Properties

Label 1218.2.i.a.1045.1
Level $1218$
Weight $2$
Character 1218.1045
Analytic conductor $9.726$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1218,2,Mod(697,1218)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1218, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1218.697"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1218 = 2 \cdot 3 \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1218.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,-3,-3,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.72577896619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1045.1
Root \(-0.623490 + 1.07992i\) of defining polynomial
Character \(\chi\) \(=\) 1218.1045
Dual form 1218.2.i.a.697.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.623490 + 1.07992i) q^{5} +1.00000 q^{6} +(0.167563 - 2.64044i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.623490 - 1.07992i) q^{10} +(1.22252 + 2.11747i) q^{11} +(-0.500000 + 0.866025i) q^{12} -4.13706 q^{13} +(2.20291 + 1.46533i) q^{14} +1.24698 q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.955927 + 1.65571i) q^{17} +(-0.500000 - 0.866025i) q^{18} +(1.92543 - 3.33494i) q^{19} +1.24698 q^{20} +(-2.37047 + 1.17511i) q^{21} -2.44504 q^{22} +(3.48039 - 6.02820i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(1.72252 + 2.98349i) q^{25} +(2.06853 - 3.58280i) q^{26} +1.00000 q^{27} +(-2.37047 + 1.17511i) q^{28} -1.00000 q^{29} +(-0.623490 + 1.07992i) q^{30} +(-4.44989 - 7.70743i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.22252 - 2.11747i) q^{33} -1.91185 q^{34} +(2.74698 + 1.82724i) q^{35} +1.00000 q^{36} +(-2.91939 + 5.05653i) q^{37} +(1.92543 + 3.33494i) q^{38} +(2.06853 + 3.58280i) q^{39} +(-0.623490 + 1.07992i) q^{40} -6.47219 q^{41} +(0.167563 - 2.64044i) q^{42} -12.7017 q^{43} +(1.22252 - 2.11747i) q^{44} +(-0.623490 - 1.07992i) q^{45} +(3.48039 + 6.02820i) q^{46} +(-0.900969 + 1.56052i) q^{47} +1.00000 q^{48} +(-6.94385 - 0.884879i) q^{49} -3.44504 q^{50} +(0.955927 - 1.65571i) q^{51} +(2.06853 + 3.58280i) q^{52} +(-2.29590 - 3.97661i) q^{53} +(-0.500000 + 0.866025i) q^{54} -3.04892 q^{55} +(0.167563 - 2.64044i) q^{56} -3.85086 q^{57} +(0.500000 - 0.866025i) q^{58} +(-3.55496 - 6.15737i) q^{59} +(-0.623490 - 1.07992i) q^{60} +(2.59030 - 4.48653i) q^{61} +8.89977 q^{62} +(2.20291 + 1.46533i) q^{63} +1.00000 q^{64} +(2.57942 - 4.46768i) q^{65} +(1.22252 + 2.11747i) q^{66} +(0.0196143 + 0.0339730i) q^{67} +(0.955927 - 1.65571i) q^{68} -6.96077 q^{69} +(-2.95593 + 1.46533i) q^{70} -3.36227 q^{71} +(-0.500000 + 0.866025i) q^{72} +(2.01357 + 3.48761i) q^{73} +(-2.91939 - 5.05653i) q^{74} +(1.72252 - 2.98349i) q^{75} -3.85086 q^{76} +(5.79590 - 2.87318i) q^{77} -4.13706 q^{78} +(4.36778 - 7.56522i) q^{79} +(-0.623490 - 1.07992i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(3.23609 - 5.60508i) q^{82} -6.04892 q^{83} +(2.20291 + 1.46533i) q^{84} -2.38404 q^{85} +(6.35086 - 11.0000i) q^{86} +(0.500000 + 0.866025i) q^{87} +(1.22252 + 2.11747i) q^{88} +(5.62833 - 9.74856i) q^{89} +1.24698 q^{90} +(-0.693218 + 10.9237i) q^{91} -6.96077 q^{92} +(-4.44989 + 7.70743i) q^{93} +(-0.900969 - 1.56052i) q^{94} +(2.40097 + 4.15860i) q^{95} +(-0.500000 + 0.866025i) q^{96} -11.6528 q^{97} +(4.23825 - 5.57111i) q^{98} -2.44504 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{3} - 3 q^{4} + q^{5} + 6 q^{6} + 6 q^{8} - 3 q^{9} + q^{10} + 7 q^{11} - 3 q^{12} - 14 q^{13} - 2 q^{15} - 3 q^{16} + 2 q^{17} - 3 q^{18} - 2 q^{19} - 2 q^{20} - 14 q^{22} + 8 q^{23}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1218\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(871\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.623490 + 1.07992i −0.278833 + 0.482953i −0.971095 0.238693i \(-0.923281\pi\)
0.692262 + 0.721646i \(0.256614\pi\)
\(6\) 1.00000 0.408248
\(7\) 0.167563 2.64044i 0.0633328 0.997992i
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.623490 1.07992i −0.197165 0.341499i
\(11\) 1.22252 + 2.11747i 0.368604 + 0.638441i 0.989348 0.145573i \(-0.0465025\pi\)
−0.620744 + 0.784014i \(0.713169\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −4.13706 −1.14741 −0.573707 0.819060i \(-0.694495\pi\)
−0.573707 + 0.819060i \(0.694495\pi\)
