Properties

Label 1218.2.i.a.697.3
Level $1218$
Weight $2$
Character 1218.697
Analytic conductor $9.726$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(697,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.697"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,-3,-3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 697.3
Root \(0.900969 + 1.56052i\) of defining polynomial
Character \(\chi\) \(=\) 1218.697
Dual form 1218.2.i.a.1045.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.900969 + 1.56052i) q^{5} +1.00000 q^{6} +(-2.37047 - 1.17511i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.900969 - 1.56052i) q^{10} +(0.376510 - 0.652135i) q^{11} +(-0.500000 - 0.866025i) q^{12} +2.29590 q^{13} +(0.167563 + 2.64044i) q^{14} -1.80194 q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.96950 - 3.41127i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-0.955927 - 1.65571i) q^{19} -1.80194 q^{20} +(2.20291 - 1.46533i) q^{21} -0.753020 q^{22} +(2.29105 + 3.96822i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(0.876510 - 1.51816i) q^{25} +(-1.14795 - 1.98831i) q^{26} +1.00000 q^{27} +(2.20291 - 1.46533i) q^{28} -1.00000 q^{29} +(0.900969 + 1.56052i) q^{30} +(0.634375 - 1.09877i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.376510 + 0.652135i) q^{33} -3.93900 q^{34} +(-0.301938 - 4.75791i) q^{35} +1.00000 q^{36} +(6.05980 + 10.4959i) q^{37} +(-0.955927 + 1.65571i) q^{38} +(-1.14795 + 1.98831i) q^{39} +(0.900969 + 1.56052i) q^{40} +5.03684 q^{41} +(-2.37047 - 1.17511i) q^{42} -1.17629 q^{43} +(0.376510 + 0.652135i) q^{44} +(0.900969 - 1.56052i) q^{45} +(2.29105 - 3.96822i) q^{46} +(-0.222521 - 0.385418i) q^{47} +1.00000 q^{48} +(4.23825 + 5.57111i) q^{49} -1.75302 q^{50} +(1.96950 + 3.41127i) q^{51} +(-1.14795 + 1.98831i) q^{52} +(5.15883 - 8.93536i) q^{53} +(-0.500000 - 0.866025i) q^{54} +1.35690 q^{55} +(-2.37047 - 1.17511i) q^{56} +1.91185 q^{57} +(0.500000 + 0.866025i) q^{58} +(-5.24698 + 9.08804i) q^{59} +(0.900969 - 1.56052i) q^{60} +(4.78501 + 8.28788i) q^{61} -1.26875 q^{62} +(0.167563 + 2.64044i) q^{63} +1.00000 q^{64} +(2.06853 + 3.58280i) q^{65} +(0.376510 - 0.652135i) q^{66} +(1.20895 - 2.09396i) q^{67} +(1.96950 + 3.41127i) q^{68} -4.58211 q^{69} +(-3.96950 + 2.64044i) q^{70} +11.5308 q^{71} +(-0.500000 - 0.866025i) q^{72} +(-2.89493 + 5.01416i) q^{73} +(6.05980 - 10.4959i) q^{74} +(0.876510 + 1.51816i) q^{75} +1.91185 q^{76} +(-1.65883 + 1.10343i) q^{77} +2.29590 q^{78} +(7.40850 + 12.8319i) q^{79} +(0.900969 - 1.56052i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.51842 - 4.36203i) q^{82} -1.64310 q^{83} +(0.167563 + 2.64044i) q^{84} +7.09783 q^{85} +(0.588146 + 1.01870i) q^{86} +(0.500000 - 0.866025i) q^{87} +(0.376510 - 0.652135i) q^{88} +(0.711636 + 1.23259i) q^{89} -1.80194 q^{90} +(-5.44235 - 2.69792i) q^{91} -4.58211 q^{92} +(0.634375 + 1.09877i) q^{93} +(-0.222521 + 0.385418i) q^{94} +(1.72252 - 2.98349i) q^{95} +(-0.500000 - 0.866025i) q^{96} -4.53319 q^{97} +(2.70560 - 6.45599i) q^{98} -0.753020 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{3} - 3 q^{4} + q^{5} + 6 q^{6} + 6 q^{8} - 3 q^{9} + q^{10} + 7 q^{11} - 3 q^{12} - 14 q^{13} - 2 q^{15} - 3 q^{16} + 2 q^{17} - 3 q^{18} - 2 q^{19} - 2 q^{20} - 14 q^{22} + 8 q^{23}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.900969 + 1.56052i 0.402926 + 0.697887i 0.994078 0.108673i \(-0.0346600\pi\)
−0.591152 + 0.806560i \(0.701327\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.37047 1.17511i −0.895953 0.444148i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.900969 1.56052i 0.284911 0.493481i
\(11\) 0.376510 0.652135i 0.113522 0.196626i −0.803666 0.595081i \(-0.797120\pi\)
0.917188 + 0.398455i \(0.130453\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 2.29590 0.636767 0.318384 0.947962i \(-0.396860\pi\)
0.318384 + 0.947962i \(0.396860\pi\)
\(14\) 0.167563 + 2.64044i 0.0447830 + 0.705687i
\(15\) −1.80194 −0.465258
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.96950 3.41127i 0.477674 0.827356i −0.521998 0.852946i \(-0.674813\pi\)
0.999673 + 0.0255907i \(0.00814667\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −0.955927 1.65571i −0.219305 0.379847i 0.735291 0.677752i \(-0.237046\pi\)
−0.954596 + 0.297905i \(0.903712\pi\)
\(20\) −1.80194 −0.402926
\(21\) 2.20291 1.46533i 0.480714 0.319762i
\(22\) −0.753020 −0.160544
\(23\) 2.29105 + 3.96822i 0.477717 + 0.827431i 0.999674 0.0255413i \(-0.00813092\pi\)
−0.521956 + 0.852972i \(0.674798\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 0.876510 1.51816i 0.175302 0.303632i
\(26\) −1.14795 1.98831i −0.225131 0.389939i
\(27\) 1.00000 0.192450
\(28\) 2.20291 1.46533i 0.416310 0.276922i
\(29\) −1.00000 −0.185695
\(30\) 0.900969 + 1.56052i 0.164494 + 0.284911i
\(31\) 0.634375 1.09877i 0.113937 0.197345i −0.803417 0.595416i \(-0.796987\pi\)
0.917354 + 0.398072i \(0.130320\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.376510 + 0.652135i 0.0655420 + 0.113522i
\(34\) −3.93900 −0.675533
\(35\) −0.301938 4.75791i −0.0510368 0.804233i
\(36\) 1.00000 0.166667
\(37\) 6.05980 + 10.4959i 0.996225 + 1.72551i 0.573287 + 0.819354i \(0.305668\pi\)
0.422938 + 0.906159i \(0.360999\pi\)
\(38\) −0.955927 + 1.65571i −0.155072 + 0.268592i
\(39\) −1.14795 + 1.98831i −0.183819 + 0.318384i
\(40\) 0.900969 + 1.56052i 0.142456 + 0.246740i
\(41\) 5.03684 0.786622 0.393311 0.919406i \(-0.371330\pi\)
0.393311 + 0.919406i \(0.371330\pi\)
\(42\) −2.37047 1.17511i −0.365771 0.181323i
\(43\) −1.17629 −0.179383 −0.0896914 0.995970i \(-0.528588\pi\)
−0.0896914 + 0.995970i \(0.528588\pi\)
\(44\) 0.376510 + 0.652135i 0.0567610 + 0.0983130i
\(45\) 0.900969 1.56052i 0.134309 0.232629i
\(46\) 2.29105 3.96822i 0.337797 0.585082i
\(47\) −0.222521 0.385418i −0.0324580 0.0562189i 0.849340 0.527846i \(-0.177000\pi\)
−0.881798 + 0.471627i \(0.843667\pi\)
\(48\) 1.00000 0.144338
\(49\) 4.23825 + 5.57111i 0.605464 + 0.795872i
\(50\) −1.75302 −0.247915
\(51\) 1.96950 + 3.41127i 0.275785 + 0.477674i
\(52\) −1.14795 + 1.98831i −0.159192 + 0.275728i
\(53\) 5.15883 8.93536i 0.708620 1.22737i −0.256749 0.966478i \(-0.582651\pi\)
0.965369 0.260888i \(-0.0840154\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 1.35690 0.182964
\(56\) −2.37047 1.17511i −0.316767 0.157030i
\(57\) 1.91185 0.253231
\(58\) 0.500000 + 0.866025i 0.0656532 + 0.113715i
\(59\) −5.24698 + 9.08804i −0.683099 + 1.18316i 0.290932 + 0.956744i \(0.406035\pi\)
−0.974030 + 0.226418i \(0.927299\pi\)
\(60\) 0.900969 1.56052i 0.116315 0.201463i
\(61\) 4.78501 + 8.28788i 0.612658 + 1.06115i 0.990791 + 0.135403i \(0.0432330\pi\)
−0.378133 + 0.925751i \(0.623434\pi\)
\(62\) −1.26875 −0.161131
\(63\) 0.167563 + 2.64044i 0.0211109 + 0.332664i
\(64\) 1.00000 0.125000
\(65\) 2.06853 + 3.58280i 0.256570 + 0.444392i
\(66\) 0.376510 0.652135i 0.0463452 0.0802722i
\(67\) 1.20895 2.09396i 0.147696 0.255818i −0.782679 0.622425i \(-0.786147\pi\)
0.930376 + 0.366608i \(0.119481\pi\)
\(68\) 1.96950 + 3.41127i 0.238837 + 0.413678i
\(69\) −4.58211 −0.551621
\(70\) −3.96950 + 2.64044i −0.474446 + 0.315593i
\(71\) 11.5308 1.36845 0.684227 0.729269i \(-0.260140\pi\)
