\) 17.5364 0.776524
\(511\) −13.4517 29.3544i −0.595068 1.29856i
\(512\) 1.00000 0.0441942
\(513\) −2.10220 + 3.64112i −0.0928144 + 0.160759i
\(514\) −6.35864 11.0135i −0.280467 0.485784i
\(515\) −0.713538 1.23588i −0.0314422 0.0544596i
\(516\) −5.41794 + 9.38415i −0.238511 + 0.413114i
\(517\) 27.4256 1.20618
\(518\) 5.10482 + 11.1398i 0.224293 + 0.489454i
\(519\) 11.0768 0.486219
\(520\) −6.05203 + 10.4824i −0.265399 + 0.459685i
\(521\) −12.6087 21.8389i −0.552398 0.956781i −0.998101 0.0616005i \(-0.980380\pi\)
0.445703 0.895181i \(-0.352954\pi\)
\(522\) −0.500000 0.866025i −0.0218844 0.0379049i
\(523\) −13.7447 + 23.8065i −0.601013 + 1.04099i 0.391655 + 0.920112i \(0.371903\pi\)
−0.992668 + 0.120873i \(0.961431\pi\)
\(524\) −1.58596 −0.0692831
\(525\) 8.07031 11.3643i 0.352217 0.495978i
\(526\) 12.8359 0.559671
\(527\) −18.8795 + 32.7003i −0.822405 + 1.42445i
\(528\) −1.64323 2.84616i −0.0715125 0.123863i
\(529\) 9.88791 + 17.1264i 0.429909 + 0.744625i
\(530\) 13.0220 22.5548i 0.565640 0.979717i
\(531\) 4.28123 0.185789
\(532\) −11.0748 1.04304i −0.480153 0.0452216i
\(533\) −20.7408 −0.898383
\(534\) −1.70702 + 2.95664i −0.0738699 + 0.127946i
\(535\) −0.552784 0.957450i −0.0238989 0.0413942i
\(536\) −1.37953 2.38941i −0.0595865 0.103207i
\(537\) −3.58393 + 6.20755i −0.154658 + 0.267875i
\(538\) −11.3853 −0.490855
\(539\) 7.58056 + 21.7204i 0.326518 + 0.935564i
\(540\) −3.20440 −0.137895
\(541\) 8.25382 14.2960i 0.354859 0.614634i −0.632235 0.774777i \(-0.717862\pi\)
0.987094 + 0.160143i \(0.0511954\pi\)
\(542\) 10.6861 + 18.5089i 0.459009 + 0.795026i
\(543\) −6.52276 11.2977i −0.279918 0.484833i
\(544\) 2.73630 4.73940i 0.117318 0.203200i
\(545\) −44.2939 −1.89734
\(546\) −9.94983 0.937092i −0.425814 0.0401038i
\(547\) 13.0000 0.555840 0.277920 0.960604i \(-0.410355\pi\)
0.277920 + 0.960604i \(0.410355\pi\)
\(548\) −2.47724 + 4.29071i −0.105823 + 0.183290i
\(549\) −3.45245 5.97982i −0.147347 0.255212i
\(550\) 8.65685 + 14.9941i 0.369129 + 0.639351i
\(551\) 2.10220 3.64112i 0.0895568 0.155117i
\(552\) 1.79560 0.0764257
\(553\) 4.72139 6.64847i 0.200774 0.282722i
\(554\) 0.503902 0.0214087
\(555\) −7.42056 + 12.8528i −0.314985 + 0.545570i
\(556\) −10.6451 18.4379i −0.451453 0.781939i
\(557\) −6.33588 10.9741i −0.268460 0.464986i 0.700004 0.714138i \(-0.253181\pi\)
−0.968464 + 0.249152i \(0.919848\pi\)
\(558\) 3.44983 5.97529i 0.146043 0.252954i
\(559\) −40.9306 −1.73118
\(560\) −3.53189 7.70734i −0.149250 0.325694i
\(561\) −17.9855 −0.759347
\(562\) −13.4745 + 23.3384i −0.568386 + 0.984473i
\(563\) 5.24281 + 9.08082i 0.220958 + 0.382711i 0.955099 0.296286i \(-0.0957482\pi\)
−0.734141 + 0.678997i \(0.762415\pi\)
\(564\) −4.17251 7.22700i −0.175694 0.304311i
\(565\) −12.5338 + 21.7091i −0.527299 + 0.913309i
\(566\) −5.60017 −0.235393
\(567\) −1.10220 2.40523i −0.0462881 0.101010i
\(568\) −15.7355 −0.660249
\(569\) 14.6477 25.3706i 0.614064 1.06359i −0.376484 0.926423i \(-0.622867\pi\)
0.990548 0.137167i \(-0.0437997\pi\)
\(570\) −6.73630 11.6676i −0.282152 0.488702i
\(571\) 23.3970 + 40.5249i 0.979136 + 1.69591i 0.665549 + 0.746354i \(0.268197\pi\)
0.313587 + 0.949560i \(0.398469\pi\)
\(572\) 6.20702 10.7509i 0.259528 0.449517i
\(573\) 13.0325 0.544440
\(574\) 8.41142 11.8446i 0.351086 0.494385i