\(14\) 2.20291 + 1.46533i 0.588752 + 0.391627i
\(15\) 1.24698 0.321969
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.955927 + 1.65571i 0.231846 + 0.401570i 0.958351 0.285591i \(-0.0921900\pi\)
−0.726505 + 0.687161i \(0.758857\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 1.92543 3.33494i 0.441723 0.765087i −0.556094 0.831119i \(-0.687701\pi\)
0.997818 + 0.0660320i \(0.0210339\pi\)
\(20\) 1.24698 0.278833
\(21\) −2.37047 + 1.17511i −0.517279 + 0.256429i
\(22\) −2.44504 −0.521285
\(23\) 3.48039 6.02820i 0.725711 1.25697i −0.232970 0.972484i \(-0.574844\pi\)
0.958681 0.284484i \(-0.0918222\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 1.72252 + 2.98349i 0.344504 + 0.596699i
\(26\) 2.06853 3.58280i 0.405672 0.702645i
\(27\) 1.00000 0.192450
\(28\) −2.37047 + 1.17511i −0.447977 + 0.222074i
\(29\) −1.00000 −0.185695
\(30\) −0.623490 + 1.07992i −0.113833 + 0.197165i
\(31\) −4.44989 7.70743i −0.799223 1.38430i −0.920123 0.391630i \(-0.871911\pi\)
0.120899 0.992665i \(-0.461422\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.22252 2.11747i 0.212814 0.368604i
\(34\) −1.91185 −0.327880
\(35\) 2.74698 + 1.82724i 0.464324 + 0.308860i
\(36\) 1.00000 0.166667
\(37\) −2.91939 + 5.05653i −0.479944 + 0.831288i −0.999735 0.0230056i \(-0.992676\pi\)
0.519791 + 0.854293i \(0.326010\pi\)
\(38\) 1.92543 + 3.33494i 0.312346 + 0.540998i
\(39\) 2.06853 + 3.58280i 0.331230 + 0.573707i
\(40\) −0.623490 + 1.07992i −0.0985824 + 0.170750i
\(41\) −6.47219 −1.01079 −0.505393 0.862889i \(-0.668652\pi\)
−0.505393 + 0.862889i \(0.668652\pi\)
\(42\) 0.167563 2.64044i 0.0258555 0.407429i
\(43\) −12.7017 −1.93699 −0.968496 0.249028i \(-0.919889\pi\)
−0.968496 + 0.249028i \(0.919889\pi\)
\(44\) 1.22252 2.11747i 0.184302 0.319220i
\(45\) −0.623490 1.07992i −0.0929444 0.160984i
\(46\) 3.48039 + 6.02820i 0.513155 + 0.888810i
\(47\) −0.900969 + 1.56052i −0.131420 + 0.227626i −0.924224 0.381851i \(-0.875287\pi\)
0.792804 + 0.609476i \(0.208620\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.94385 0.884879i −0.991978 0.126411i
\(50\) −3.44504 −0.487202
\(51\) 0.955927 1.65571i 0.133857 0.231846i
\(52\) 2.06853 + 3.58280i 0.286854 + 0.496845i
\(53\) −2.29590 3.97661i −0.315366 0.546229i 0.664149 0.747600i \(-0.268794\pi\)
−0.979515 + 0.201370i \(0.935461\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) −3.04892 −0.411116
\(56\) 0.167563 2.64044i 0.0223915 0.352844i
\(57\) −3.85086 −0.510058
\(58\) 0.500000 0.866025i 0.0656532 0.113715i
\(59\) −3.55496 6.15737i −0.462816 0.801621i 0.536284 0.844038i \(-0.319828\pi\)
−0.999100 + 0.0424166i \(0.986494\pi\)
\(60\) −0.623490 1.07992i −0.0804922 0.139417i
\(61\) 2.59030 4.48653i 0.331654 0.574442i −0.651182 0.758921i \(-0.725727\pi\)
0.982836 + 0.184480i \(0.0590600\pi\)
\(62\) 8.89977 1.13027
\(63\) 2.20291 + 1.46533i 0.277540 + 0.184615i
\(64\) 1.00000 0.125000
\(65\) 2.57942 4.46768i 0.319937 0.554148i
\(66\) 1.22252 + 2.11747i 0.150482 + 0.260642i
\(67\) 0.0196143 + 0.0339730i 0.00239627 + 0.00415046i 0.867221 0.497923i \(-0.165904\pi\)
−0.864825 + 0.502074i \(0.832571\pi\)
\(68\) 0.955927 1.65571i 0.115923 0.200785i
\(69\) −6.96077 −0.837978
\(70\) −2.95593 + 1.46533i −0.353301 + 0.175141i
\(71\) −3.36227 −0.399028 −0.199514 0.979895i \(-0.563936\pi\)
−0.199514 + 0.979895i \(0.563936\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) 2.01357 + 3.48761i 0.235671 + 0.408194i 0.959467 0.281819i \(-0.0909379\pi\)
−0.723797 + 0.690013i \(0.757605\pi\)
\(74\) −2.91939 5.05653i −0.339372 0.587809i
\(75\) 1.72252 2.98349i 0.198900 0.344504i
\(76\) −3.85086 −0.441723
\(77\) 5.79590 2.87318i 0.660504 0.327430i
\(78\) −4.13706 −0.468430
\(79\) 4.36778 7.56522i 0.491414 0.851154i −0.508537 0.861040i \(-0.669814\pi\)
0.999951 + 0.00988633i \(0.00314697\pi\)
\(80\) −0.623490 1.07992i −0.0697083 0.120738i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 3.23609 5.60508i 0.357367 0.618978i
\(83\) −6.04892 −0.663955 −0.331977 0.943287i \(-0.607716\pi\)
−0.331977 + 0.943287i \(0.607716\pi\)
\(84\) 2.20291 + 1.46533i 0.240357 + 0.159881i
\(85\) −2.38404 −0.258586
\(86\) 6.35086 11.0000i 0.684830 1.18616i
\(87\) 0.500000 + 0.866025i 0.0536056 + 0.0928477i
\(88\) 1.22252 + 2.11747i 0.130321 + 0.225723i