0.684227 + 0.729269i \(0.260140\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) −2.89493 + 5.01416i −0.338826 + 0.586863i −0.984212 0.176993i \(-0.943363\pi\)
0.645386 + 0.763856i \(0.276696\pi\)
\(74\) 6.05980 10.4959i 0.704438 1.22012i
\(75\) 0.876510 + 1.51816i 0.101211 + 0.175302i
\(76\) 1.91185 0.219305
\(77\) −1.65883 + 1.10343i −0.189042 + 0.125747i
\(78\) 2.29590 0.259959
\(79\) 7.40850 + 12.8319i 0.833522 + 1.44370i 0.895229 + 0.445607i \(0.147012\pi\)
−0.0617070 + 0.998094i \(0.519654\pi\)
\(80\) 0.900969 1.56052i 0.100731 0.174472i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −2.51842 4.36203i −0.278113 0.481705i
\(83\) −1.64310 −0.180354 −0.0901771 0.995926i \(-0.528743\pi\)
−0.0901771 + 0.995926i \(0.528743\pi\)
\(84\) 0.167563 + 2.64044i 0.0182826 + 0.288096i
\(85\) 7.09783 0.769868
\(86\) 0.588146 + 1.01870i 0.0634214 + 0.109849i
\(87\) 0.500000 0.866025i 0.0536056 0.0928477i
\(88\) 0.376510 0.652135i 0.0401361 0.0695178i
\(89\) 0.711636 + 1.23259i 0.0754332 + 0.130654i 0.901275 0.433248i \(-0.142633\pi\)
−0.825841 + 0.563903i \(0.809299\pi\)
\(90\) −1.80194 −0.189941
\(91\) −5.44235 2.69792i −0.570514 0.282819i
\(92\) −4.58211 −0.477717
\(93\) 0.634375 + 1.09877i 0.0657816 + 0.113937i
\(94\) −0.222521 + 0.385418i −0.0229513 + 0.0397528i
\(95\) 1.72252 2.98349i 0.176727 0.306100i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) −4.53319 −0.460275 −0.230138 0.973158i \(-0.573918\pi\)
−0.230138 + 0.973158i \(0.573918\pi\)
\(98\) 2.70560 6.45599i 0.273306 0.652153i
\(99\) −0.753020 −0.0756814
\(100\) 0.876510 + 1.51816i 0.0876510 + 0.151816i
\(101\) 6.44116 11.1564i 0.640919 1.11010i −0.344309 0.938856i \(-0.611887\pi\)
0.985228 0.171248i \(-0.0547799\pi\)
\(102\) 1.96950 3.41127i 0.195010 0.337767i
\(103\) 5.18598 + 8.98238i 0.510990 + 0.885060i 0.999919 + 0.0127368i \(0.00405437\pi\)
−0.488929 + 0.872324i \(0.662612\pi\)
\(104\) 2.29590 0.225131
\(105\) 4.27144 + 2.11747i 0.416850 + 0.206644i
\(106\) −10.3177 −1.00214
\(107\) −5.51842 9.55818i −0.533486 0.924024i −0.999235 0.0391075i \(-0.987549\pi\)
0.465749 0.884917i \(-0.345785\pi\)
\(108\) −0.500000 + 0.866025i −0.0481125 + 0.0833333i
\(109\) 6.58426 11.4043i 0.630658 1.09233i −0.356760 0.934196i \(-0.616118\pi\)
0.987417 0.158135i \(-0.0505482\pi\)
\(110\) −0.678448 1.17511i −0.0646875 0.112042i
\(111\) −12.1196 −1.15034
\(112\) 0.167563 + 2.64044i 0.0158332 + 0.249498i
\(113\) 10.2349 0.962818 0.481409 0.876496i \(-0.340125\pi\)
0.481409 + 0.876496i \(0.340125\pi\)
\(114\) −0.955927 1.65571i −0.0895308 0.155072i
\(115\) −4.12833 + 7.15048i −0.384969 + 0.666786i
\(116\) 0.500000 0.866025i 0.0464238 0.0804084i
\(117\) −1.14795 1.98831i −0.106128 0.183819i
\(118\) 10.4940 0.966047
\(119\) −8.67725 + 5.77195i −0.795442 + 0.529114i
\(120\) −1.80194 −0.164494
\(121\) 5.21648 + 9.03521i 0.474225 + 0.821383i
\(122\) 4.78501 8.28788i 0.433215 0.750350i
\(123\) −2.51842 + 4.36203i −0.227078 + 0.393311i
\(124\) 0.634375 + 1.09877i 0.0569686 + 0.0986724i
\(125\) 12.1685 1.08839
\(126\) 2.20291 1.46533i 0.196251 0.130542i
\(127\) −0.807315 −0.0716376 −0.0358188 0.999358i \(-0.511404\pi\)
−0.0358188 + 0.999358i \(0.511404\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0.588146 1.01870i 0.0517834 0.0896914i
\(130\) 2.06853 3.58280i 0.181422 0.314233i
\(131\) −10.6664 18.4747i −0.931925 1.61414i −0.780028 0.625745i \(-0.784795\pi\)
−0.151897 0.988396i \(-0.548538\pi\)
\(132\) −0.753020 −0.0655420
\(133\) 0.320356 + 5.04814i 0.0277784 + 0.437729i
\(134\) −2.41789 −0.208874
\(135\) 0.900969 + 1.56052i 0.0775431 + 0.134309i
\(136\) 1.96950 3.41127i 0.168883 0.292514i
\(137\) 6.55765 11.3582i 0.560258 0.970395i −0.437216 0.899357i \(-0.644035\pi\)
0.997474 0.0710380i \(-0.0226312\pi\)
\(138\) 2.29105 + 3.96822i 0.195027 + 0.337797i
\(139\) 6.48858 0.550354 0.275177 0.961394i \(-0.411263\pi\)
0.275177 + 0.961394i \(0.411263\pi\)
\(140\) 4.27144 + 2.11747i 0.361002 + 0.178959i
\(141\) 0.445042 0.0374793
\(142\) −5.76540 9.98596i −0.483821 0.838003i
\(143\) 0.864429 1.49723i 0.0722872 0.125205i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −0.900969 1.56052i −0.0748214 0.129594i
\(146\) 5.78986 0.479172
\(147\) −6.94385 + 0.884879i −0.572719 + 0.0729836i
\(148\) −12.1196 −0.996225
\(149\) −10.2289 17.7169i −0.837981 1.45143i −0.891580 0.452863i \(-0.850403\pi\)
0.0535997 0.998563i \(-0.482930\pi\)
\(150\) 0.876510 1.51816i 0.0715668 0.123957i
\(151\) 6.87531 11.9084i 0.559505 0.969091i −0.438033 0.898959i \(-0.644325\pi\)
0.997538 0.0701322i \(-0.0223421\pi\)
\(152\) −0.955927 1.65571i −0.0775359 0.134296i
\(153\) −3.93900 −0.318449
\(154\) 1.78501 + 0.884879i 0.143840 + 0.0713056i
\(155\) 2.28621 0.183633
\(156\) −1.14795 1.98831i −0.0919094 0.159192i
\(157\) 0.928780 1.60869i 0.0741247 0.128388i −0.826581 0.562818i \(-0.809717\pi\)
0.900705 + 0.434431i \(0.143050\pi\)
\(158\) 7.40850 12.8319i 0.589389 1.02085i
\(159\) 5.15883 + 8.93536i 0.409122 + 0.708620i
\(160\) −1.80194 −0.142456
\(161\) −0.767790 12.0988i −0.0605104 0.953517i
\(162\) 1.00000 0.0785674
\(163\) 9.37263 + 16.2339i 0.734121 + 1.27153i 0.955108 + 0.296258i \(0.0957387\pi\)
−0.220987 + 0.975277i \(0.570928\pi\)
\(164\) −2.51842 + 4.36203i −0.196655 + 0.340617i
\(165\) −0.678448 + 1.17511i −0.0528171 + 0.0914819i
\(166\) 0.821552 + 1.42297i 0.0637648 + 0.110444i
\(167\) 0.105604 0.00817191 0.00408596 0.999992i \(-0.498699\pi\)
0.00408596 + 0.999992i \(0.498699\pi\)
\(168\) 2.20291 1.46533i 0.169958 0.113053i
\(169\) −7.72886 −0.594527
\(170\) −3.54892 6.14691i −0.272190 0.471446i
\(171\) −0.955927 + 1.65571i −0.0731016 + 0.126616i
\(172\) 0.588146 1.01870i 0.0448457 0.0776751i
\(173\) 5.24578 + 9.08596i 0.398830 + 0.690793i 0.993582 0.113116i \(-0.0360832\pi\)
−0.594752 + 0.803909i \(0.702750\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −3.86174 + 2.56876i −0.291920 + 0.194180i
\(176\) −0.753020 −0.0567610
\(177\) −5.24698 9.08804i −0.394387 0.683099i
\(178\) 0.711636 1.23259i 0.0533394 0.0923865i
\(179\) 8.68114 15.0362i 0.648859 1.12386i −0.334537 0.942383i \(-0.608580\pi\)
0.983396 0.181474i \(-0.0580867\pi\)
\(180\) 0.900969 + 1.56052i 0.0671543 + 0.116315i
\(181\) −13.5985 −1.01077 −0.505384 0.862894i \(-0.668649\pi\)
−0.505384 + 0.862894i \(0.668649\pi\)
\(182\) 0.384707 + 6.06218i 0.0285164 + 0.449359i
\(183\) −9.57002 −0.707437
\(184\) 2.29105 + 3.96822i 0.168899 + 0.292541i
\(185\) −10.9194 + 18.9129i −0.802809 + 1.39051i
\(186\) 0.634375 1.09877i 0.0465146 0.0805657i
\(187\) −1.48307 2.56876i −0.108453 0.187846i
\(188\) 0.445042 0.0324580
\(189\) −2.37047 1.17511i −0.172426 0.0854764i
\(190\) −3.44504 −0.249930
\(191\) −1.49880 2.59600i −0.108450 0.187840i 0.806693 0.590971i \(-0.201255\pi\)
−0.915142 + 0.403131i \(0.867922\pi\)
\(192\) −0.500000 + 0.866025i −0.0360844 + 0.0625000i
\(193\) −11.3339 + 19.6309i −0.815834 + 1.41307i 0.0928934 + 0.995676i \(0.470388\pi\)
−0.908727 + 0.417390i \(0.862945\pi\)
\(194\) 2.26659 + 3.92586i 0.162732 + 0.281860i
\(195\) −4.13706 −0.296261
\(196\) −6.94385 + 0.884879i −0.495989 + 0.0632056i
\(197\) 1.85086 0.131868 0.0659340 0.997824i \(-0.478997\pi\)
0.0659340 + 0.997824i \(0.478997\pi\)
\(198\) 0.376510 + 0.652135i 0.0267574 + 0.0463452i