\(575\) −9.45955 −0.394491
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 20.5910 + 35.6647i 0.857216 + 1.48474i 0.874574 + 0.484892i \(0.161141\pi\)
−0.0173583 + 0.999849i \(0.505526\pi\)
\(578\) −6.47463 11.2144i −0.269309 0.466457i
\(579\) −7.66075 + 13.2688i −0.318370 + 0.551433i
\(580\) 3.20440 0.133056
\(581\) −13.9250 1.31148i −0.577708 0.0544095i
\(582\) −8.99477 −0.372845
\(583\) −13.3555 + 23.1324i −0.553128 + 0.958045i
\(584\) −6.10220 10.5693i −0.252511 0.437362i
\(585\) −6.05203 10.4824i −0.250221 0.433395i
\(586\) −5.74730 + 9.95461i −0.237419 + 0.411221i
\(587\) 9.25922 0.382169 0.191084 0.981574i \(-0.438800\pi\)
0.191084 + 0.981574i \(0.438800\pi\)
\(588\) 4.57031 5.30210i 0.188476 0.218655i
\(589\) 29.0090 1.19529
\(590\) −6.85939 + 11.8808i −0.282396 + 0.489125i
\(591\) −8.04290 13.9307i −0.330841 0.573033i
\(592\) 2.31574 + 4.01098i 0.0951763 + 0.164850i
\(593\) −8.46532 + 14.6624i −0.347629 + 0.602111i −0.985828 0.167760i \(-0.946346\pi\)
0.638199 + 0.769872i \(0.279680\pi\)
\(594\) 3.28646 0.134845
\(595\) −46.1925 4.35048i −1.89371 0.178352i
\(596\) −1.03655 −0.0424586
\(597\) 7.51362 13.0140i 0.307512 0.532626i
\(598\) 3.39128 + 5.87387i 0.138680 + 0.240200i
\(599\) −21.8989 37.9300i −0.894765 1.54978i −0.834095 0.551621i \(-0.814009\pi\)
−0.0606709 0.998158i \(-0.519324\pi\)
\(600\) 2.63409 4.56239i 0.107536 0.186259i
\(601\) −37.3540 −1.52370 −0.761850 0.647753i \(-0.775709\pi\)
−0.761850 + 0.647753i \(0.775709\pi\)
\(602\) 16.5994 23.3746i 0.676542 0.952679i
\(603\) 2.75905 0.112357
\(604\) −4.50448 + 7.80200i −0.183285 + 0.317459i
\(605\) 0.319106 + 0.552707i 0.0129735 + 0.0224707i
\(606\) 3.41142 + 5.90875i 0.138579 + 0.240027i
\(607\) 23.3652 40.4696i 0.948362 1.64261i 0.199488 0.979900i \(-0.436072\pi\)
0.748875 0.662712i \(-0.230594\pi\)
\(608\) −4.20440 −0.170511
\(609\) 1.10220 + 2.40523i 0.0446634 + 0.0974650i
\(610\) 22.1261 0.895859
\(611\) 15.7609 27.2987i 0.637619 1.10439i
\(612\) 2.73630 + 4.73940i 0.110608 + 0.191579i
\(613\) 13.6731 + 23.6825i 0.552251 + 0.956527i 0.998112 + 0.0614244i \(0.0195643\pi\)
−0.445861 + 0.895102i \(0.647102\pi\)
\(614\) −12.3456 + 21.3832i −0.498228 + 0.862956i
\(615\) 17.5949 0.709496
\(616\) 3.62234 + 7.90471i 0.145948 + 0.318490i
\(617\) −18.8501 −0.758876 −0.379438 0.925217i \(-0.623883\pi\)
−0.379438 + 0.925217i \(0.623883\pi\)
\(618\) 0.222674 0.385683i 0.00895727 0.0155145i
\(619\) 14.8495 + 25.7201i 0.596852 + 1.03378i 0.993283 + 0.115713i \(0.0369153\pi\)
−0.396431 + 0.918065i \(0.629751\pi\)
\(620\) 11.0547 + 19.1472i 0.443965 + 0.768971i
\(621\) −0.897799 + 1.55503i −0.0360274 + 0.0624014i
\(622\) −3.40357 −0.136471
\(623\) 5.22994 7.36460i 0.209533 0.295056i
\(624\) −3.77733 −0.151214
\(625\) 11.7936 20.4271i 0.471743 0.817082i
\(626\) 13.8385 + 23.9690i 0.553098 + 0.957993i
\(627\) 6.90880 + 11.9664i 0.275911 + 0.477892i
\(628\) −6.65685 + 11.5300i −0.265637 + 0.460097i
\(629\) 25.3462 1.01062
\(630\) 8.44070 + 0.794959i 0.336285 + 0.0316719i
\(631\) −19.5599 −0.778667 −0.389333 0.921097i \(-0.627295\pi\)
−0.389333 + 0.921097i \(0.627295\pi\)
\(632\) 1.54103 2.66914i 0.0612989 0.106173i
\(633\) 11.5657 + 20.0323i 0.459694 + 0.796213i
\(634\) −15.7727 27.3191i −0.626413 1.08498i