\(89\) 5.62833 9.74856i 0.596602 1.03335i −0.396716 0.917941i \(-0.629850\pi\)
0.993319 0.115404i \(-0.0368163\pi\)
\(90\) 1.24698 0.131443
\(91\) −0.693218 + 10.9237i −0.0726690 + 1.14511i
\(92\) −6.96077 −0.725711
\(93\) −4.44989 + 7.70743i −0.461432 + 0.799223i
\(94\) −0.900969 1.56052i −0.0929278 0.160956i
\(95\) 2.40097 + 4.15860i 0.246334 + 0.426663i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) −11.6528 −1.18316 −0.591581 0.806246i \(-0.701496\pi\)
−0.591581 + 0.806246i \(0.701496\pi\)
\(98\) 4.23825 5.57111i 0.428128 0.562767i
\(99\) −2.44504 −0.245736
\(100\) 1.72252 2.98349i 0.172252 0.298349i
\(101\) −9.31431 16.1329i −0.926809 1.60528i −0.788626 0.614874i \(-0.789207\pi\)
−0.138183 0.990407i \(-0.544126\pi\)
\(102\) 0.955927 + 1.65571i 0.0946509 + 0.163940i
\(103\) 1.46681 2.54059i 0.144529 0.250332i −0.784668 0.619916i \(-0.787167\pi\)
0.929197 + 0.369584i \(0.120500\pi\)
\(104\) −4.13706 −0.405672
\(105\) 0.208947 3.29257i 0.0203912 0.321322i
\(106\) 4.59179 0.445994
\(107\) 0.236094 0.408928i 0.0228241 0.0395325i −0.854388 0.519636i \(-0.826068\pi\)
0.877212 + 0.480103i \(0.159401\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) −4.76540 8.25391i −0.456442 0.790581i 0.542328 0.840167i \(-0.317543\pi\)
−0.998770 + 0.0495859i \(0.984210\pi\)
\(110\) 1.52446 2.64044i 0.145351 0.251756i
\(111\) 5.83877 0.554192
\(112\) 2.20291 + 1.46533i 0.208155 + 0.138461i
\(113\) 1.77479 0.166958 0.0834791 0.996510i \(-0.473397\pi\)
0.0834791 + 0.996510i \(0.473397\pi\)
\(114\) 1.92543 3.33494i 0.180333 0.312346i
\(115\) 4.33997 + 7.51705i 0.404704 + 0.700968i
\(116\) 0.500000 + 0.866025i 0.0464238 + 0.0804084i
\(117\) 2.06853 3.58280i 0.191236 0.331230i
\(118\) 7.10992 0.654521
\(119\) 4.53199 2.24663i 0.415447 0.205948i
\(120\) 1.24698 0.113833
\(121\) 2.51089 4.34898i 0.228262 0.395362i
\(122\) 2.59030 + 4.48653i 0.234515 + 0.406192i
\(123\) 3.23609 + 5.60508i 0.291789 + 0.505393i
\(124\) −4.44989 + 7.70743i −0.399612 + 0.692148i
\(125\) −10.5308 −0.941903
\(126\) −2.37047 + 1.17511i −0.211178 + 0.104687i
\(127\) −9.97046 −0.884735 −0.442368 0.896834i \(-0.645861\pi\)
−0.442368 + 0.896834i \(0.645861\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 6.35086 + 11.0000i 0.559162 + 0.968496i
\(130\) 2.57942 + 4.46768i 0.226230 + 0.391842i
\(131\) −1.69537 + 2.93647i −0.148126 + 0.256561i −0.930535 0.366204i \(-0.880657\pi\)
0.782409 + 0.622765i \(0.213991\pi\)
\(132\) −2.44504 −0.212814
\(133\) −8.48307 5.64279i −0.735576 0.489292i
\(134\) −0.0392287 −0.00338884
\(135\) −0.623490 + 1.07992i −0.0536615 + 0.0929444i
\(136\) 0.955927 + 1.65571i 0.0819701 + 0.141976i
\(137\) 11.3068 + 19.5839i 0.966004 + 1.67317i 0.706894 + 0.707319i \(0.250096\pi\)
0.259109 + 0.965848i \(0.416571\pi\)
\(138\) 3.48039 6.02820i 0.296270 0.513155i
\(139\) −9.10752 −0.772490 −0.386245 0.922396i \(-0.626228\pi\)
−0.386245 + 0.922396i \(0.626228\pi\)
\(140\) 0.208947 3.29257i 0.0176593 0.278273i
\(141\) 1.80194 0.151751
\(142\) 1.68114 2.91181i 0.141078 0.244354i
\(143\) −5.05765 8.76010i −0.422942 0.732556i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 0.623490 1.07992i 0.0517780 0.0896821i
\(146\) −4.02715 −0.333289
\(147\) 2.70560 + 6.45599i 0.223154 + 0.532481i
\(148\) 5.83877 0.479944
\(149\) 1.61529 2.79777i 0.132330 0.229202i −0.792244 0.610204i \(-0.791087\pi\)
0.924574 + 0.381002i \(0.124421\pi\)
\(150\) 1.72252 + 2.98349i 0.140643 + 0.243601i
\(151\) −3.28501 5.68981i −0.267330 0.463030i 0.700841 0.713317i \(-0.252808\pi\)
−0.968172 + 0.250287i \(0.919475\pi\)
\(152\) 1.92543 3.33494i 0.156173 0.270499i
\(153\) −1.91185 −0.154564
\(154\) −0.409698 + 6.45599i −0.0330144 + 0.520238i
\(155\) 11.0978 0.891400
\(156\) 2.06853 3.58280i 0.165615 0.286854i
\(157\) −5.68814 9.85214i −0.453963 0.786287i 0.544665 0.838654i \(-0.316657\pi\)
−0.998628 + 0.0523671i \(0.983323\pi\)
\(158\) 4.36778 + 7.56522i 0.347482 + 0.601856i
\(159\) −2.29590 + 3.97661i −0.182076 + 0.315366i
\(160\) 1.24698 0.0985824
\(161\) −15.3339 10.1999i −1.20848 0.803861i
\(162\) 1.00000 0.0785674
\(163\) −6.89373 + 11.9403i −0.539959 + 0.935236i 0.458947 + 0.888464i \(0.348227\pi\)
−0.998906 + 0.0467722i \(0.985107\pi\)
\(164\) 3.23609 + 5.60508i 0.252697 + 0.437683i