\(199\) 2.94773 5.10562i 0.208959 0.361928i −0.742428 0.669926i \(-0.766326\pi\)
0.951387 + 0.307998i \(0.0996591\pi\)
\(200\) 0.876510 1.51816i 0.0619786 0.107350i
\(201\) 1.20895 + 2.09396i 0.0852726 + 0.147696i
\(202\) −12.8823 −0.906396
\(203\) 2.37047 + 1.17511i 0.166374 + 0.0824763i
\(204\) −3.93900 −0.275785
\(205\) 4.53803 + 7.86010i 0.316950 + 0.548973i
\(206\) 5.18598 8.98238i 0.361324 0.625832i
\(207\) 2.29105 3.96822i 0.159239 0.275810i
\(208\) −1.14795 1.98831i −0.0795959 0.137864i
\(209\) −1.43967 −0.0995837
\(210\) −0.301938 4.75791i −0.0208357 0.328327i
\(211\) −10.8334 −0.745802 −0.372901 0.927871i \(-0.621637\pi\)
−0.372901 + 0.927871i \(0.621637\pi\)
\(212\) 5.15883 + 8.93536i 0.354310 + 0.613683i
\(213\) −5.76540 + 9.98596i −0.395039 + 0.684227i
\(214\) −5.51842 + 9.55818i −0.377231 + 0.653384i
\(215\) −1.05980 1.83563i −0.0722779 0.125189i
\(216\) 1.00000 0.0680414
\(217\) −2.79494 + 1.85914i −0.189733 + 0.126207i
\(218\) −13.1685 −0.891885
\(219\) −2.89493 5.01416i −0.195621 0.338826i
\(220\) −0.678448 + 1.17511i −0.0457410 + 0.0792257i
\(221\) 4.52177 7.83194i 0.304167 0.526833i
\(222\) 6.05980 + 10.4959i 0.406707 + 0.704438i
\(223\) −6.33944 −0.424520 −0.212260 0.977213i \(-0.568082\pi\)
−0.212260 + 0.977213i \(0.568082\pi\)
\(224\) 2.20291 1.46533i 0.147188 0.0979067i
\(225\) −1.75302 −0.116868
\(226\) −5.11745 8.86368i −0.340408 0.589603i
\(227\) −12.9852 + 22.4911i −0.861860 + 1.49279i 0.00827158 + 0.999966i \(0.497367\pi\)
−0.870132 + 0.492819i \(0.835966\pi\)
\(228\) −0.955927 + 1.65571i −0.0633078 + 0.109652i
\(229\) −1.23878 2.14563i −0.0818611 0.141788i 0.822188 0.569216i \(-0.192753\pi\)
−0.904049 + 0.427428i \(0.859420\pi\)
\(230\) 8.25667 0.544429
\(231\) −0.126178 1.98831i −0.00830192 0.130821i
\(232\) −1.00000 −0.0656532
\(233\) 0.551606 + 0.955409i 0.0361369 + 0.0625909i 0.883528 0.468378i \(-0.155161\pi\)
−0.847391 + 0.530969i \(0.821828\pi\)
\(234\) −1.14795 + 1.98831i −0.0750437 + 0.129980i
\(235\) 0.400969 0.694498i 0.0261563 0.0453041i
\(236\) −5.24698 9.08804i −0.341549 0.591581i
\(237\) −14.8170 −0.962468
\(238\) 9.33728 + 4.62874i 0.605246 + 0.300037i
\(239\) −6.30798 −0.408029 −0.204015 0.978968i \(-0.565399\pi\)
−0.204015 + 0.978968i \(0.565399\pi\)
\(240\) 0.900969 + 1.56052i 0.0581573 + 0.100731i
\(241\) 5.33728 9.24444i 0.343805 0.595487i −0.641331 0.767264i \(-0.721618\pi\)
0.985136 + 0.171777i \(0.0549509\pi\)
\(242\) 5.21648 9.03521i 0.335328 0.580805i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −9.57002 −0.612658
\(245\) −4.87531 + 11.6333i −0.311472 + 0.743223i
\(246\) 5.03684 0.321137
\(247\) −2.19471 3.80135i −0.139646 0.241874i
\(248\) 0.634375 1.09877i 0.0402828 0.0697719i
\(249\) 0.821552 1.42297i 0.0520637 0.0901771i
\(250\) −6.08426 10.5382i −0.384802 0.666497i
\(251\) −25.2597 −1.59438 −0.797188 0.603732i \(-0.793680\pi\)
−0.797188 + 0.603732i \(0.793680\pi\)
\(252\) −2.37047 1.17511i −0.149326 0.0740247i
\(253\) 3.45042 0.216926
\(254\) 0.403657 + 0.699155i 0.0253277 + 0.0438689i
\(255\) −3.54892 + 6.14691i −0.222242 + 0.384934i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.6283 + 20.1409i 0.725356 + 1.25635i 0.958827 + 0.283989i \(0.0916580\pi\)
−0.233472 + 0.972364i \(0.575009\pi\)
\(258\) −1.17629 −0.0732327
\(259\) −2.03079 32.0011i −0.126187 1.98845i
\(260\) −4.13706 −0.256570
\(261\) 0.500000 + 0.866025i 0.0309492 + 0.0536056i
\(262\) −10.6664 + 18.4747i −0.658970 + 1.14137i
\(263\) −3.04288 + 5.27042i −0.187632 + 0.324988i −0.944460 0.328626i \(-0.893415\pi\)
0.756828 + 0.653614i \(0.226748\pi\)
\(264\) 0.376510 + 0.652135i 0.0231726 + 0.0401361i
\(265\) 18.5918 1.14208
\(266\) 4.21164 2.80150i 0.258232 0.171771i
\(267\) −1.42327 −0.0871028
\(268\) 1.20895 + 2.09396i 0.0738482 + 0.127909i
\(269\) −5.23341 + 9.06453i −0.319086 + 0.552674i −0.980298 0.197526i \(-0.936709\pi\)
0.661211 + 0.750200i \(0.270043\pi\)
\(270\) 0.900969 1.56052i 0.0548312 0.0949705i
\(271\) −8.07002 13.9777i −0.490219 0.849084i 0.509718 0.860342i \(-0.329750\pi\)
−0.999937 + 0.0112575i \(0.996417\pi\)
\(272\) −3.93900 −0.238837
\(273\) 5.05765 3.36425i 0.306103 0.203614i
\(274\) −13.1153 −0.792324
\(275\) −0.660030 1.14321i −0.0398013 0.0689379i
\(276\) 2.29105 3.96822i 0.137905 0.238859i
\(277\) −3.52661 + 6.10828i −0.211894 + 0.367011i −0.952307 0.305141i \(-0.901296\pi\)
0.740413 + 0.672152i \(0.234630\pi\)
\(278\) −3.24429 5.61928i −0.194580 0.337022i
\(279\) −1.26875 −0.0759581
\(280\) −0.301938 4.75791i −0.0180442 0.284339i
\(281\) 9.47219 0.565063 0.282532 0.959258i \(-0.408826\pi\)
0.282532 + 0.959258i \(0.408826\pi\)
\(282\) −0.222521 0.385418i −0.0132509 0.0229513i
\(283\) 5.08911 8.81459i 0.302516 0.523973i −0.674189 0.738559i \(-0.735507\pi\)
0.976705 + 0.214586i \(0.0688401\pi\)
\(284\) −5.76540 + 9.98596i −0.342113 + 0.592558i
\(285\) 1.72252 + 2.98349i 0.102033 + 0.176727i
\(286\) −1.72886 −0.102229
\(287\) −11.9397 5.91882i −0.704776 0.349377i
\(288\) 1.00000 0.0589256
\(289\) 0.742135 + 1.28542i 0.0436550 + 0.0756127i
\(290\) −0.900969 + 1.56052i −0.0529067 + 0.0916371i
\(291\) 2.26659 3.92586i 0.132870 0.230138i
\(292\) −2.89493 5.01416i −0.169413 0.293432i
\(293\) −4.03444 −0.235695 −0.117847 0.993032i \(-0.537599\pi\)
−0.117847 + 0.993032i \(0.537599\pi\)
\(294\) 4.23825 + 5.57111i 0.247180 + 0.324914i
\(295\) −18.9095 −1.10095
\(296\) 6.05980 + 10.4959i 0.352219 + 0.610061i
\(297\) 0.376510 0.652135i 0.0218473 0.0378407i
\(298\) −10.2289 + 17.7169i −0.592542 + 1.02631i
\(299\) 5.26002 + 9.11062i 0.304195 + 0.526881i
\(300\) −1.75302 −0.101211
\(301\) 2.78836 + 1.38227i 0.160719 + 0.0796726i
\(302\) −13.7506 −0.791260
\(303\) 6.44116 + 11.1564i 0.370035 + 0.640919i
\(304\) −0.955927 + 1.65571i −0.0548262 + 0.0949617i
\(305\) −8.62229 + 14.9343i −0.493711 + 0.855133i
\(306\) 1.96950 + 3.41127i 0.112589 + 0.195010i
\(307\) 13.8726 0.791753 0.395876 0.918304i \(-0.370441\pi\)
0.395876 + 0.918304i \(0.370441\pi\)
\(308\) −0.126178 1.98831i −0.00718967 0.113294i
\(309\) −10.3720 −0.590040
\(310\) −1.14310 1.97991i −0.0649240 0.112452i
\(311\) 5.83124 10.1000i 0.330659 0.572719i −0.651982 0.758234i \(-0.726062\pi\)
0.982641 + 0.185516i \(0.0593956\pi\)
\(312\) −1.14795 + 1.98831i −0.0649898 + 0.112566i
\(313\) 16.2310 + 28.1129i 0.917431 + 1.58904i 0.803302 + 0.595571i \(0.203074\pi\)
0.114129 + 0.993466i \(0.463592\pi\)
\(314\) −1.85756 −0.104828
\(315\) −3.96950 + 2.64044i −0.223656 + 0.148772i
\(316\) −14.8170 −0.833522
\(317\) 4.61625 + 7.99558i 0.259275 + 0.449077i 0.966048 0.258363i \(-0.0831832\pi\)
−0.706773 + 0.707440i \(0.749850\pi\)
\(318\) 5.15883 8.93536i 0.289293 0.501070i
\(319\) −0.376510 + 0.652135i −0.0210805 + 0.0365125i
\(320\) 0.900969 + 1.56052i 0.0503657 + 0.0872359i
\(321\) 11.0368 0.616016
\(322\) −10.0939 + 6.71431i −0.562514 + 0.374174i
\(323\) −7.53079 −0.419025
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 2.01238 3.48554i 0.111627 0.193343i
\(326\) 9.37263 16.2339i 0.519102 0.899111i
\(327\) 6.58426 + 11.4043i 0.364110 + 0.630658i
\(328\) 5.03684 0.278113
\(329\) 0.0745725 + 1.17511i 0.00411131 + 0.0647857i
\(330\) 1.35690 0.0746947
\(331\) −3.12833 5.41843i −0.171949 0.297824i 0.767152 0.641465i \(-0.221673\pi\)
−0.939101 + 0.343641i \(0.888340\pi\)