\(635\) 32.4737 56.2461i 1.28868 2.23206i
\(636\) 8.12758 0.322279
\(637\) 25.9763 + 4.93678i 1.02922 + 0.195602i
\(638\) −3.28646 −0.130112
\(639\) 7.86777 13.6274i 0.311244 0.539091i
\(640\) −1.60220 2.77509i −0.0633325 0.109695i
\(641\) −20.5090 35.5226i −0.810056 1.40306i −0.912824 0.408352i \(-0.866104\pi\)
0.102769 0.994705i \(-0.467230\pi\)
\(642\) 0.172508 0.298792i 0.00680833 0.0117924i
\(643\) 43.2458 1.70545 0.852725 0.522360i \(-0.174948\pi\)
0.852725 + 0.522360i \(0.174948\pi\)
\(644\) −4.72978 0.445458i −0.186379 0.0175535i
\(645\) 34.7225 1.36720
\(646\) −11.5045 + 19.9264i −0.452638 + 0.783992i
\(647\) −17.1914 29.7763i −0.675862 1.17063i −0.976216 0.216800i \(-0.930438\pi\)
0.300354 0.953828i \(-0.402895\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 7.03505 12.1851i 0.276150 0.478305i
\(650\) 19.8997 0.780529
\(651\) −10.5696 + 14.8836i −0.414254 + 0.583335i
\(652\) 12.2630 0.480254
\(653\) −10.7544 + 18.6272i −0.420852 + 0.728937i −0.996023 0.0890959i \(-0.971602\pi\)
0.575171 + 0.818033i \(0.304936\pi\)
\(654\) −6.91142 11.9709i −0.270258 0.468100i
\(655\) 2.54103 + 4.40119i 0.0992863 + 0.171969i
\(656\) 2.74543 4.75523i 0.107191 0.185660i
\(657\) 12.2044 0.476139
\(658\) 9.19788 + 20.0717i 0.358571 + 0.782477i
\(659\) −36.1026 −1.40636 −0.703178 0.711014i \(-0.748236\pi\)
−0.703178 + 0.711014i \(0.748236\pi\)
\(660\) −5.26557 + 9.12024i −0.204962 + 0.355005i
\(661\) −2.65498 4.59857i −0.103267 0.178864i 0.809762 0.586759i \(-0.199596\pi\)
−0.913029 + 0.407895i \(0.866263\pi\)
\(662\) −6.08131 10.5331i −0.236357 0.409382i
\(663\) −10.3359 + 17.9023i −0.401412 + 0.695266i
\(664\) −5.28646 −0.205155
\(665\) 14.8495 + 32.4047i 0.575839 + 1.25660i
\(666\) −4.63148 −0.179466
\(667\) 0.897799 1.55503i 0.0347629 0.0602112i
\(668\) −10.1887 17.6474i −0.394214 0.682799i
\(669\) −0.193398 0.334975i −0.00747719 0.0129509i
\(670\) −4.42056 + 7.65663i −0.170781 + 0.295801i
\(671\) −22.6927 −0.876042
\(672\) 1.53189 2.15715i 0.0590941 0.0832139i
\(673\) −0.0104689 −0.000403547 −0.000201773 1.00000i \(-0.500064\pi\)
−0.000201773 1.00000i \(0.500064\pi\)
\(674\) 0.289079 0.500700i 0.0111349 0.0192862i
\(675\) 2.63409 + 4.56239i 0.101386 + 0.175606i
\(676\) −0.634095 1.09828i −0.0243883 0.0422417i
\(677\) −3.00710 + 5.20845i −0.115572 + 0.200177i −0.918008 0.396561i \(-0.870204\pi\)
0.802436 + 0.596738i \(0.203537\pi\)
\(678\) −7.82284 −0.300434
\(679\) 23.6931 + 2.23145i 0.909256 + 0.0856353i
\(680\) −17.5364 −0.672489
\(681\) 7.86777 13.6274i 0.301494 0.522202i
\(682\) −11.3377 19.6376i −0.434145 0.751961i
\(683\) 21.3833 + 37.0369i 0.818208 + 1.41718i 0.907002 + 0.421127i \(0.138365\pi\)
−0.0887937 + 0.996050i \(0.528301\pi\)
\(684\) 2.10220 3.64112i 0.0803797 0.139222i
\(685\) 15.8762 0.606597
\(686\) −13.3540 + 12.8324i −0.509858 + 0.489944i
\(687\) −16.4036 −0.625835
\(688\) 5.41794 9.38415i 0.206557 0.357767i
\(689\) 15.3502 + 26.5874i 0.584798 + 1.01290i
\(690\) −2.87691 4.98295i −0.109522 0.189698i
\(691\) −6.37953 + 11.0497i −0.242689 + 0.420349i −0.961479 0.274878i \(-0.911363\pi\)
0.718791 + 0.695227i \(0.244696\pi\)
\(692\) −11.0768 −0.421078
\(693\) −8.65685 0.815317i −0.328847 0.0309713i
\(694\) −10.8959 −0.413604
\(695\) −34.1112 + 59.0823i −1.29391 + 2.24112i