\(165\) 1.52446 + 2.64044i 0.118679 + 0.205558i
\(166\) 3.02446 5.23852i 0.234744 0.406588i
\(167\) 24.8485 1.92283 0.961416 0.275099i \(-0.0887107\pi\)
0.961416 + 0.275099i \(0.0887107\pi\)
\(168\) −2.37047 + 1.17511i −0.182886 + 0.0906614i
\(169\) 4.11529 0.316561
\(170\) 1.19202 2.06464i 0.0914239 0.158351i
\(171\) 1.92543 + 3.33494i 0.147241 + 0.255029i
\(172\) 6.35086 + 11.0000i 0.484248 + 0.838742i
\(173\) −7.45257 + 12.9082i −0.566609 + 0.981395i 0.430289 + 0.902691i \(0.358412\pi\)
−0.996898 + 0.0787041i \(0.974922\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 8.16637 4.04829i 0.617319 0.306022i
\(176\) −2.44504 −0.184302
\(177\) −3.55496 + 6.15737i −0.267207 + 0.462816i
\(178\) 5.62833 + 9.74856i 0.421861 + 0.730686i
\(179\) 12.5843 + 21.7966i 0.940592 + 1.62915i 0.764346 + 0.644807i \(0.223062\pi\)
0.176246 + 0.984346i \(0.443605\pi\)
\(180\) −0.623490 + 1.07992i −0.0464722 + 0.0804922i
\(181\) 4.71140 0.350196 0.175098 0.984551i \(-0.443976\pi\)
0.175098 + 0.984551i \(0.443976\pi\)
\(182\) −9.11356 6.06218i −0.675542 0.449359i
\(183\) −5.18060 −0.382961
\(184\) 3.48039 6.02820i 0.256577 0.444405i
\(185\) −3.64042 6.30538i −0.267649 0.463581i
\(186\) −4.44989 7.70743i −0.326281 0.565136i
\(187\) −2.33728 + 4.04829i −0.170919 + 0.296040i
\(188\) 1.80194 0.131420
\(189\) 0.167563 2.64044i 0.0121884 0.192064i
\(190\) −4.80194 −0.348369
\(191\) 9.50753 16.4675i 0.687941 1.19155i −0.284562 0.958658i \(-0.591848\pi\)
0.972503 0.232891i \(-0.0748185\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −4.39828 7.61805i −0.316595 0.548359i 0.663180 0.748460i \(-0.269206\pi\)
−0.979775 + 0.200101i \(0.935873\pi\)
\(194\) 5.82640 10.0916i 0.418311 0.724536i
\(195\) −5.15883 −0.369432
\(196\) 2.70560 + 6.45599i 0.193257 + 0.461142i
\(197\) −5.93900 −0.423136 −0.211568 0.977363i \(-0.567857\pi\)
−0.211568 + 0.977363i \(0.567857\pi\)
\(198\) 1.22252 2.11747i 0.0868808 0.150482i
\(199\) 10.4107 + 18.0318i 0.737992 + 1.27824i 0.953398 + 0.301715i \(0.0975591\pi\)
−0.215406 + 0.976525i \(0.569108\pi\)
\(200\) 1.72252 + 2.98349i 0.121801 + 0.210965i
\(201\) 0.0196143 0.0339730i 0.00138349 0.00239627i
\(202\) 18.6286 1.31071
\(203\) −0.167563 + 2.64044i −0.0117606 + 0.185323i
\(204\) −1.91185 −0.133857
\(205\) 4.03534 6.98942i 0.281841 0.488162i
\(206\) 1.46681 + 2.54059i 0.102198 + 0.177012i
\(207\) 3.48039 + 6.02820i 0.241904 + 0.418989i
\(208\) 2.06853 3.58280i 0.143427 0.248423i
\(209\) 9.41550 0.651284
\(210\) 2.74698 + 1.82724i 0.189560 + 0.126092i
\(211\) 15.9366 1.09712 0.548561 0.836111i \(-0.315176\pi\)
0.548561 + 0.836111i \(0.315176\pi\)
\(212\) −2.29590 + 3.97661i −0.157683 + 0.273115i
\(213\) 1.68114 + 2.91181i 0.115190 + 0.199514i
\(214\) 0.236094 + 0.408928i 0.0161391 + 0.0279537i
\(215\) 7.91939 13.7168i 0.540098 0.935477i
\(216\) 1.00000 0.0680414
\(217\) −21.0966 + 10.4582i −1.43213 + 0.709947i
\(218\) 9.53079 0.645507
\(219\) 2.01357 3.48761i 0.136065 0.235671i
\(220\) 1.52446 + 2.64044i 0.102779 + 0.178018i
\(221\) −3.95473 6.84979i −0.266024 0.460767i
\(222\) −2.91939 + 5.05653i −0.195936 + 0.339372i
\(223\) 17.0465 1.14152 0.570760 0.821117i \(-0.306649\pi\)
0.570760 + 0.821117i \(0.306649\pi\)
\(224\) −2.37047 + 1.17511i −0.158384 + 0.0785151i
\(225\) −3.44504 −0.229669
\(226\) −0.887395 + 1.53701i −0.0590287 + 0.102241i
\(227\) −0.111113 0.192453i −0.00737481 0.0127735i 0.862314 0.506373i \(-0.169014\pi\)
−0.869689 + 0.493600i \(0.835681\pi\)
\(228\) 1.92543 + 3.33494i 0.127515 + 0.220862i
\(229\) −9.89104 + 17.1318i −0.653619 + 1.13210i 0.328620 + 0.944462i \(0.393417\pi\)
−0.982238 + 0.187638i \(0.939917\pi\)
\(230\) −8.67994 −0.572338
\(231\) −5.38620 3.58280i −0.354386 0.235731i
\(232\) −1.00000 −0.0656532
\(233\) 1.91670 3.31982i 0.125567 0.217489i −0.796387 0.604787i \(-0.793258\pi\)
0.921954 + 0.387298i \(0.126592\pi\)
\(234\) 2.06853 + 3.58280i 0.135224 + 0.234215i
\(235\) −1.12349 1.94594i −0.0732884 0.126939i
\(236\) −3.55496 + 6.15737i −0.231408 + 0.400811i
\(237\) −8.73556 −0.567436
\(238\) −0.320356 + 5.04814i −0.0207656 + 0.327222i
\(239\) −6.64310 −0.429707 −0.214853 0.976646i \(-0.568927\pi\)
−0.214853 + 0.976646i \(0.568927\pi\)
\(240\) −0.623490 + 1.07992i −0.0402461 + 0.0697083i