\(332\) 0.821552 1.42297i 0.0450885 0.0780956i
\(333\) 6.05980 10.4959i 0.332075 0.575171i
\(334\) −0.0528022 0.0914561i −0.00288921 0.00500425i
\(335\) 4.35690 0.238043
\(336\) −2.37047 1.17511i −0.129320 0.0641073i
\(337\) 17.4741 0.951875 0.475938 0.879479i \(-0.342109\pi\)
0.475938 + 0.879479i \(0.342109\pi\)
\(338\) 3.86443 + 6.69339i 0.210197 + 0.364072i
\(339\) −5.11745 + 8.86368i −0.277942 + 0.481409i
\(340\) −3.54892 + 6.14691i −0.192467 + 0.333363i
\(341\) −0.477697 0.827396i −0.0258688 0.0448060i
\(342\) 1.91185 0.103381
\(343\) −3.50000 18.1865i −0.188982 0.981981i
\(344\) −1.17629 −0.0634214
\(345\) −4.12833 7.15048i −0.222262 0.384969i
\(346\) 5.24578 9.08596i 0.282015 0.488464i
\(347\) 7.87651 13.6425i 0.422833 0.732369i −0.573382 0.819288i \(-0.694369\pi\)
0.996215 + 0.0869194i \(0.0277023\pi\)
\(348\) 0.500000 + 0.866025i 0.0268028 + 0.0464238i
\(349\) 0.845478 0.0452574 0.0226287 0.999744i \(-0.492796\pi\)
0.0226287 + 0.999744i \(0.492796\pi\)
\(350\) 4.15548 + 2.05999i 0.222120 + 0.110111i
\(351\) 2.29590 0.122546
\(352\) 0.376510 + 0.652135i 0.0200681 + 0.0347589i
\(353\) −11.9206 + 20.6471i −0.634469 + 1.09893i 0.352159 + 0.935940i \(0.385448\pi\)
−0.986627 + 0.162992i \(0.947886\pi\)
\(354\) −5.24698 + 9.08804i −0.278874 + 0.483024i
\(355\) 10.3889 + 17.9941i 0.551385 + 0.955027i
\(356\) −1.42327 −0.0754332
\(357\) −0.660030 10.4007i −0.0349325 0.550463i
\(358\) −17.3623 −0.917625
\(359\) 7.50096 + 12.9920i 0.395885 + 0.685694i 0.993214 0.116303i \(-0.0371044\pi\)
−0.597328 + 0.801997i \(0.703771\pi\)
\(360\) 0.900969 1.56052i 0.0474852 0.0822468i
\(361\) 7.67241 13.2890i 0.403811 0.699421i
\(362\) 6.79925 + 11.7766i 0.357361 + 0.618967i
\(363\) −10.4330 −0.547588
\(364\) 5.05765 3.36425i 0.265093 0.176335i
\(365\) −10.4330 −0.546086
\(366\) 4.78501 + 8.28788i 0.250117 + 0.433215i
\(367\) −11.6833 + 20.2361i −0.609863 + 1.05631i 0.381400 + 0.924410i \(0.375442\pi\)
−0.991263 + 0.131903i \(0.957891\pi\)
\(368\) 2.29105 3.96822i 0.119429 0.206858i
\(369\) −2.51842 4.36203i −0.131104 0.227078i
\(370\) 21.8388 1.13534
\(371\) −22.7289 + 15.1188i −1.18002 + 0.784930i
\(372\) −1.26875 −0.0657816
\(373\) −11.2017 19.4019i −0.580003 1.00459i −0.995478 0.0949896i \(-0.969718\pi\)
0.415476 0.909604i \(-0.363615\pi\)
\(374\) −1.48307 + 2.56876i −0.0766879 + 0.132827i
\(375\) −6.08426 + 10.5382i −0.314190 + 0.544193i
\(376\) −0.222521 0.385418i −0.0114756 0.0198764i
\(377\) −2.29590 −0.118245
\(378\) 0.167563 + 2.64044i 0.00861850 + 0.135810i
\(379\) −6.57912 −0.337947 −0.168973 0.985621i \(-0.554045\pi\)
−0.168973 + 0.985621i \(0.554045\pi\)
\(380\) 1.72252 + 2.98349i 0.0883635 + 0.153050i
\(381\) 0.403657 0.699155i 0.0206800 0.0358188i
\(382\) −1.49880 + 2.59600i −0.0766855 + 0.132823i
\(383\) −10.9276 18.9271i −0.558373 0.967131i −0.997632 0.0687707i \(-0.978092\pi\)
0.439259 0.898360i \(-0.355241\pi\)
\(384\) 1.00000 0.0510310
\(385\) −3.21648 1.59450i −0.163927 0.0812631i
\(386\) 22.6679 1.15376
\(387\) 0.588146 + 1.01870i 0.0298971 + 0.0517834i
\(388\) 2.26659 3.92586i 0.115069 0.199305i
\(389\) 12.3197 21.3383i 0.624633 1.08190i −0.363979 0.931407i \(-0.618582\pi\)
0.988612 0.150489i \(-0.0480848\pi\)
\(390\) 2.06853 + 3.58280i 0.104744 + 0.181422i
\(391\) 18.0489 0.912773
\(392\) 4.23825 + 5.57111i 0.214064 + 0.281383i
\(393\) 21.3327 1.07609
\(394\) −0.925428 1.60289i −0.0466224 0.0807523i
\(395\) −13.3497 + 23.1223i −0.671694 + 1.16341i
\(396\) 0.376510 0.652135i 0.0189203 0.0327710i
\(397\) −8.68694 15.0462i −0.435985 0.755148i 0.561390 0.827551i \(-0.310267\pi\)
−0.997375 + 0.0724028i \(0.976933\pi\)
\(398\) −5.89546 −0.295513
\(399\) −4.53199 2.24663i −0.226883 0.112472i
\(400\) −1.75302 −0.0876510
\(401\) −1.07069 1.85449i −0.0534676 0.0926086i 0.838053 0.545589i \(-0.183694\pi\)
−0.891520 + 0.452981i \(0.850361\pi\)
\(402\) 1.20895 2.09396i 0.0602968 0.104437i
\(403\) 1.45646 2.52266i 0.0725514 0.125663i
\(404\) 6.44116 + 11.1564i 0.320460 + 0.555052i
\(405\) −1.80194 −0.0895390
\(406\) −0.167563 2.64044i −0.00831600 0.131043i
\(407\) 9.12631 0.452374
\(408\) 1.96950 + 3.41127i 0.0975048 + 0.168883i
\(409\) 4.04288 7.00247i 0.199907 0.346250i −0.748591 0.663032i \(-0.769269\pi\)
0.948498 + 0.316783i \(0.102603\pi\)
\(410\) 4.53803 7.86010i 0.224117 0.388183i
\(411\) 6.55765 + 11.3582i 0.323465 + 0.560258i
\(412\) −10.3720 −0.510990
\(413\) 23.1172 15.3772i 1.13752 0.756660i
\(414\) −4.58211 −0.225198
\(415\) −1.48039 2.56410i −0.0726693 0.125867i
\(416\) −1.14795 + 1.98831i −0.0562828 + 0.0974847i
\(417\) −3.24429 + 5.61928i −0.158874 + 0.275177i
\(418\) 0.719833 + 1.24679i 0.0352082 + 0.0609823i
\(419\) −19.4534 −0.950361 −0.475180 0.879888i \(-0.657617\pi\)
−0.475180 + 0.879888i \(0.657617\pi\)
\(420\) −3.96950 + 2.64044i −0.193692 + 0.128840i
\(421\) −35.3986 −1.72522 −0.862612 0.505866i \(-0.831173\pi\)
−0.862612 + 0.505866i \(0.831173\pi\)
\(422\) 5.41670 + 9.38200i 0.263681 + 0.456708i
\(423\) −0.222521 + 0.385418i −0.0108193 + 0.0187396i
\(424\) 5.15883 8.93536i 0.250535 0.433940i
\(425\) −3.45257 5.98003i −0.167474 0.290074i
\(426\) 11.5308 0.558669
\(427\) −1.60358 25.2691i −0.0776027 1.22286i
\(428\) 11.0368 0.533486
\(429\) 0.864429 + 1.49723i 0.0417350 + 0.0722872i
\(430\) −1.05980 + 1.83563i −0.0511082 + 0.0885220i
\(431\) 16.1664 28.0010i 0.778706 1.34876i −0.153981 0.988074i \(-0.549209\pi\)
0.932688 0.360685i \(-0.117457\pi\)
\(432\) −0.500000 0.866025i −0.0240563 0.0416667i
\(433\) −18.8877 −0.907684 −0.453842 0.891082i \(-0.649947\pi\)
−0.453842 + 0.891082i \(0.649947\pi\)
\(434\) 3.00753 + 1.49092i 0.144366 + 0.0715663i
\(435\) 1.80194 0.0863963
\(436\) 6.58426 + 11.4043i 0.315329 + 0.546166i
\(437\) 4.38016 7.58666i 0.209531 0.362919i
\(438\) −2.89493 + 5.01416i −0.138325 + 0.239586i
\(439\) −12.7419 22.0696i −0.608138 1.05333i −0.991547 0.129747i \(-0.958584\pi\)
0.383410 0.923578i \(-0.374750\pi\)
\(440\) 1.35690 0.0646875
\(441\) 2.70560 6.45599i 0.128838 0.307428i
\(442\) −9.04354 −0.430157
\(443\) −13.6020 23.5594i −0.646251 1.11934i −0.984011 0.178108i \(-0.943002\pi\)
0.337760 0.941232i \(-0.390331\pi\)
\(444\) 6.05980 10.4959i 0.287585 0.498113i
\(445\) −1.28232 + 2.22105i −0.0607880 + 0.105288i
\(446\) 3.16972 + 5.49011i 0.150091 + 0.259964i
\(447\) 20.4577 0.967617
\(448\) −2.37047 1.17511i −0.111994 0.0555186i
\(449\) 23.5429 1.11106 0.555529 0.831497i \(-0.312516\pi\)
0.555529 + 0.831497i \(0.312516\pi\)
\(450\) 0.876510 + 1.51816i 0.0413191 + 0.0715668i
\(451\) 1.89642 3.28470i 0.0892989 0.154670i
\(452\) −5.11745 + 8.86368i −0.240705 + 0.416913i
\(453\) 6.87531 + 11.9084i 0.323030 + 0.559505i
\(454\) 25.9705 1.21885
\(455\) −0.693218 10.9237i −0.0324986 0.512109i
\(456\) 1.91185 0.0895308
\(457\) −8.68449 15.0420i −0.406243 0.703634i 0.588222 0.808699i \(-0.299828\pi\)
−0.994465 + 0.105066i \(0.966495\pi\)
\(458\) −1.23878 + 2.14563i −0.0578845 + 0.100259i
\(459\) 1.96950 3.41127i 0.0919284 0.159225i
\(460\) −4.12833 7.15048i −0.192485 0.333393i
\(461\) 5.38942 0.251010 0.125505 0.992093i \(-0.459945\pi\)
0.125505 + 0.992093i \(0.459945\pi\)
\(462\) −1.65883 + 1.10343i −0.0771759 + 0.0513360i
\(463\) 0.00298391 0.000138674 6.93369e−5 1.00000i \(-0.499978\pi\)