\(696\) 0.500000 + 0.866025i 0.0189525 + 0.0328266i
\(697\) −15.0246 26.0234i −0.569098 0.985707i
\(698\) −7.42894 + 12.8673i −0.281190 + 0.487035i
\(699\) −8.65498 −0.327362
\(700\) −8.07031 + 11.3643i −0.305029 + 0.429529i
\(701\) −19.7277 −0.745107 −0.372553 0.928011i \(-0.621518\pi\)
−0.372553 + 0.928011i \(0.621518\pi\)
\(702\) 1.88866 3.27126i 0.0712830 0.123466i
\(703\) −9.73630 16.8638i −0.367211 0.636029i
\(704\) 1.64323 + 2.84616i 0.0619316 + 0.107269i
\(705\) −13.3704 + 23.1582i −0.503558 + 0.872188i
\(706\) −4.04551 −0.152255
\(707\) −7.52014 16.4105i −0.282824 0.617182i
\(708\) −4.28123 −0.160898
\(709\) −7.46607 + 12.9316i −0.280394 + 0.485657i −0.971482 0.237114i \(-0.923799\pi\)
0.691088 + 0.722771i \(0.257132\pi\)
\(710\) 25.2115 + 43.6676i 0.946171 + 1.63882i
\(711\) 1.54103 + 2.66914i 0.0577931 + 0.100101i
\(712\) 1.70702 2.95664i 0.0639732 0.110805i
\(713\) 12.3890 0.463973
\(714\) −6.03189 13.1629i −0.225738 0.492608i
\(715\) −39.7796 −1.48767
\(716\) 3.58393 6.20755i 0.133938 0.231987i
\(717\) 4.37039 + 7.56974i 0.163215 + 0.282697i
\(718\) 13.3769 + 23.1695i 0.499222 + 0.864678i
\(719\) 7.13334 12.3553i 0.266029 0.460776i −0.701804 0.712370i \(-0.747622\pi\)
0.967833 + 0.251595i \(0.0809550\pi\)
\(720\) 3.20440 0.119421
\(721\) −0.682227 + 0.960684i −0.0254075 + 0.0357778i
\(722\) −1.32301 −0.0492372
\(723\) 1.29298 2.23951i 0.0480865 0.0832882i
\(724\) 6.52276 + 11.2977i 0.242416 + 0.419877i
\(725\) −2.63409 4.56239i −0.0978278 0.169443i
\(726\) −0.0995835 + 0.172484i −0.00369589 + 0.00640147i
\(727\) 8.50390 0.315392 0.157696 0.987488i \(-0.449593\pi\)
0.157696 + 0.987488i \(0.449593\pi\)
\(728\) 9.94983 + 0.937092i 0.368765 + 0.0347309i
\(729\) 1.00000 0.0370370
\(730\) −19.5539 + 33.8684i −0.723722 + 1.25352i
\(731\) −29.6502 51.3556i −1.09665 1.89946i
\(732\) 3.45245 + 5.97982i 0.127606 + 0.221021i
\(733\) −17.4250 + 30.1811i −0.643609 + 1.11476i 0.341012 + 0.940059i \(0.389230\pi\)
−0.984621 + 0.174704i \(0.944103\pi\)
\(734\) −2.33721 −0.0862681
\(735\) −22.0364 4.18799i −0.812824 0.154476i
\(736\) −1.79560 −0.0661866
\(737\) 4.53376 7.85271i 0.167003 0.289258i
\(738\) 2.74543 + 4.75523i 0.101061 + 0.175042i
\(739\) −3.27658 5.67520i −0.120531 0.208765i 0.799446 0.600738i \(-0.205126\pi\)
−0.919977 + 0.391972i \(0.871793\pi\)
\(740\) 7.42056 12.8528i 0.272785 0.472478i
\(741\) 15.8814 0.583418
\(742\) −21.4088 2.01632i −0.785942 0.0740213i
\(743\) 6.13131 0.224936 0.112468 0.993655i \(-0.464124\pi\)
0.112468 + 0.993655i \(0.464124\pi\)
\(744\) −3.44983 + 5.97529i −0.126477 + 0.219065i
\(745\) 1.66075 + 2.87651i 0.0608453 + 0.105387i
\(746\) 6.19527 + 10.7305i 0.226825 + 0.392872i
\(747\) 2.64323 4.57821i 0.0967108 0.167508i
\(748\) 17.9855 0.657614
\(749\) −0.528527 + 0.744250i −0.0193120 + 0.0271943i
\(750\) −0.859386 −0.0313803
\(751\) 8.85212 15.3323i 0.323018 0.559484i −0.658091 0.752938i \(-0.728636\pi\)
0.981109 + 0.193454i \(0.0619691\pi\)
\(752\) 4.17251 + 7.22700i 0.152156 + 0.263541i
\(753\) 7.72454 + 13.3793i 0.281498 + 0.487569i
\(754\) −1.88866 + 3.27126i −0.0687810 + 0.119132i
\(755\) 28.8684 1.05063
\(756\) 1.10220 + 2.40523i 0.0400867 + 0.0874775i
\(757\) −10.7915 −0.392225 −0.196112 0.980581i \(-0.562832\pi\)