\(241\) −4.32036 7.48308i −0.278299 0.482027i 0.692663 0.721261i \(-0.256437\pi\)
−0.970962 + 0.239234i \(0.923104\pi\)
\(242\) 2.51089 + 4.34898i 0.161406 + 0.279563i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −5.18060 −0.331654
\(245\) 5.28501 6.94706i 0.337647 0.443831i
\(246\) −6.47219 −0.412652
\(247\) −7.96562 + 13.7969i −0.506840 + 0.877873i
\(248\) −4.44989 7.70743i −0.282568 0.489422i
\(249\) 3.02446 + 5.23852i 0.191667 + 0.331977i
\(250\) 5.26540 9.11994i 0.333013 0.576795i
\(251\) 1.47757 0.0932631 0.0466316 0.998912i \(-0.485151\pi\)
0.0466316 + 0.998912i \(0.485151\pi\)
\(252\) 0.167563 2.64044i 0.0105555 0.166332i
\(253\) 17.0194 1.07000
\(254\) 4.98523 8.63467i 0.312801 0.541787i
\(255\) 1.19202 + 2.06464i 0.0746473 + 0.129293i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.16003 5.47333i 0.197117 0.341417i −0.750475 0.660899i \(-0.770175\pi\)
0.947593 + 0.319481i \(0.103509\pi\)
\(258\) −12.7017 −0.790774
\(259\) 12.8623 + 8.55575i 0.799223 + 0.531628i
\(260\) −5.15883 −0.319937
\(261\) 0.500000 0.866025i 0.0309492 0.0536056i
\(262\) −1.69537 2.93647i −0.104741 0.181416i
\(263\) 5.08211 + 8.80246i 0.313376 + 0.542783i 0.979091 0.203423i \(-0.0652066\pi\)
−0.665715 + 0.746206i \(0.731873\pi\)
\(264\) 1.22252 2.11747i 0.0752410 0.130321i
\(265\) 5.72587 0.351738
\(266\) 9.12833 4.52516i 0.559694 0.277456i
\(267\) −11.2567 −0.688897
\(268\) 0.0196143 0.0339730i 0.00119814 0.00207523i
\(269\) −1.67360 2.89877i −0.102041 0.176741i 0.810484 0.585761i \(-0.199204\pi\)
−0.912526 + 0.409020i \(0.865871\pi\)
\(270\) −0.623490 1.07992i −0.0379444 0.0657216i
\(271\) −3.68060 + 6.37499i −0.223581 + 0.387253i −0.955893 0.293716i \(-0.905108\pi\)
0.732312 + 0.680969i \(0.238441\pi\)
\(272\) −1.91185 −0.115923
\(273\) 9.80678 4.86149i 0.593533 0.294231i
\(274\) −22.6136 −1.36614
\(275\) −4.21164 + 7.29477i −0.253971 + 0.439891i
\(276\) 3.48039 + 6.02820i 0.209495 + 0.362855i
\(277\) 12.5722 + 21.7757i 0.755389 + 1.30837i 0.945181 + 0.326548i \(0.105885\pi\)
−0.189792 + 0.981824i \(0.560781\pi\)
\(278\) 4.55376 7.88735i 0.273116 0.473052i
\(279\) 8.89977 0.532815
\(280\) 2.74698 + 1.82724i 0.164163 + 0.109199i
\(281\) 14.5646 0.868854 0.434427 0.900707i \(-0.356951\pi\)
0.434427 + 0.900707i \(0.356951\pi\)
\(282\) −0.900969 + 1.56052i −0.0536519 + 0.0929278i
\(283\) −13.8828 24.0458i −0.825250 1.42937i −0.901728 0.432303i \(-0.857701\pi\)
0.0764789 0.997071i \(-0.475632\pi\)
\(284\) 1.68114 + 2.91181i 0.0997571 + 0.172784i
\(285\) 2.40097 4.15860i 0.142221 0.246334i
\(286\) 10.1153 0.598130
\(287\) −1.08450 + 17.0894i −0.0640159 + 1.00876i
\(288\) 1.00000 0.0589256
\(289\) 6.67241 11.5569i 0.392495 0.679820i
\(290\) 0.623490 + 1.07992i 0.0366126 + 0.0634149i
\(291\) 5.82640 + 10.0916i 0.341549 + 0.591581i
\(292\) 2.01357 3.48761i 0.117835 0.204097i
\(293\) 29.4873 1.72266 0.861332 0.508043i \(-0.169631\pi\)
0.861332 + 0.508043i \(0.169631\pi\)
\(294\) −6.94385 0.884879i −0.404973 0.0516072i
\(295\) 8.86592 0.516194
\(296\) −2.91939 + 5.05653i −0.169686 + 0.293905i
\(297\) 1.22252 + 2.11747i 0.0709379 + 0.122868i
\(298\) 1.61529 + 2.79777i 0.0935714 + 0.162070i
\(299\) −14.3986 + 24.9391i −0.832691 + 1.44226i
\(300\) −3.44504 −0.198900
\(301\) −2.12833 + 33.5381i −0.122675 + 1.93310i
\(302\) 6.57002 0.378062
\(303\) −9.31431 + 16.1329i −0.535093 + 0.926809i
\(304\) 1.92543 + 3.33494i 0.110431 + 0.191272i
\(305\) 3.23005 + 5.59462i 0.184952 + 0.320347i
\(306\) 0.955927 1.65571i 0.0546467 0.0946509i
\(307\) −2.39373 −0.136617 −0.0683087 0.997664i \(-0.521760\pi\)
−0.0683087 + 0.997664i \(0.521760\pi\)
\(308\) −5.38620 3.58280i −0.306907 0.204149i
\(309\) −2.93362 −0.166888
\(310\) −5.54892 + 9.61101i −0.315157 + 0.545869i
\(311\) −7.21044 12.4888i −0.408867 0.708178i 0.585897 0.810386i \(-0.300743\pi\)
−0.994763 + 0.102208i \(0.967409\pi\)
\(312\) 2.06853 + 3.58280i 0.117108 + 0.202836i
\(313\) −9.34146 + 16.1799i −0.528011 + 0.914541i 0.471456 + 0.881890i \(0.343729\pi\)
−0.999467 + 0.0326518i \(0.989605\pi\)
\(314\) 11.3763 0.642000
\(315\) −2.95593 + 1.46533i −0.166548 + 0.0825622i
\(316\) −8.73556 −0.491414
\(317\) −10.6201 + 18.3946i −0.596486 + 1.03314i 0.396849 + 0.917884i \(0.370104\pi\)
−0.993335 + 0.115261i \(0.963230\pi\)
\(318\) −2.29590 3.97661i −0.128748 0.222997i