6.93369e−5 1.00000i \(0.499978\pi\)
\(464\) 0.500000 + 0.866025i 0.0232119 + 0.0402042i
\(465\) −1.14310 + 1.97991i −0.0530102 + 0.0918163i
\(466\) 0.551606 0.955409i 0.0255526 0.0442585i
\(467\) 3.10723 + 5.38188i 0.143785 + 0.249044i 0.928919 0.370283i \(-0.120739\pi\)
−0.785134 + 0.619326i \(0.787406\pi\)
\(468\) 2.29590 0.106128
\(469\) −5.32640 + 3.54302i −0.245950 + 0.163602i
\(470\) −0.801938 −0.0369906
\(471\) 0.928780 + 1.60869i 0.0427959 + 0.0741247i
\(472\) −5.24698 + 9.08804i −0.241512 + 0.418311i
\(473\) −0.442886 + 0.767101i −0.0203639 + 0.0352713i
\(474\) 7.40850 + 12.8319i 0.340284 + 0.589389i
\(475\) −3.35152 −0.153778
\(476\) −0.660030 10.4007i −0.0302524 0.476715i
\(477\) −10.3177 −0.472414
\(478\) 3.15399 + 5.46287i 0.144260 + 0.249866i
\(479\) −4.66099 + 8.07307i −0.212966 + 0.368868i −0.952641 0.304096i \(-0.901646\pi\)
0.739675 + 0.672964i \(0.234979\pi\)
\(480\) 0.900969 1.56052i 0.0411234 0.0712278i
\(481\) 13.9127 + 24.0975i 0.634364 + 1.09875i
\(482\) −10.6746 −0.486213
\(483\) 10.8617 + 5.38446i 0.494226 + 0.245001i
\(484\) −10.4330 −0.474225
\(485\) −4.08426 7.07415i −0.185457 0.321221i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −4.96399 + 8.59789i −0.224940 + 0.389607i −0.956301 0.292383i \(-0.905552\pi\)
0.731361 + 0.681990i \(0.238885\pi\)
\(488\) 4.78501 + 8.28788i 0.216607 + 0.375175i
\(489\) −18.7453 −0.847690
\(490\) 12.5124 1.59450i 0.565252 0.0720320i
\(491\) −25.9409 −1.17070 −0.585349 0.810782i \(-0.699042\pi\)
−0.585349 + 0.810782i \(0.699042\pi\)
\(492\) −2.51842 4.36203i −0.113539 0.196655i
\(493\) −1.96950 + 3.41127i −0.0887018 + 0.153636i
\(494\) −2.19471 + 3.80135i −0.0987447 + 0.171031i
\(495\) −0.678448 1.17511i −0.0304940 0.0528171i
\(496\) −1.26875 −0.0569686
\(497\) −27.3334 13.5499i −1.22607 0.607797i
\(498\) −1.64310 −0.0736293
\(499\) 13.5884 + 23.5359i 0.608302 + 1.05361i 0.991520 + 0.129952i \(0.0414824\pi\)
−0.383218 + 0.923658i \(0.625184\pi\)
\(500\) −6.08426 + 10.5382i −0.272096 + 0.471285i
\(501\) −0.0528022 + 0.0914561i −0.00235903 + 0.00408596i
\(502\) 12.6298 + 21.8755i 0.563697 + 0.976351i
\(503\) −10.7681 −0.480125 −0.240063 0.970757i \(-0.577168\pi\)
−0.240063 + 0.970757i \(0.577168\pi\)
\(504\) 0.167563 + 2.64044i 0.00746384 + 0.117615i
\(505\) 23.2131 1.03297
\(506\) −1.72521 2.98815i −0.0766949 0.132839i
\(507\) 3.86443 6.69339i 0.171625 0.297264i
\(508\) 0.403657 0.699155i 0.0179094 0.0310200i
\(509\) 0.711636 + 1.23259i 0.0315427 + 0.0546336i 0.881366 0.472434i \(-0.156625\pi\)
−0.849823 + 0.527068i \(0.823291\pi\)
\(510\) 7.09783 0.314297
\(511\) 12.7545 8.48407i 0.564226 0.375313i
\(512\) 1.00000 0.0441942
\(513\) −0.955927 1.65571i −0.0422052 0.0731016i
\(514\) 11.6283 20.1409i 0.512904 0.888375i
\(515\) −9.34481 + 16.1857i −0.411782 + 0.713227i
\(516\) 0.588146 + 1.01870i 0.0258917 + 0.0448457i
\(517\) −0.335126 −0.0147388
\(518\) −26.6984 + 17.7593i −1.17306 + 0.780297i
\(519\) −10.4916 −0.460529
\(520\) 2.06853 + 3.58280i 0.0907111 + 0.157116i
\(521\) 5.08911 8.81459i 0.222958 0.386174i −0.732747 0.680501i \(-0.761762\pi\)
0.955705 + 0.294327i \(0.0950955\pi\)
\(522\) 0.500000 0.866025i 0.0218844 0.0379049i
\(523\) 10.2463 + 17.7471i 0.448040 + 0.776028i 0.998258 0.0589926i \(-0.0187888\pi\)
−0.550218 + 0.835021i \(0.685456\pi\)
\(524\) 21.3327 0.931925
\(525\) −0.293741 4.62874i −0.0128199 0.202015i
\(526\) 6.08575 0.265351
\(527\) −2.49880 4.32805i −0.108850 0.188533i
\(528\) 0.376510 0.652135i 0.0163855 0.0283805i
\(529\) 1.00216 1.73578i 0.0435720 0.0754689i
\(530\) −9.29590 16.1010i −0.403788 0.699381i
\(531\) 10.4940 0.455399
\(532\) −4.53199 2.24663i −0.196487 0.0974038i
\(533\) 11.5641 0.500895
\(534\) 0.711636 + 1.23259i 0.0307955 + 0.0533394i
\(535\) 9.94385 17.2232i 0.429910 0.744626i
\(536\) 1.20895 2.09396i 0.0522186 0.0904452i
\(537\) 8.68114 + 15.0362i 0.374619 + 0.648859i
\(538\) 10.4668 0.451256
\(539\) 5.22886 0.666332i 0.225223 0.0287009i
\(540\) −1.80194 −0.0775431
\(541\) −14.9306 25.8605i −0.641915 1.11183i −0.985005 0.172527i \(-0.944807\pi\)
0.343090 0.939303i \(-0.388527\pi\)
\(542\) −8.07002 + 13.9777i −0.346637 + 0.600393i
\(543\) 6.79925 11.7766i 0.291784 0.505384i
\(544\) 1.96950 + 3.41127i 0.0844416 + 0.146257i
\(545\) 23.7289 1.01643
\(546\) −5.44235 2.69792i −0.232911 0.115460i
\(547\) −5.83579 −0.249520 −0.124760 0.992187i \(-0.539816\pi\)
−0.124760 + 0.992187i \(0.539816\pi\)
\(548\) 6.55765 + 11.3582i 0.280129 + 0.485197i
\(549\) 4.78501 8.28788i 0.204219 0.353718i
\(550\) −0.660030 + 1.14321i −0.0281438 + 0.0487465i
\(551\) 0.955927 + 1.65571i 0.0407239 + 0.0705358i
\(552\) −4.58211 −0.195027
\(553\) −2.48278 39.1234i −0.105578 1.66370i
\(554\) 7.05323 0.299663
\(555\) −10.9194 18.9129i −0.463502 0.802809i
\(556\) −3.24429 + 5.61928i −0.137589 + 0.238310i
\(557\) 0.460771 0.798079i 0.0195235 0.0338157i −0.856099 0.516813i \(-0.827118\pi\)
0.875622 + 0.482997i \(0.160452\pi\)
\(558\) 0.634375 + 1.09877i 0.0268552 + 0.0465146i
\(559\) −2.70065 −0.114225
\(560\) −3.96950 + 2.64044i −0.167742 + 0.111579i
\(561\) 2.96615 0.125231
\(562\) −4.73609 8.20316i −0.199780 0.346029i
\(563\) −2.12684 + 3.68380i −0.0896357 + 0.155254i −0.907357 0.420361i \(-0.861904\pi\)
0.817721 + 0.575614i \(0.195237\pi\)
\(564\) −0.222521 + 0.385418i −0.00936982 + 0.0162290i
\(565\) 9.22132 + 15.9718i 0.387944 + 0.671939i
\(566\) −10.1782 −0.427822
\(567\) 2.20291 1.46533i 0.0925134 0.0615382i
\(568\) 11.5308 0.483821
\(569\) 4.07487 + 7.05788i 0.170827 + 0.295882i 0.938709 0.344710i \(-0.112023\pi\)
−0.767882 + 0.640591i \(0.778689\pi\)
\(570\) 1.72252 2.98349i 0.0721485 0.124965i
\(571\) 18.9049 32.7443i 0.791146 1.37030i −0.134112 0.990966i \(-0.542818\pi\)
0.925258 0.379339i \(-0.123849\pi\)
\(572\) 0.864429 + 1.49723i 0.0361436 + 0.0626025i
\(573\) 2.99761 0.125227
\(574\) 0.843986 + 13.2995i 0.0352273 + 0.555109i
\(575\) 8.03252 0.334979
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −9.42692 + 16.3279i −0.392448 + 0.679740i −0.992772 0.120017i \(-0.961705\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(578\) 0.742135 1.28542i 0.0308688 0.0534663i
\(579\) −11.3339 19.6309i −0.471022 0.815834i
\(580\) 1.80194 0.0748214
\(581\) 3.89493 + 1.93082i 0.161589 + 0.0801040i
\(582\) −4.53319 −0.187907
\(583\) −3.88471 6.72851i −0.160888 0.278666i
\(584\) −2.89493 + 5.01416i −0.119793 + 0.207488i
\(585\) 2.06853 3.58280i 0.0855233 0.148131i
\(586\) 2.01722 + 3.49393i 0.0833306 + 0.144333i
\(587\) 40.9191 1.68891 0.844457 0.535623i \(-0.179923\pi\)
0.844457 + 0.535623i \(0.179923\pi\)
\(588\) 2.70560 6.45599i 0.111577 0.266240i
\(589\) −2.42566 −0.0999478
\(590\) 9.45473 + 16.3761i 0.389245 + 0.674192i
\(591\) −0.925428 + 1.60289i −0.0380670 + 0.0659340i
\(592\) 6.05980 10.4959i 0.249056 0.431378i
\(593\) −5.23072 9.05987i −0.214800 0.372044i 0.738411 0.674351i \(-0.235577\pi\)
−0.953211 + 0.302307i \(0.902243\pi\)
\(594\) −0.753020 −0.0308968
\(595\) −16.8252 8.34071i −0.689766 0.341936i
\(596\) 20.4577 0.837981
\(597\) 2.94773 + 5.10562i 0.120643 + 0.208959i
\(598\) 5.26002 9.11062i 0.215098 0.372561i
\(599\) 0.776815 1.34548i 0.0317398 0.0549750i −0.849719 0.527236i \(-0.823229\pi\)