−0.196112 + 0.980581i \(0.562832\pi\)
\(758\) −17.4133 + 30.1607i −0.632479 + 1.09549i
\(759\) 2.95058 + 5.11056i 0.107099 + 0.185502i
\(760\) 6.73630 + 11.6676i 0.244351 + 0.423229i
\(761\) 3.71541 6.43527i 0.134683 0.233278i −0.790793 0.612084i \(-0.790332\pi\)
0.925476 + 0.378805i \(0.123665\pi\)
\(762\) 20.2682 0.734239
\(763\) 15.2355 + 33.2472i 0.551564 + 1.20363i
\(764\) −13.0325 −0.471498
\(765\) 8.76819 15.1869i 0.317015 0.549085i
\(766\) 16.9543 + 29.3657i 0.612584 + 1.06103i
\(767\) −8.08580 14.0050i −0.291961 0.505692i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) 25.3995 0.915929 0.457965 0.888970i \(-0.348579\pi\)
0.457965 + 0.888970i \(0.348579\pi\)
\(770\) 16.1326 22.7173i 0.581378 0.818674i
\(771\) −12.7173 −0.458001
\(772\) 7.66075 13.2688i 0.275717 0.477555i
\(773\) 5.29560 + 9.17225i 0.190469 + 0.329903i 0.945406 0.325895i \(-0.105666\pi\)
−0.754936 + 0.655798i \(0.772332\pi\)
\(774\) 5.41794 + 9.38415i 0.194744 + 0.337306i
\(775\) 18.1744 31.4789i 0.652843 1.13076i
\(776\) 8.99477 0.322893
\(777\) 12.1997 + 1.14899i 0.437664 + 0.0412199i
\(778\) −14.0350 −0.503181
\(779\) −11.5429 + 19.9929i −0.413567 + 0.716319i
\(780\) 6.05203 + 10.4824i 0.216698 + 0.375331i
\(781\) −25.8571 44.7859i −0.925241 1.60256i
\(782\) −4.91329 + 8.51006i −0.175699 + 0.304319i
\(783\) −1.00000 −0.0357371
\(784\) −4.57031 + 5.30210i −0.163225 + 0.189361i
\(785\) 42.6625 1.52269
\(786\) −0.792981 + 1.37348i −0.0282847 + 0.0489905i
\(787\) −6.43621 11.1478i −0.229426 0.397378i 0.728212 0.685352i \(-0.240352\pi\)
−0.957638 + 0.287974i \(0.907018\pi\)
\(788\) 8.04290 + 13.9307i 0.286516 + 0.496261i
\(789\) 6.41794 11.1162i 0.228485 0.395747i
\(790\) −9.87616 −0.351378
\(791\) 20.6061 + 1.94072i 0.732669 + 0.0690040i
\(792\) −3.28646 −0.116779
\(793\) −13.0410 + 22.5877i −0.463101 + 0.802114i
\(794\) 11.8092 + 20.4542i 0.419094 + 0.725891i
\(795\) −13.0220 22.5548i −0.461843 0.799936i
\(796\) −7.51362 + 13.0140i −0.266313 + 0.461268i
\(797\) 12.4125 0.439675 0.219837 0.975537i \(-0.429447\pi\)
0.219837 + 0.975537i \(0.429447\pi\)
\(798\) −6.44070 + 9.06953i −0.227998 + 0.321058i
\(799\) 45.6689 1.61565
\(800\) −2.63409 + 4.56239i −0.0931293 + 0.161305i
\(801\) 1.70702 + 2.95664i 0.0603145 + 0.104468i
\(802\) −5.28646 9.15642i −0.186671 0.323324i
\(803\) 20.0547 34.7357i 0.707713 1.22580i
\(804\) −2.75905 −0.0973043
\(805\) 6.34186 + 13.8393i 0.223521 + 0.487771i
\(806\) −26.0623 −0.918005
\(807\) −5.69265 + 9.85996i −0.200391 + 0.347087i
\(808\) −3.41142 5.90875i −0.120013 0.207869i
\(809\) 1.50839 + 2.61260i 0.0530321 + 0.0918542i 0.891323 0.453369i \(-0.149778\pi\)
−0.838291 + 0.545224i \(0.816445\pi\)
\(810\) −1.60220 + 2.77509i −0.0562956 + 0.0975068i
\(811\) 2.78256 0.0977089 0.0488545 0.998806i \(-0.484443\pi\)
0.0488545 + 0.998806i \(0.484443\pi\)
\(812\) −1.10220 2.40523i −0.0386797 0.0844072i
\(813\) 21.3723 0.749558
\(814\) −7.61059 + 13.1819i −0.266751 + 0.462026i
\(815\) −19.6477 34.0308i −0.688229 1.19205i
\(816\) −2.73630 4.73940i −0.0957895 0.165912i
\(817\) −22.7792 + 39.4547i −0.796943 + 1.38035i
\(818\) 37.1821 1.30004
\(819\) −5.78646 + 8.14826i −0.202195 + 0.284723i
\(820\) −17.5949 −0.614442
\(821\) 26.3020 45.5563i 0.917944 1.58993i 0.115412 0.993318i \(-0.463181\pi\)