\(319\) −1.22252 2.11747i −0.0684480 0.118555i
\(320\) −0.623490 + 1.07992i −0.0348541 + 0.0603691i
\(321\) −0.472189 −0.0263550
\(322\) 16.5003 8.17965i 0.919526 0.455834i
\(323\) 7.36227 0.409648
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −7.12618 12.3429i −0.395289 0.684661i
\(326\) −6.89373 11.9403i −0.381808 0.661312i
\(327\) −4.76540 + 8.25391i −0.263527 + 0.456442i
\(328\) −6.47219 −0.357367
\(329\) 3.96950 + 2.64044i 0.218846 + 0.145572i
\(330\) −3.04892 −0.167837
\(331\) 5.33997 9.24910i 0.293511 0.508376i −0.681126 0.732166i \(-0.738510\pi\)
0.974637 + 0.223790i \(0.0718428\pi\)
\(332\) 3.02446 + 5.23852i 0.165989 + 0.287501i
\(333\) −2.91939 5.05653i −0.159981 0.277096i
\(334\) −12.4242 + 21.5194i −0.679824 + 1.17749i
\(335\) −0.0489173 −0.00267264
\(336\) 0.167563 2.64044i 0.00914130 0.144048i
\(337\) −26.9028 −1.46549 −0.732743 0.680505i \(-0.761760\pi\)
−0.732743 + 0.680505i \(0.761760\pi\)
\(338\) −2.05765 + 3.56395i −0.111921 + 0.193853i
\(339\) −0.887395 1.53701i −0.0481967 0.0834791i
\(340\) 1.19202 + 2.06464i 0.0646464 + 0.111971i
\(341\) 10.8802 18.8450i 0.589194 1.02051i
\(342\) −3.85086 −0.208230
\(343\) −3.50000 + 18.1865i −0.188982 + 0.981981i
\(344\) −12.7017 −0.684830
\(345\) 4.33997 7.51705i 0.233656 0.404704i
\(346\) −7.45257 12.9082i −0.400653 0.693951i
\(347\) 8.72252 + 15.1078i 0.468249 + 0.811032i 0.999342 0.0362822i \(-0.0115515\pi\)
−0.531092 + 0.847314i \(0.678218\pi\)
\(348\) 0.500000 0.866025i 0.0268028 0.0464238i
\(349\) −19.1564 −1.02542 −0.512710 0.858562i \(-0.671359\pi\)
−0.512710 + 0.858562i \(0.671359\pi\)
\(350\) −0.577261 + 9.09643i −0.0308559 + 0.486224i
\(351\) −4.13706 −0.220820
\(352\) 1.22252 2.11747i 0.0651606 0.112861i
\(353\) −15.6479 27.1030i −0.832856 1.44255i −0.895764 0.444530i \(-0.853371\pi\)
0.0629077 0.998019i \(-0.479963\pi\)
\(354\) −3.55496 6.15737i −0.188944 0.327260i
\(355\) 2.09634 3.63097i 0.111262 0.192712i
\(356\) −11.2567 −0.596602
\(357\) −4.21164 2.80150i −0.222903 0.148271i
\(358\) −25.1685 −1.33020
\(359\) −17.2337 + 29.8496i −0.909560 + 1.57540i −0.0948835 + 0.995488i \(0.530248\pi\)
−0.814676 + 0.579916i \(0.803085\pi\)
\(360\) −0.623490 1.07992i −0.0328608 0.0569166i
\(361\) 2.08546 + 3.61212i 0.109761 + 0.190112i
\(362\) −2.35570 + 4.08019i −0.123813 + 0.214450i
\(363\) −5.02177 −0.263575
\(364\) 9.80678 4.86149i 0.514015 0.254811i
\(365\) −5.02177 −0.262851
\(366\) 2.59030 4.48653i 0.135397 0.234515i
\(367\) −1.85809 3.21831i −0.0969916 0.167994i 0.813446 0.581640i \(-0.197589\pi\)
−0.910438 + 0.413645i \(0.864255\pi\)
\(368\) 3.48039 + 6.02820i 0.181428 + 0.314242i
\(369\) 3.23609 5.60508i 0.168464 0.291789i
\(370\) 7.28083 0.378512
\(371\) −10.8847 + 5.39585i −0.565106 + 0.280138i
\(372\) 8.89977 0.461432
\(373\) 4.37800 7.58292i 0.226684 0.392629i −0.730139 0.683299i \(-0.760545\pi\)
0.956823 + 0.290670i \(0.0938781\pi\)
\(374\) −2.33728 4.04829i −0.120858 0.209332i
\(375\) 5.26540 + 9.11994i 0.271904 + 0.470951i
\(376\) −0.900969 + 1.56052i −0.0464639 + 0.0804779i
\(377\) 4.13706 0.213070
\(378\) 2.20291 + 1.46533i 0.113305 + 0.0753686i
\(379\) −18.7584 −0.963554 −0.481777 0.876294i \(-0.660008\pi\)
−0.481777 + 0.876294i \(0.660008\pi\)
\(380\) 2.40097 4.15860i 0.123167 0.213332i
\(381\) 4.98523 + 8.63467i 0.255401 + 0.442368i
\(382\) 9.50753 + 16.4675i 0.486448 + 0.842552i
\(383\) 6.69567 11.5972i 0.342133 0.592591i −0.642696 0.766121i \(-0.722184\pi\)
0.984829 + 0.173530i \(0.0555174\pi\)
\(384\) 1.00000 0.0510310
\(385\) −0.510885 + 8.05048i −0.0260371 + 0.410291i
\(386\) 8.79656 0.447733
\(387\) 6.35086 11.0000i 0.322832 0.559162i
\(388\) 5.82640 + 10.0916i 0.295790 + 0.512324i
\(389\) 12.3443 + 21.3809i 0.625880 + 1.08406i 0.988370 + 0.152068i \(0.0485933\pi\)
−0.362490 + 0.931988i \(0.618073\pi\)
\(390\) 2.57942 4.46768i 0.130614 0.226230i
\(391\) 13.3080 0.673013
\(392\) −6.94385 0.884879i −0.350717 0.0446931i
\(393\) 3.39075 0.171041
\(394\) 2.96950 5.14333i 0.149601 0.259117i
\(395\) 5.44653 + 9.43367i 0.274045 + 0.474660i
\(396\) 1.22252 + 2.11747i 0.0614340 + 0.106407i
\(397\) 19.7669 34.2373i 0.992072 1.71832i 0.387200 0.921996i \(-0.373442\pi\)
0.604872 0.796323i \(-0.293224\pi\)
\(398\) −20.8213 −1.04368