0.881459 + 0.472261i \(0.156562\pi\)
\(600\) 0.876510 + 1.51816i 0.0357834 + 0.0619786i
\(601\) 19.6775 0.802664 0.401332 0.915933i \(-0.368547\pi\)
0.401332 + 0.915933i \(0.368547\pi\)
\(602\) −0.197103 3.10593i −0.00803331 0.126588i
\(603\) −2.41789 −0.0984643
\(604\) 6.87531 + 11.9084i 0.279753 + 0.484546i
\(605\) −9.39977 + 16.2809i −0.382155 + 0.661912i
\(606\) 6.44116 11.1564i 0.261654 0.453198i
\(607\) −1.93176 3.34591i −0.0784079 0.135806i 0.824155 0.566364i \(-0.191650\pi\)
−0.902563 + 0.430557i \(0.858317\pi\)
\(608\) 1.91185 0.0775359
\(609\) −2.20291 + 1.46533i −0.0892663 + 0.0593783i
\(610\) 17.2446 0.698213
\(611\) −0.510885 0.884879i −0.0206682 0.0357984i
\(612\) 1.96950 3.41127i 0.0796123 0.137893i
\(613\) −10.7959 + 18.6990i −0.436042 + 0.755247i −0.997380 0.0723395i \(-0.976953\pi\)
0.561338 + 0.827587i \(0.310287\pi\)
\(614\) −6.93631 12.0140i −0.279927 0.484847i
\(615\) −9.07606 −0.365982
\(616\) −1.65883 + 1.10343i −0.0668363 + 0.0444583i
\(617\) −37.9493 −1.52778 −0.763890 0.645346i \(-0.776713\pi\)
−0.763890 + 0.645346i \(0.776713\pi\)
\(618\) 5.18598 + 8.98238i 0.208611 + 0.361324i
\(619\) −13.9514 + 24.1645i −0.560753 + 0.971253i 0.436678 + 0.899618i \(0.356155\pi\)
−0.997431 + 0.0716351i \(0.977178\pi\)
\(620\) −1.14310 + 1.97991i −0.0459082 + 0.0795153i
\(621\) 2.29105 + 3.96822i 0.0919368 + 0.159239i
\(622\) −11.6625 −0.467623
\(623\) −0.238487 3.75806i −0.00955480 0.150564i
\(624\) 2.29590 0.0919094
\(625\) 6.58091 + 11.3985i 0.263236 + 0.455939i
\(626\) 16.2310 28.1129i 0.648722 1.12362i
\(627\) 0.719833 1.24679i 0.0287473 0.0497919i
\(628\) 0.928780 + 1.60869i 0.0370624 + 0.0641939i
\(629\) 47.7391 1.90348
\(630\) 4.27144 + 2.11747i 0.170178 + 0.0843620i
\(631\) 16.4969 0.656733 0.328366 0.944550i \(-0.393502\pi\)
0.328366 + 0.944550i \(0.393502\pi\)
\(632\) 7.40850 + 12.8319i 0.294694 + 0.510426i
\(633\) 5.41670 9.38200i 0.215294 0.372901i
\(634\) 4.61625 7.99558i 0.183335 0.317545i
\(635\) −0.727365 1.25983i −0.0288646 0.0499950i
\(636\) −10.3177 −0.409122
\(637\) 9.73059 + 12.7907i 0.385540 + 0.506785i
\(638\) 0.753020 0.0298124
\(639\) −5.76540 9.98596i −0.228076 0.395039i
\(640\) 0.900969 1.56052i 0.0356139 0.0616851i
\(641\) −11.0133 + 19.0757i −0.435001 + 0.753443i −0.997296 0.0734935i \(-0.976585\pi\)
0.562295 + 0.826937i \(0.309919\pi\)
\(642\) −5.51842 9.55818i −0.217795 0.377231i
\(643\) 31.9041 1.25817 0.629087 0.777335i \(-0.283429\pi\)
0.629087 + 0.777335i \(0.283429\pi\)
\(644\) 10.8617 + 5.38446i 0.428013 + 0.212177i
\(645\) 2.11960 0.0834594
\(646\) 3.76540 + 6.52186i 0.148148 + 0.256599i
\(647\) −16.4088 + 28.4209i −0.645096 + 1.11734i 0.339183 + 0.940720i \(0.389849\pi\)
−0.984279 + 0.176619i \(0.943484\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) 3.95108 + 6.84348i 0.155094 + 0.268630i
\(650\) −4.02475 −0.157864
\(651\) −0.212595 3.35006i −0.00833227 0.131299i
\(652\) −18.7453 −0.734121
\(653\) −7.85354 13.6027i −0.307333 0.532316i 0.670445 0.741959i \(-0.266103\pi\)
−0.977778 + 0.209643i \(0.932770\pi\)
\(654\) 6.58426 11.4043i 0.257465 0.445942i
\(655\) 19.2201 33.2902i 0.750993 1.30076i
\(656\) −2.51842 4.36203i −0.0983277 0.170309i
\(657\) 5.78986 0.225884
\(658\) 0.980386 0.652135i 0.0382194 0.0254229i
\(659\) 7.05323 0.274755 0.137377 0.990519i \(-0.456133\pi\)
0.137377 + 0.990519i \(0.456133\pi\)
\(660\) −0.678448 1.17511i −0.0264086 0.0457410i
\(661\) 10.6528 18.4512i 0.414346 0.717668i −0.581014 0.813894i \(-0.697344\pi\)
0.995360 + 0.0962260i \(0.0306771\pi\)
\(662\) −3.12833 + 5.41843i −0.121586 + 0.210593i
\(663\) 4.52177 + 7.83194i 0.175611 + 0.304167i
\(664\) −1.64310 −0.0637648
\(665\) −7.58911 + 5.04814i −0.294293 + 0.195758i
\(666\) −12.1196 −0.469625
\(667\) −2.29105 3.96822i −0.0887099 0.153650i
\(668\) −0.0528022 + 0.0914561i −0.00204298 + 0.00353854i
\(669\) 3.16972 5.49011i 0.122548 0.212260i
\(670\) −2.17845 3.77318i −0.0841608 0.145771i
\(671\) 7.20642 0.278201
\(672\) 0.167563 + 2.64044i 0.00646388 + 0.101857i
\(673\) 36.6896 1.41428 0.707141 0.707073i \(-0.249985\pi\)
0.707141 + 0.707073i \(0.249985\pi\)
\(674\) −8.73705 15.1330i −0.336539 0.582902i
\(675\) 0.876510 1.51816i 0.0337369 0.0584340i
\(676\) 3.86443 6.69339i 0.148632 0.257438i
\(677\) −13.3333 23.0939i −0.512439 0.887570i −0.999896 0.0144234i \(-0.995409\pi\)
0.487457 0.873147i \(-0.337925\pi\)
\(678\) 10.2349 0.393069
\(679\) 10.7458 + 5.32698i 0.412385 + 0.204431i
\(680\) 7.09783 0.272190
\(681\) −12.9852 22.4911i −0.497595 0.861860i
\(682\) −0.477697 + 0.827396i −0.0182920 + 0.0316826i
\(683\) 3.83459 6.64171i 0.146727 0.254138i −0.783289 0.621658i \(-0.786460\pi\)
0.930016 + 0.367520i \(0.119793\pi\)
\(684\) −0.955927 1.65571i −0.0365508 0.0633078i
\(685\) 23.6329 0.902968
\(686\) −14.0000 + 12.1244i −0.534522 + 0.462910i
\(687\) 2.47757 0.0945250
\(688\) 0.588146 + 1.01870i 0.0224229 + 0.0388375i
\(689\) 11.8442 20.5147i 0.451226 0.781547i
\(690\) −4.12833 + 7.15048i −0.157163 + 0.272214i
\(691\) −9.54706 16.5360i −0.363187 0.629059i 0.625296 0.780387i \(-0.284978\pi\)
−0.988483 + 0.151329i \(0.951645\pi\)
\(692\) −10.4916 −0.398830
\(693\) 1.78501 + 0.884879i 0.0678070 + 0.0336138i
\(694\) −15.7530 −0.597976
\(695\) 5.84601 + 10.1256i 0.221752 + 0.384085i
\(696\) 0.500000 0.866025i 0.0189525 0.0328266i
\(697\) 9.92005 17.1820i 0.375749 0.650816i
\(698\) −0.422739 0.732206i −0.0160009 0.0277144i
\(699\) −1.10321 −0.0417273
\(700\) −0.293741 4.62874i −0.0111024 0.174950i
\(701\) 8.33034 0.314633 0.157316 0.987548i \(-0.449716\pi\)
0.157316 + 0.987548i \(0.449716\pi\)
\(702\) −1.14795 1.98831i −0.0433265 0.0750437i
\(703\) 11.5855 20.0666i 0.436954 0.756826i
\(704\) 0.376510 0.652135i 0.0141903 0.0245783i
\(705\) 0.400969 + 0.694498i 0.0151014 + 0.0261563i
\(706\) 23.8412 0.897274
\(707\) −28.3785 + 18.8769i −1.06728 + 0.709938i
\(708\) 10.4940 0.394387
\(709\) −0.0346798 0.0600672i −0.00130243 0.00225587i 0.865373 0.501128i \(-0.167081\pi\)
−0.866676 + 0.498872i \(0.833748\pi\)
\(710\) 10.3889 17.9941i 0.389888 0.675306i
\(711\) 7.40850 12.8319i 0.277841 0.481234i
\(712\) 0.711636 + 1.23259i 0.0266697 + 0.0461932i
\(713\) 5.81355 0.217719
\(714\) −8.67725 + 5.77195i −0.324738 + 0.216010i
\(715\) 3.11529 0.116505
\(716\) 8.68114 + 15.0362i 0.324429 + 0.561928i
\(717\) 3.15399 5.46287i 0.117788 0.204015i
\(718\) 7.50096 12.9920i 0.279933 0.484859i
\(719\) 13.8104 + 23.9204i 0.515042 + 0.892079i 0.999848 + 0.0174571i \(0.00555706\pi\)
−0.484805 + 0.874622i \(0.661110\pi\)
\(720\) −1.80194 −0.0671543
\(721\) −1.73795 27.3865i −0.0647248 1.01993i
\(722\) −15.3448 −0.571075
\(723\) 5.33728 + 9.24444i 0.198496 + 0.343805i
\(724\) 6.79925 11.7766i 0.252692 0.437676i
\(725\) −0.876510 + 1.51816i −0.0325528 + 0.0563831i
\(726\) 5.21648 + 9.03521i 0.193602 + 0.335328i
\(727\) 34.4722 1.27850 0.639251 0.768998i \(-0.279244\pi\)
0.639251 + 0.768998i \(0.279244\pi\)
\(728\) −5.44235 2.69792i −0.201707 0.0999917i
\(729\) 1.00000 0.0370370
\(730\) 5.21648 + 9.03521i 0.193071 + 0.334408i
\(731\) −2.31671 + 4.01266i −0.0856865 + 0.148413i
\(732\) 4.78501 8.28788i 0.176859 0.306329i
\(733\) 14.4535 + 25.0343i 0.533853 + 0.924661i 0.999218 + 0.0395422i \(0.0125899\pi\)
−0.465364 + 0.885119i \(0.654077\pi\)