0.802532 0.596609i \(-0.203486\pi\)
\(822\) 2.47724 + 4.29071i 0.0864038 + 0.149656i
\(823\) 0.0156555 + 0.0271162i 0.000545718 + 0.000945211i 0.866298 0.499527i \(-0.166493\pi\)
−0.865752 + 0.500473i \(0.833160\pi\)
\(824\) −0.222674 + 0.385683i −0.00775723 + 0.0134359i
\(825\) 17.3137 0.602786
\(826\) 11.2772 + 1.06210i 0.392383 + 0.0369552i
\(827\) −45.3775 −1.57793 −0.788965 0.614438i \(-0.789383\pi\)
−0.788965 + 0.614438i \(0.789383\pi\)
\(828\) 0.897799 1.55503i 0.0312007 0.0540412i
\(829\) −25.0923 43.4612i −0.871492 1.50947i −0.860453 0.509530i \(-0.829819\pi\)
−0.0110389 0.999939i \(-0.503514\pi\)
\(830\) 8.46997 + 14.6704i 0.293997 + 0.509218i
\(831\) 0.251951 0.436392i 0.00874008 0.0151383i
\(832\) 3.77733 0.130955
\(833\) 12.6231 + 36.1686i 0.437364 + 1.25317i
\(834\) −21.2902 −0.737219
\(835\) −32.6488 + 56.5494i −1.12986 + 1.95697i
\(836\) −6.90880 11.9664i −0.238946 0.413867i
\(837\) −3.44983 5.97529i −0.119244 0.206536i
\(838\) 9.92969 17.1987i 0.343016 0.594120i
\(839\) 27.0000 0.932144 0.466072 0.884747i \(-0.345669\pi\)
0.466072 + 0.884747i \(0.345669\pi\)
\(840\) −8.44070 0.794959i −0.291232 0.0274287i
\(841\) 1.00000 0.0344828
\(842\) 20.1496 34.9001i 0.694400 1.20274i
\(843\) 13.4745 + 23.3384i 0.464085 + 0.803819i
\(844\) −11.5657 20.0323i −0.398106 0.689540i
\(845\) −2.03189 + 3.51934i −0.0698993 + 0.121069i
\(846\) −8.34502 −0.286908
\(847\) 0.305103 0.429634i 0.0104835 0.0147624i
\(848\) −8.12758 −0.279102
\(849\) −2.80008 + 4.84989i −0.0960986 + 0.166448i
\(850\) 14.4153 + 24.9681i 0.494441 + 0.856398i
\(851\) −4.15814 7.20210i −0.142539 0.246885i
\(852\) −7.86777 + 13.6274i −0.269545 + 0.466866i
\(853\) −46.3394 −1.58663 −0.793316 0.608810i \(-0.791647\pi\)
−0.793316 + 0.608810i \(0.791647\pi\)
\(854\) −7.61059 16.6079i −0.260429 0.568311i
\(855\) −13.4726 −0.460753
\(856\) −0.172508 + 0.298792i −0.00589619 + 0.0102125i
\(857\) 24.4765 + 42.3945i 0.836101 + 1.44817i 0.893131 + 0.449797i \(0.148504\pi\)
−0.0570297 + 0.998372i \(0.518163\pi\)
\(858\) −6.20702 10.7509i −0.211904 0.367029i
\(859\) 21.4277 37.1138i 0.731102 1.26631i −0.225310 0.974287i \(-0.572340\pi\)
0.956412 0.292019i \(-0.0943271\pi\)
\(860\) −34.7225 −1.18403
\(861\) −6.05203 13.2068i −0.206253 0.450087i
\(862\) 17.6692 0.601815
\(863\) 16.5774 28.7129i 0.564302 0.977399i −0.432813 0.901484i \(-0.642479\pi\)
0.997114 0.0759151i \(-0.0241878\pi\)
\(864\) 0.500000 + 0.866025i 0.0170103 + 0.0294628i
\(865\) 17.7473 + 30.7392i 0.603426 + 1.04516i
\(866\) 12.9745 22.4724i 0.440890 0.763644i
\(867\) −12.9493 −0.439780
\(868\) 10.5696 14.8836i 0.358754 0.505183i
\(869\) 10.1291 0.343605
\(870\) 1.60220 2.77509i 0.0543197 0.0940845i
\(871\) −5.21092 9.02558i −0.176565 0.305820i
\(872\) 6.91142 + 11.9709i 0.234050 + 0.405387i
\(873\) −4.49738 + 7.78970i −0.152213 + 0.263641i
\(874\) 7.54942 0.255363
\(875\) 2.26370 + 0.213199i 0.0765272 + 0.00720746i
\(876\) −12.2044 −0.412349
\(877\) −10.1680 + 17.6115i −0.343350 + 0.594699i −0.985053 0.172254i \(-0.944895\pi\)
0.641703 + 0.766953i \(0.278228\pi\)
\(878\) −7.94070 13.7537i −0.267986 0.464165i
\(879\) 5.74730 + 9.95461i 0.193852 + 0.335761i
\(880\) 5.26557 9.12024i 0.177502 0.307443i
\(881\) 2.29053 0.0771699 0.0385850 0.999255i \(-0.487715\pi\)