\(399\) −0.645260 + 10.1680i −0.0323034 + 0.509034i
\(400\) −3.44504 −0.172252
\(401\) 12.1468 21.0388i 0.606580 1.05063i −0.385220 0.922825i \(-0.625874\pi\)
0.991800 0.127802i \(-0.0407923\pi\)
\(402\) 0.0196143 + 0.0339730i 0.000978274 + 0.00169442i
\(403\) 18.4095 + 31.8861i 0.917041 + 1.58836i
\(404\) −9.31431 + 16.1329i −0.463404 + 0.802640i
\(405\) 1.24698 0.0619629
\(406\) −2.20291 1.46533i −0.109328 0.0727233i
\(407\) −14.2760 −0.707637
\(408\) 0.955927 1.65571i 0.0473254 0.0819701i
\(409\) −4.08211 7.07041i −0.201847 0.349609i 0.747276 0.664513i \(-0.231361\pi\)
−0.949124 + 0.314904i \(0.898028\pi\)
\(410\) 4.03534 + 6.98942i 0.199291 + 0.345183i
\(411\) 11.3068 19.5839i 0.557722 0.966004i
\(412\) −2.93362 −0.144529
\(413\) −16.8538 + 8.35491i −0.829323 + 0.411118i
\(414\) −6.96077 −0.342103
\(415\) 3.77144 6.53232i 0.185133 0.320659i
\(416\) 2.06853 + 3.58280i 0.101418 + 0.175661i
\(417\) 4.55376 + 7.88735i 0.222999 + 0.386245i
\(418\) −4.70775 + 8.15406i −0.230264 + 0.398828i
\(419\) −23.2218 −1.13446 −0.567228 0.823561i \(-0.691984\pi\)
−0.567228 + 0.823561i \(0.691984\pi\)
\(420\) −2.95593 + 1.46533i −0.144234 + 0.0715010i
\(421\) 39.7861 1.93906 0.969529 0.244977i \(-0.0787805\pi\)
0.969529 + 0.244977i \(0.0787805\pi\)
\(422\) −7.96830 + 13.8015i −0.387891 + 0.671847i
\(423\) −0.900969 1.56052i −0.0438066 0.0758753i
\(424\) −2.29590 3.97661i −0.111499 0.193121i
\(425\) −3.29321 + 5.70400i −0.159744 + 0.276685i
\(426\) −3.36227 −0.162903
\(427\) −11.4124 7.59131i −0.552284 0.367369i
\(428\) −0.472189 −0.0228241
\(429\) −5.05765 + 8.76010i −0.244185 + 0.422942i
\(430\) 7.91939 + 13.7168i 0.381907 + 0.661482i
\(431\) 7.19537 + 12.4628i 0.346589 + 0.600310i 0.985641 0.168854i \(-0.0540065\pi\)
−0.639052 + 0.769163i \(0.720673\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) 0.411190 0.0197605 0.00988027 0.999951i \(-0.496855\pi\)
0.00988027 + 0.999951i \(0.496855\pi\)
\(434\) 1.49127 23.4993i 0.0715833 1.12800i
\(435\) −1.24698 −0.0597881
\(436\) −4.76540 + 8.25391i −0.228221 + 0.395291i
\(437\) −13.4025 23.2137i −0.641127 1.11046i
\(438\) 2.01357 + 3.48761i 0.0962123 + 0.166645i
\(439\) 17.0688 29.5641i 0.814651 1.41102i −0.0949278 0.995484i \(-0.530262\pi\)
0.909578 0.415532i \(-0.136405\pi\)
\(440\) −3.04892 −0.145351
\(441\) 4.23825 5.57111i 0.201821 0.265291i
\(442\) 7.90946 0.376215
\(443\) −5.32586 + 9.22467i −0.253039 + 0.438277i −0.964361 0.264589i \(-0.914764\pi\)
0.711322 + 0.702867i \(0.248097\pi\)
\(444\) −2.91939 5.05653i −0.138548 0.239972i
\(445\) 7.01842 + 12.1563i 0.332705 + 0.576262i
\(446\) −8.52326 + 14.7627i −0.403588 + 0.699035i
\(447\) −3.23059 −0.152801
\(448\) 0.167563 2.64044i 0.00791660 0.124749i
\(449\) 15.4179 0.727615 0.363808 0.931474i \(-0.381477\pi\)
0.363808 + 0.931474i \(0.381477\pi\)
\(450\) 1.72252 2.98349i 0.0812004 0.140643i
\(451\) −7.91239 13.7047i −0.372580 0.645327i
\(452\) −0.887395 1.53701i −0.0417396 0.0722950i
\(453\) −3.28501 + 5.68981i −0.154343 + 0.267330i
\(454\) 0.222225 0.0104296
\(455\) −11.3644 7.55941i −0.532773 0.354391i
\(456\) −3.85086 −0.180333
\(457\) −9.86563 + 17.0878i −0.461494 + 0.799332i −0.999036 0.0439056i \(-0.986020\pi\)
0.537541 + 0.843237i \(0.319353\pi\)
\(458\) −9.89104 17.1318i −0.462178 0.800516i
\(459\) 0.955927 + 1.65571i 0.0446189 + 0.0772821i
\(460\) 4.33997 7.51705i 0.202352 0.350484i
\(461\) 16.9312 0.788566 0.394283 0.918989i \(-0.370993\pi\)
0.394283 + 0.918989i \(0.370993\pi\)
\(462\) 5.79590 2.87318i 0.269650 0.133673i
\(463\) −9.79763 −0.455334 −0.227667 0.973739i \(-0.573110\pi\)
−0.227667 + 0.973739i \(0.573110\pi\)
\(464\) 0.500000 0.866025i 0.0232119 0.0402042i
\(465\) −5.54892 9.61101i −0.257325 0.445700i
\(466\) 1.91670 + 3.31982i 0.0887893 + 0.153788i
\(467\) −5.71260 + 9.89451i −0.264347 + 0.457863i −0.967392 0.253282i \(-0.918490\pi\)
0.703045 + 0.711145i \(0.251823\pi\)
\(468\) −4.13706 −0.191236
\(469\) 0.0929903 0.0460978i 0.00429389 0.00212860i
\(470\) 2.24698 0.103645
\(471\) −5.68814 + 9.85214i −0.262096 + 0.453963i
\(472\) −3.55496 6.15737i −0.163630 0.283416i
\(473\) −15.5281 26.8955i −0.713983 1.23666i
\(474\) 4.36778 7.56522i 0.200619 0.347482i
\(475\) 13.2664 0.608702
\(476\) −4.21164 2.80150i −0.193040 0.128407i
\(477\) 4.59179 0.210244