\(734\) 23.3666 0.862476
\(735\) −7.63706 10.0388i −0.281697 0.370286i
\(736\) −4.58211 −0.168899
\(737\) −0.910362 1.57679i −0.0335336 0.0580819i
\(738\) −2.51842 + 4.36203i −0.0927042 + 0.160568i
\(739\) −25.1417 + 43.5467i −0.924851 + 1.60189i −0.133051 + 0.991109i \(0.542477\pi\)
−0.791800 + 0.610780i \(0.790856\pi\)
\(740\) −10.9194 18.9129i −0.401405 0.695253i
\(741\) 4.38942 0.161249
\(742\) 24.4577 + 12.1244i 0.897871 + 0.445099i
\(743\) 38.3903 1.40840 0.704201 0.710000i \(-0.251305\pi\)
0.704201 + 0.710000i \(0.251305\pi\)
\(744\) 0.634375 + 1.09877i 0.0232573 + 0.0402828i
\(745\) 18.4318 31.9248i 0.675288 1.16963i
\(746\) −11.2017 + 19.4019i −0.410124 + 0.710355i
\(747\) 0.821552 + 1.42297i 0.0300590 + 0.0520637i
\(748\) 2.96615 0.108453
\(749\) 1.84936 + 29.1421i 0.0675743 + 1.06483i
\(750\) 12.1685 0.444332
\(751\) 4.13156 + 7.15606i 0.150763 + 0.261128i 0.931508 0.363721i \(-0.118494\pi\)
−0.780745 + 0.624849i \(0.785160\pi\)
\(752\) −0.222521 + 0.385418i −0.00811450 + 0.0140547i
\(753\) 12.6298 21.8755i 0.460256 0.797188i
\(754\) 1.14795 + 1.98831i 0.0418058 + 0.0724098i
\(755\) 24.7778 0.901756
\(756\) 2.20291 1.46533i 0.0801189 0.0532937i
\(757\) −8.29829 −0.301606 −0.150803 0.988564i \(-0.548186\pi\)
−0.150803 + 0.988564i \(0.548186\pi\)
\(758\) 3.28956 + 5.69769i 0.119482 + 0.206949i
\(759\) −1.72521 + 2.98815i −0.0626211 + 0.108463i
\(760\) 1.72252 2.98349i 0.0624824 0.108223i
\(761\) −7.13222 12.3534i −0.258543 0.447809i 0.707309 0.706904i \(-0.249909\pi\)
−0.965852 + 0.259095i \(0.916576\pi\)
\(762\) −0.807315 −0.0292459
\(763\) −29.0090 + 19.2963i −1.05020 + 0.698572i
\(764\) 2.99761 0.108450
\(765\) −3.54892 6.14691i −0.128311 0.222242i
\(766\) −10.9276 + 18.9271i −0.394830 + 0.683865i
\(767\) −12.0465 + 20.8652i −0.434975 + 0.753398i
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) −9.71917 −0.350482 −0.175241 0.984526i \(-0.556070\pi\)
−0.175241 + 0.984526i \(0.556070\pi\)
\(770\) 0.227365 + 3.58280i 0.00819368 + 0.129115i
\(771\) −23.2567 −0.837568
\(772\) −11.3339 19.6309i −0.407917 0.706533i
\(773\) −11.7935 + 20.4269i −0.424183 + 0.734706i −0.996344 0.0854351i \(-0.972772\pi\)
0.572161 + 0.820141i \(0.306105\pi\)
\(774\) 0.588146 1.01870i 0.0211405 0.0366164i
\(775\) −1.11207 1.92617i −0.0399468 0.0691899i
\(776\) −4.53319 −0.162732
\(777\) 28.7292 + 14.2418i 1.03065 + 0.510923i
\(778\) −24.6394 −0.883365
\(779\) −4.81485 8.33956i −0.172510 0.298796i
\(780\) 2.06853 3.58280i 0.0740653 0.128285i
\(781\) 4.34146 7.51963i 0.155350 0.269074i
\(782\) −9.02446 15.6308i −0.322714 0.558957i
\(783\) −1.00000 −0.0357371
\(784\) 2.70560 6.45599i 0.0966284 0.230571i
\(785\) 3.34721 0.119467
\(786\) −10.6664 18.4747i −0.380457 0.658970i
\(787\) −12.9306 + 22.3964i −0.460925 + 0.798345i −0.999007 0.0445468i \(-0.985816\pi\)
0.538082 + 0.842892i \(0.319149\pi\)
\(788\) −0.925428 + 1.60289i −0.0329670 + 0.0571005i
\(789\) −3.04288 5.27042i −0.108329 0.187632i
\(790\) 26.6993 0.949919
\(791\) −24.2615 12.0271i −0.862640 0.427634i
\(792\) −0.753020 −0.0267574
\(793\) 10.9859 + 19.0281i 0.390121 + 0.675709i
\(794\) −8.68694 + 15.0462i −0.308288 + 0.533970i
\(795\) −9.29590 + 16.1010i −0.329691 + 0.571042i
\(796\) 2.94773 + 5.10562i 0.104480 + 0.180964i
\(797\) −19.3588 −0.685724 −0.342862 0.939386i \(-0.611396\pi\)
−0.342862 + 0.939386i \(0.611396\pi\)
\(798\) 0.320356 + 5.04814i 0.0113405 + 0.178702i
\(799\) −1.75302 −0.0620174
\(800\) 0.876510 + 1.51816i 0.0309893 + 0.0536751i
\(801\) 0.711636 1.23259i 0.0251444 0.0435514i
\(802\) −1.07069 + 1.85449i −0.0378073 + 0.0654842i
\(803\) 2.17994 + 3.77577i 0.0769284 + 0.133244i
\(804\) −2.41789 −0.0852726
\(805\) 18.1887 12.0988i 0.641066 0.426426i
\(806\) −2.91292 −0.102603
\(807\) −5.23341 9.06453i −0.184225 0.319086i
\(808\) 6.44116 11.1564i 0.226599 0.392481i
\(809\) 17.3361 30.0270i 0.609504 1.05569i −0.381818 0.924238i \(-0.624702\pi\)
0.991322 0.131455i \(-0.0419648\pi\)
\(810\) 0.900969 + 1.56052i 0.0316568 + 0.0548312i
\(811\) −41.6795 −1.46356 −0.731782 0.681539i \(-0.761311\pi\)
−0.731782 + 0.681539i \(0.761311\pi\)
\(812\) −2.20291 + 1.46533i −0.0773069 + 0.0514231i
\(813\) 16.1400 0.566056
\(814\) −4.56315 7.90362i −0.159938 0.277022i
\(815\) −16.8889 + 29.2524i −0.591592 + 1.02467i
\(816\) 1.96950 3.41127i 0.0689463 0.119419i
\(817\) 1.12445 + 1.94760i 0.0393395 + 0.0681380i
\(818\) −8.08575 −0.282712
\(819\) 0.384707 + 6.06218i 0.0134427 + 0.211830i
\(820\) −9.07606 −0.316950
\(821\) 14.1597 + 24.5253i 0.494176 + 0.855937i 0.999977 0.00671244i \(-0.00213665\pi\)
−0.505802 + 0.862650i \(0.668803\pi\)
\(822\) 6.55765 11.3582i 0.228724 0.396162i
\(823\) −19.0896 + 33.0642i −0.665423 + 1.15255i 0.313748 + 0.949506i \(0.398415\pi\)
−0.979170 + 0.203040i \(0.934918\pi\)
\(824\) 5.18598 + 8.98238i 0.180662 + 0.312916i
\(825\) 1.32006 0.0459586
\(826\) −24.8756 12.3315i −0.865533 0.429068i
\(827\) 14.6009 0.507723 0.253861 0.967241i \(-0.418299\pi\)
0.253861 + 0.967241i \(0.418299\pi\)
\(828\) 2.29105 + 3.96822i 0.0796196 + 0.137905i
\(829\) −15.1204 + 26.1894i −0.525154 + 0.909594i 0.474417 + 0.880301i \(0.342659\pi\)
−0.999571 + 0.0292935i \(0.990674\pi\)
\(830\) −1.48039 + 2.56410i −0.0513849 + 0.0890013i
\(831\) −3.52661 6.10828i −0.122337 0.211894i
\(832\) 2.29590 0.0795959
\(833\) 27.3518 3.48554i 0.947684 0.120767i
\(834\) 6.48858 0.224681
\(835\) 0.0951463 + 0.164798i 0.00329267 + 0.00570308i
\(836\) 0.719833 1.24679i 0.0248959 0.0431210i
\(837\) 0.634375 1.09877i 0.0219272 0.0379790i
\(838\) 9.72670 + 16.8471i 0.336003 + 0.581975i
\(839\) −39.1473 −1.35152 −0.675758 0.737123i \(-0.736184\pi\)
−0.675758 + 0.737123i \(0.736184\pi\)
\(840\) 4.27144 + 2.11747i 0.147379 + 0.0730596i
\(841\) 1.00000 0.0344828
\(842\) 17.6993 + 30.6561i 0.609959 + 1.05648i
\(843\) −4.73609 + 8.20316i −0.163120 + 0.282532i
\(844\) 5.41670 9.38200i 0.186450 0.322942i
\(845\) −6.96346 12.0611i −0.239550 0.414913i
\(846\) 0.445042 0.0153009
\(847\) −1.74818 27.5476i −0.0600680 0.946547i
\(848\) −10.3177 −0.354310
\(849\) 5.08911 + 8.81459i 0.174658 + 0.302516i
\(850\) −3.45257 + 5.98003i −0.118422 + 0.205113i
\(851\) −27.7667 + 48.0933i −0.951829 + 1.64862i
\(852\) −5.76540 9.98596i −0.197519 0.342113i
\(853\) −48.2838 −1.65321 −0.826603 0.562785i \(-0.809730\pi\)
−0.826603 + 0.562785i \(0.809730\pi\)
\(854\) −21.0819 + 14.0233i −0.721407 + 0.479867i
\(855\) −3.44504 −0.117818
\(856\) −5.51842 9.55818i −0.188616 0.326692i
\(857\) 4.66852 8.08612i 0.159474 0.276217i −0.775205 0.631709i \(-0.782354\pi\)
0.934679 + 0.355493i \(0.115687\pi\)
\(858\) 0.864429 1.49723i 0.0295111 0.0511147i
\(859\) 6.50202 + 11.2618i 0.221846 + 0.384249i 0.955369 0.295416i \(-0.0954584\pi\)
−0.733522 + 0.679665i \(0.762125\pi\)
\(860\) 2.11960 0.0722779
\(861\) 11.0957 7.38064i 0.378140 0.251532i
\(862\) −32.3327 −1.10126
\(863\) −1.04556 1.81097i −0.0355914 0.0616462i 0.847681 0.530506i \(-0.177998\pi\)
−0.883272 + 0.468860i \(0.844665\pi\)
\(864\) −0.500000 + 0.866025i −0.0170103 + 0.0294628i
\(865\) −9.45257 + 16.3723i −0.321397 + 0.556676i
\(866\) 9.44385 + 16.3572i 0.320915 + 0.555841i
\(867\) −1.48427 −0.0504085
\(868\) −0.212595 3.35006i −0.00721595 0.113708i