0.0385850 + 0.999255i \(0.487715\pi\)
\(882\) −2.30660 6.60905i −0.0776673 0.222538i
\(883\) 49.9112 1.67965 0.839823 0.542860i \(-0.182659\pi\)
0.839823 + 0.542860i \(0.182659\pi\)
\(884\) 10.3359 17.9023i 0.347633 0.602118i
\(885\) 6.85939 + 11.8808i 0.230576 + 0.399369i
\(886\) −14.0657 24.3624i −0.472545 0.818472i
\(887\) 4.21429 7.29936i 0.141502 0.245089i −0.786560 0.617513i \(-0.788140\pi\)
0.928062 + 0.372425i \(0.121474\pi\)
\(888\) 4.63148 0.155422
\(889\) −53.3883 5.02820i −1.79059 0.168640i
\(890\) −10.9399 −0.366708
\(891\) 1.64323 2.84616i 0.0550503 0.0953499i
\(892\) 0.193398 + 0.334975i 0.00647543 + 0.0112158i
\(893\) −17.5429 30.3852i −0.587051 1.01680i
\(894\) −0.518273 + 0.897675i −0.0173336 + 0.0300227i
\(895\) −22.9687 −0.767759
\(896\) −1.53189 + 2.15715i −0.0511770 + 0.0720654i
\(897\) 6.78256 0.226463
\(898\) 14.8404 25.7043i 0.495229 0.857762i
\(899\) 3.44983 + 5.97529i 0.115058 + 0.199287i
\(900\) −2.63409 4.56239i −0.0878032 0.152080i
\(901\) −22.2394 + 38.5199i −0.740903 + 1.28328i
\(902\) 18.0455 0.600850
\(903\) −11.9433 26.0628i −0.397449 0.867317i
\(904\) 7.82284 0.260184
\(905\) 20.9015 36.2025i 0.694791 1.20341i
\(906\) 4.50448 + 7.80200i 0.149651 + 0.259204i
\(907\) −16.4263 28.4512i −0.545427 0.944708i −0.998580 0.0532747i \(-0.983034\pi\)
0.453153 0.891433i \(-0.350299\pi\)
\(908\) −7.86777 + 13.6274i −0.261101 + 0.452241i
\(909\) 6.82284 0.226299
\(910\) −13.3411 29.1131i −0.442254 0.965091i
\(911\) −44.5558 −1.47620 −0.738100 0.674691i \(-0.764277\pi\)
−0.738100 + 0.674691i \(0.764277\pi\)
\(912\) −2.10220 + 3.64112i −0.0696108 + 0.120569i
\(913\) −8.68688 15.0461i −0.287494 0.497954i
\(914\) −8.46084 14.6546i −0.279860 0.484731i
\(915\) 11.0630 19.1617i 0.365733 0.633468i
\(916\) 16.4036 0.541989
\(917\) 2.42953 3.42116i 0.0802300 0.112977i
\(918\) 5.47259 0.180622
\(919\) 12.6321 21.8794i 0.416693 0.721734i −0.578911 0.815390i \(-0.696522\pi\)
0.995605 + 0.0936567i \(0.0298556\pi\)
\(920\) 2.87691 + 4.98295i 0.0948489 + 0.164283i
\(921\) 12.3456 + 21.3832i 0.406801 + 0.704601i
\(922\) 14.7544 25.5554i 0.485910 0.841621i
\(923\) −59.4383 −1.95643
\(924\) 8.65685 + 0.815317i 0.284790 + 0.0268220i
\(925\) −24.3995 −0.802251
\(926\) 2.75644 4.77429i 0.0905821 0.156893i
\(927\) −0.222674 0.385683i −0.00731358 0.0126675i
\(928\) −0.500000 0.866025i −0.0164133 0.0284287i
\(929\) −13.1080 + 22.7037i −0.430059 + 0.744883i −0.996878 0.0789589i \(-0.974840\pi\)
0.566819 + 0.823842i \(0.308174\pi\)
\(930\) 22.1093 0.724993
\(931\) 19.2154 22.2922i 0.629759 0.730596i
\(932\) 8.65498 0.283503
\(933\) −1.70178 + 2.94758i −0.0557139 + 0.0964993i
\(934\) 14.2180 + 24.6263i 0.465228 + 0.805798i
\(935\) −28.8163 49.9113i −0.942394 1.63228i
\(936\) −1.88866 + 3.27126i −0.0617329 + 0.106924i
\(937\) 7.77326 0.253941 0.126971 0.991906i \(-0.459475\pi\)
0.126971 + 0.991906i \(0.459475\pi\)
\(938\) 7.26761 + 0.684475i 0.237296 + 0.0223489i
\(939\) 27.6770 0.903205
\(940\) 13.3704 23.1582i 0.436094 0.755337i
\(941\) −4.09958 7.10069i −0.133643 0.231476i 0.791436 0.611253i \(-0.209334\pi\)
−0.925078 + 0.379777i \(0.876001\pi\)
\(942\) 6.65685 + 11.5300i 0.216892 + 0.375668i
\(943\) −4.92969 + 8.53848i −0.160533 + 0.278051i
\(944\) 4.28123 0.139342
\(945\) 4.90880 6.91238i 0.159683 0.224860i
\(946\) 35.6117 1.15784
\(947\) −28.7245 + 49.7524i −0.933422 + 1.61673i −0.155999 + 0.987757i \(0.549860\pi\)
−0.777424 + 0.628977i \(0.783474\pi\)
\(948\) −1.54103 2.66914i −0.0500503 0.0866897i
\(949\) −23.0500 39.9238i −0.748235 1.29598i
\(950\) 11.0748 19.1821i 0.359314 0.622350i
\(951\) −31.5453 −1.02293
\(952\) 6.03189 + 13.1629i 0.195495 + 0.426611i
\(953\) −14.0220 −0.454217 −0.227109 0.973869i \(-0.572927\pi\)
−0.227109 + 0.973869i \(0.572927\pi\)
\(954\) 4.06379 7.03869i 0.131570 0.227886i
\(955\) 20.8806 + 36.1663i 0.675682 + 1.17032i
\(956\) −4.37039 7.56974i −0.141349 0.244823i
\(957\) −1.64323 + 2.84616i −0.0531181 + 0.0920033i
\(958\) −9.30473 −0.300622
\(959\) −5.46084 11.9167i −0.176340 0.384810i
\(960\) −3.20440 −0.103422
\(961\) −8.30270 + 14.3807i −0.267829 + 0.463894i
\(962\) 8.74730 + 15.1508i 0.282024 + 0.488480i
\(963\) −0.172508 0.298792i −0.00555898 0.00962844i
\(964\) −1.29298 + 2.23951i −0.0416441 + 0.0721297i
\(965\) −49.0963 −1.58046
\(966\) −2.75067 + 3.87338i −0.0885012 + 0.124624i
\(967\) 35.4413 1.13971 0.569857 0.821744i \(-0.306998\pi\)
0.569857 + 0.821744i \(0.306998\pi\)
\(968\) 0.0995835 0.172484i 0.00320074 0.00554384i
\(969\) 11.5045 + 19.9264i 0.369577 + 0.640127i
\(970\) −14.4114 24.9613i −0.462723 0.801459i
\(971\) 17.6809 30.6242i 0.567407 0.982778i −0.429414 0.903108i \(-0.641280\pi\)
0.996821 0.0796700i \(-0.0253867\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 56.0804 + 5.28175i 1.79785 + 0.169325i
\(974\) −26.7135 −0.855957
\(975\) 9.94983 17.2336i 0.318650 0.551917i
\(976\) −3.45245 5.97982i −0.110510 0.191409i
\(977\) 23.5310 + 40.7568i 0.752823 + 1.30393i 0.946450 + 0.322852i \(0.104642\pi\)
−0.193627 + 0.981075i \(0.562025\pi\)
\(978\) 6.13148 10.6200i 0.196063 0.339591i
\(979\) 11.2201 0.358596
\(980\) 22.0364 + 4.18799i 0.703926 + 0.133781i
\(981\) −13.8228 −0.441329
\(982\) 8.49086 14.7066i 0.270954 0.469307i
\(983\) 21.8631 + 37.8680i 0.697325 + 1.20780i 0.969391 + 0.245524i \(0.0789600\pi\)
−0.272065 + 0.962279i \(0.587707\pi\)
\(984\) −2.74543 4.75523i −0.0875212 0.151591i
\(985\) 25.7727 44.6396i 0.821186 1.42234i
\(986\) −5.47259 −0.174283
\(987\) 21.9816 + 2.07026i 0.699681 + 0.0658971i
\(988\) −15.8814 −0.505254
\(989\) −9.72844 + 16.8502i −0.309347 + 0.535804i
\(990\) 5.26557 + 9.12024i 0.167351 + 0.289860i
\(991\) −19.6613 34.0544i −0.624563 1.08177i −0.988625 0.150400i \(-0.951944\pi\)
0.364062 0.931375i \(-0.381390\pi\)
\(992\) 3.44983 5.97529i 0.109532 0.189716i
\(993\) −12.1626 −0.385969
\(994\) 24.1052 33.9440i 0.764570 1.07664i
\(995\) 48.1533 1.52656
\(996\) −2.64323 + 4.57821i −0.0837540 + 0.145066i
\(997\) 1.93696 + 3.35492i 0.0613442 + 0.106251i 0.895066 0.445933i \(-0.147128\pi\)
−0.833722 + 0.552184i \(0.813795\pi\)
\(998\) 8.29095 + 14.3603i 0.262445 + 0.454569i
\(999\) −2.31574 + 4.01098i −0.0732667 + 0.126902i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.i.b.1045.1 yes 6
7.2 even 3 8526.2.a.by.1.3 3
7.4 even 3 inner 1218.2.i.b.697.1 6
7.5 odd 6 8526.2.a.ca.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.i.b.697.1 6 7.4 even 3 inner
1218.2.i.b.1045.1 yes 6 1.1 even 1 trivial
8526.2.a.by.1.3 3 7.2 even 3
8526.2.a.ca.1.1 3 7.5 odd 6