\(869\) 11.1575 0.378492
\(870\) −0.900969 1.56052i −0.0305457 0.0529067i
\(871\) 2.77562 4.80751i 0.0940482 0.162896i
\(872\) 6.58426 11.4043i 0.222971 0.386197i
\(873\) 2.26659 + 3.92586i 0.0767126 + 0.132870i
\(874\) −8.76032 −0.296322
\(875\) −28.8451 14.2993i −0.975143 0.483405i
\(876\) 5.78986 0.195621
\(877\) 16.2192 + 28.0924i 0.547682 + 0.948614i 0.998433 + 0.0559637i \(0.0178231\pi\)
−0.450750 + 0.892650i \(0.648844\pi\)
\(878\) −12.7419 + 22.0696i −0.430018 + 0.744813i
\(879\) 2.01722 3.49393i 0.0680392 0.117847i
\(880\) −0.678448 1.17511i −0.0228705 0.0396128i
\(881\) −9.62001 −0.324106 −0.162053 0.986782i \(-0.551812\pi\)
−0.162053 + 0.986782i \(0.551812\pi\)
\(882\) −6.94385 + 0.884879i −0.233811 + 0.0297954i
\(883\) 21.7616 0.732338 0.366169 0.930548i \(-0.380669\pi\)
0.366169 + 0.930548i \(0.380669\pi\)
\(884\) 4.52177 + 7.83194i 0.152084 + 0.263417i
\(885\) 9.45473 16.3761i 0.317817 0.550476i
\(886\) −13.6020 + 23.5594i −0.456969 + 0.791493i
\(887\) −1.48158 2.56618i −0.0497467 0.0861637i 0.840080 0.542463i \(-0.182508\pi\)
−0.889826 + 0.456299i \(0.849175\pi\)
\(888\) −12.1196 −0.406707
\(889\) 1.91371 + 0.948680i 0.0641839 + 0.0318177i
\(890\) 2.56465 0.0859672
\(891\) 0.376510 + 0.652135i 0.0126136 + 0.0218473i
\(892\) 3.16972 5.49011i 0.106130 0.183823i
\(893\) −0.425428 + 0.736862i −0.0142364 + 0.0246582i
\(894\) −10.2289 17.7169i −0.342104 0.592542i
\(895\) 31.2857 1.04577
\(896\) 0.167563 + 2.64044i 0.00559788 + 0.0882109i
\(897\) −10.5200 −0.351254
\(898\) −11.7714 20.3887i −0.392818 0.680381i
\(899\) −0.634375 + 1.09877i −0.0211576 + 0.0366460i
\(900\) 0.876510 1.51816i 0.0292170 0.0506053i
\(901\) −20.3207 35.1964i −0.676979 1.17256i
\(902\) −3.79284 −0.126288
\(903\) −2.59126 + 1.72366i −0.0862318 + 0.0573598i
\(904\) 10.2349 0.340408
\(905\) −12.2518 21.2208i −0.407264 0.705403i
\(906\) 6.87531 11.9084i 0.228417 0.395630i
\(907\) −14.4285 + 24.9910i −0.479092 + 0.829812i −0.999713 0.0239766i \(-0.992367\pi\)
0.520621 + 0.853788i \(0.325701\pi\)
\(908\) −12.9852 22.4911i −0.430930 0.746393i
\(909\) −12.8823 −0.427279
\(910\) −9.11356 + 6.06218i −0.302112 + 0.200959i
\(911\) 46.2567 1.53255 0.766276 0.642512i \(-0.222108\pi\)
0.766276 + 0.642512i \(0.222108\pi\)
\(912\) −0.955927 1.65571i −0.0316539 0.0548262i
\(913\) −0.618645 + 1.07153i −0.0204742 + 0.0354623i
\(914\) −8.68449 + 15.0420i −0.287257 + 0.497544i
\(915\) −8.62229 14.9343i −0.285044 0.493711i
\(916\) 2.47757 0.0818611
\(917\) 3.57457 + 56.3278i 0.118043 + 1.86011i
\(918\) −3.93900 −0.130006
\(919\) −22.5227 39.0105i −0.742956 1.28684i −0.951144 0.308749i \(-0.900090\pi\)
0.208187 0.978089i \(-0.433244\pi\)
\(920\) −4.12833 + 7.15048i −0.136107 + 0.235744i
\(921\) −6.93631 + 12.0140i −0.228559 + 0.395876i
\(922\) −2.69471 4.66737i −0.0887455 0.153712i
\(923\) 26.4735 0.871386
\(924\) 1.78501 + 0.884879i 0.0587226 + 0.0291104i
\(925\) 21.2459 0.698561
\(926\) −0.00149195 0.00258414i −4.90286e−5 8.49200e-5i
\(927\) 5.18598 8.98238i 0.170330 0.295020i
\(928\) 0.500000 0.866025i 0.0164133 0.0284287i
\(929\) −21.1843 36.6922i −0.695033 1.20383i −0.970170 0.242427i \(-0.922057\pi\)
0.275137 0.961405i \(-0.411277\pi\)
\(930\) 2.28621 0.0749677
\(931\) 5.17270 12.3429i 0.169528 0.404522i
\(932\) −1.10321 −0.0361369
\(933\) 5.83124 + 10.1000i 0.190906 + 0.330659i
\(934\) 3.10723 5.38188i 0.101672 0.176100i
\(935\) 2.67241 4.62874i 0.0873971 0.151376i
\(936\) −1.14795 1.98831i −0.0375219 0.0649898i
\(937\) 27.8237 0.908961 0.454480 0.890757i \(-0.349825\pi\)
0.454480 + 0.890757i \(0.349825\pi\)
\(938\) 5.73155 + 2.84128i 0.187142 + 0.0927712i
\(939\) −32.4620 −1.05936
\(940\) 0.400969 + 0.694498i 0.0130782 + 0.0226520i
\(941\) −12.8790 + 22.3070i −0.419842 + 0.727188i −0.995923 0.0902046i \(-0.971248\pi\)
0.576081 + 0.817393i \(0.304581\pi\)
\(942\) 0.928780 1.60869i 0.0302613 0.0524141i
\(943\) 11.5397 + 19.9873i 0.375783 + 0.650875i
\(944\) 10.4940 0.341549
\(945\) −0.301938 4.75791i −0.00982204 0.154775i
\(946\) 0.885772 0.0287989
\(947\) −3.07056 5.31836i −0.0997797 0.172823i 0.811814 0.583917i \(-0.198480\pi\)
−0.911593 + 0.411093i \(0.865147\pi\)
\(948\) 7.40850 12.8319i 0.240617 0.416761i
\(949\) −6.64646 + 11.5120i −0.215753 + 0.373695i
\(950\) 1.67576 + 2.90250i 0.0543688 + 0.0941696i
\(951\) −9.23251 −0.299384
\(952\) −8.67725 + 5.77195i −0.281231 + 0.187070i
\(953\) −18.9506 −0.613870 −0.306935 0.951730i \(-0.599303\pi\)
−0.306935 + 0.951730i \(0.599303\pi\)
\(954\) 5.15883 + 8.93536i 0.167023 + 0.289293i
\(955\) 2.70075 4.67784i 0.0873942 0.151371i
\(956\) 3.15399 5.46287i 0.102007 0.176682i
\(957\) −0.376510 0.652135i −0.0121708 0.0210805i
\(958\) 9.32198 0.301179
\(959\) −28.8918 + 19.2183i −0.932964 + 0.620591i
\(960\) −1.80194 −0.0581573
\(961\) 14.6951 + 25.4527i 0.474037 + 0.821056i
\(962\) 13.9127 24.0975i 0.448563 0.776934i
\(963\) −5.51842 + 9.55818i −0.177829 + 0.308008i
\(964\) 5.33728 + 9.24444i 0.171902 + 0.297743i
\(965\) −40.8461 −1.31488
\(966\) −0.767790 12.0988i −0.0247033 0.389272i
\(967\) −49.7415 −1.59958 −0.799790 0.600280i \(-0.795056\pi\)
−0.799790 + 0.600280i \(0.795056\pi\)
\(968\) 5.21648 + 9.03521i 0.167664 + 0.290403i
\(969\) 3.76540 6.52186i 0.120962 0.209512i
\(970\) −4.08426 + 7.07415i −0.131138 + 0.227137i
\(971\) 26.3442 + 45.6294i 0.845424 + 1.46432i 0.885252 + 0.465111i \(0.153986\pi\)
−0.0398285 + 0.999207i \(0.512681\pi\)
\(972\) 1.00000 0.0320750
\(973\) −15.3810 7.62477i −0.493092 0.244439i
\(974\) 9.92798 0.318113
\(975\) 2.01238 + 3.48554i 0.0644476 + 0.111627i
\(976\) 4.78501 8.28788i 0.153164 0.265289i
\(977\) −13.4172 + 23.2393i −0.429255 + 0.743492i −0.996807 0.0798457i \(-0.974557\pi\)
0.567552 + 0.823338i \(0.307891\pi\)
\(978\) 9.37263 + 16.2339i 0.299704 + 0.519102i
\(979\) 1.07175 0.0342534
\(980\) −7.63706 10.0388i −0.243957 0.320677i
\(981\) −13.1685 −0.420439
\(982\) 12.9705 + 22.4655i 0.413904 + 0.716903i
\(983\) −4.84117 + 8.38515i −0.154409 + 0.267445i −0.932844 0.360281i \(-0.882681\pi\)
0.778435 + 0.627726i \(0.216014\pi\)
\(984\) −2.51842 + 4.36203i −0.0802842 + 0.139056i
\(985\) 1.66756 + 2.88830i 0.0531330 + 0.0920290i
\(986\) 3.93900 0.125443
\(987\) −1.05496 0.522971i −0.0335797 0.0166464i
\(988\) 4.38942 0.139646
\(989\) −2.69495 4.66778i −0.0856943 0.148427i
\(990\) −0.678448 + 1.17511i −0.0215625 + 0.0373473i
\(991\) 14.7793 25.5984i 0.469479 0.813161i −0.529912 0.848052i \(-0.677775\pi\)
0.999391 + 0.0348912i \(0.0111085\pi\)
\(992\) 0.634375 + 1.09877i 0.0201414 + 0.0348860i
\(993\) 6.25667 0.198549
\(994\) 1.93213 + 30.4464i 0.0612835 + 0.965700i
\(995\) 10.6233 0.336780
\(996\) 0.821552 + 1.42297i 0.0260319 + 0.0450885i
\(997\) −9.40677 + 16.2930i −0.297915 + 0.516005i −0.975659 0.219294i \(-0.929625\pi\)
0.677743 + 0.735298i \(0.262958\pi\)
\(998\) 13.5884 23.5359i 0.430135 0.745015i
\(999\) 6.05980 + 10.4959i 0.191724 + 0.332075i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.i.a.697.3 6
7.2 even 3 inner 1218.2.i.a.1045.3 yes 6
7.3 odd 6 8526.2.a.bz.1.3 3
7.4 even 3 8526.2.a.cb.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.i.a.697.3 6 1.1 even 1 trivial
1218.2.i.a.1045.3 yes 6 7.2 even 3 inner
8526.2.a.bz.1.3 3 7.3 odd 6
8526.2.a.cb.1.1 3 7.4 even 3