\(478\) 3.32155 5.75310i 0.151924 0.263141i
\(479\) 16.5221 + 28.6171i 0.754912 + 1.30755i 0.945418 + 0.325861i \(0.105654\pi\)
−0.190505 + 0.981686i \(0.561013\pi\)
\(480\) −0.623490 1.07992i −0.0284583 0.0492912i
\(481\) 12.0777 20.9192i 0.550695 0.953832i
\(482\) 8.64071 0.393574
\(483\) −1.16637 + 18.3795i −0.0530715 + 0.836296i
\(484\) −5.02177 −0.228262
\(485\) 7.26540 12.5840i 0.329905 0.571412i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −20.4007 35.3351i −0.924445 1.60119i −0.792451 0.609936i \(-0.791195\pi\)
−0.131995 0.991250i \(-0.542138\pi\)
\(488\) 2.59030 4.48653i 0.117257 0.203096i
\(489\) 13.7875 0.623491
\(490\) 3.37382 + 8.05048i 0.152414 + 0.363684i
\(491\) 25.5555 1.15331 0.576653 0.816989i \(-0.304359\pi\)
0.576653 + 0.816989i \(0.304359\pi\)
\(492\) 3.23609 5.60508i 0.145894 0.252697i
\(493\) −0.955927 1.65571i −0.0430528 0.0745696i
\(494\) −7.96562 13.7969i −0.358390 0.620750i
\(495\) 1.52446 2.64044i 0.0685193 0.118679i
\(496\) 8.89977 0.399612
\(497\) −0.563392 + 8.87788i −0.0252716 + 0.398227i
\(498\) −6.04892 −0.271058
\(499\) 3.44451 5.96607i 0.154197 0.267078i −0.778569 0.627559i \(-0.784054\pi\)
0.932766 + 0.360481i \(0.117387\pi\)
\(500\) 5.26540 + 9.11994i 0.235476 + 0.407856i
\(501\) −12.4242 21.5194i −0.555074 0.961416i
\(502\) −0.738783 + 1.27961i −0.0329735 + 0.0571118i
\(503\) −9.42758 −0.420355 −0.210178 0.977663i \(-0.567404\pi\)
−0.210178 + 0.977663i \(0.567404\pi\)
\(504\) 2.20291 + 1.46533i 0.0981253 + 0.0652711i
\(505\) 23.2295 1.03370
\(506\) −8.50969 + 14.7392i −0.378302 + 0.655238i
\(507\) −2.05765 3.56395i −0.0913833 0.158281i
\(508\) 4.98523 + 8.63467i 0.221184 + 0.383102i
\(509\) 5.62833 9.74856i 0.249472 0.432097i −0.713908 0.700240i \(-0.753076\pi\)
0.963379 + 0.268142i \(0.0864098\pi\)
\(510\) −2.38404 −0.105567
\(511\) 9.54623 4.73233i 0.422300 0.209346i
\(512\) 1.00000 0.0441942
\(513\) 1.92543 3.33494i 0.0850097 0.147241i
\(514\) 3.16003 + 5.47333i 0.139383 + 0.241418i
\(515\) 1.82908 + 3.16807i 0.0805991 + 0.139602i
\(516\) 6.35086 11.0000i 0.279581 0.484248i
\(517\) −4.40581 −0.193767
\(518\) −13.8406 + 6.86118i −0.608123 + 0.301463i
\(519\) 14.9051 0.654263
\(520\) 2.57942 4.46768i 0.113115 0.195921i
\(521\) −13.8828 24.0458i −0.608219 1.05347i −0.991534 0.129848i \(-0.958551\pi\)
0.383315 0.923618i \(-0.374782\pi\)
\(522\) 0.500000 + 0.866025i 0.0218844 + 0.0379049i
\(523\) 17.3823 30.1071i 0.760076 1.31649i −0.182736 0.983162i \(-0.558495\pi\)
0.942811 0.333327i \(-0.108171\pi\)
\(524\) 3.39075 0.148126
\(525\) −7.58911 5.04814i −0.331216 0.220319i
\(526\) −10.1642 −0.443181
\(527\) 8.50753 14.7355i 0.370594 0.641888i
\(528\) 1.22252 + 2.11747i 0.0532034 + 0.0921510i
\(529\) −12.7262 22.0424i −0.553312 0.958364i
\(530\) −2.86294 + 4.95875i −0.124358 + 0.215394i
\(531\) 7.10992 0.308544
\(532\) −0.645260 + 10.1680i −0.0279756 + 0.440837i
\(533\) 26.7759 1.15979
\(534\) 5.62833 9.74856i 0.243562 0.421861i
\(535\) 0.294405 + 0.509924i 0.0127282 + 0.0220460i
\(536\) 0.0196143 + 0.0339730i 0.000847210 + 0.00146741i
\(537\) 12.5843 21.7966i 0.543051 0.940592i
\(538\) 3.34721 0.144308
\(539\) −6.61529 15.7852i −0.284941 0.679915i
\(540\) 1.24698 0.0536615
\(541\) 12.4933 21.6390i 0.537129 0.930334i −0.461928 0.886917i \(-0.652842\pi\)
0.999057 0.0434170i \(-0.0138244\pi\)
\(542\) −3.68060 6.37499i −0.158095 0.273829i
\(543\) −2.35570 4.08019i −0.101093 0.175098i
\(544\) 0.955927 1.65571i 0.0409850 0.0709882i
\(545\) 11.8847 0.509085
\(546\) −0.693218 + 10.9237i −0.0296670 + 0.467490i
\(547\) −1.07846 −0.0461115 −0.0230558 0.999734i \(-0.507340\pi\)
−0.0230558 + 0.999734i \(0.507340\pi\)
\(548\) 11.3068 19.5839i 0.483002 0.836584i
\(549\) 2.59030 + 4.48653i 0.110551 + 0.191481i
\(550\) −4.21164 7.29477i −0.179585 0.311050i
\(551\) −1.92543 + 3.33494i −0.0820260 + 0.142073i
\(552\) −6.96077 −0.296270
\(553\) −19.2436 12.8005i −0.818322 0.544333i
\(554\) −25.1444 −1.06828
\(555\) −3.64042 + 6.30538i −0.154527 + 0.267649i
\(556\) 4.55376 + 7.88735i 0.193123 + 0.334498i
\(557\) −10.0429 17.3948i −0.425530 0.737040i 0.570939 0.820992i \(-0.306579\pi\)
−0.996470 + 0.0839520i \(0.973246\pi\)
\(558\) −4.44989 + 7.70743i −0.188379 + 0.326281i
\(559\) 52.5478 2.22253
\(560\) −2.95593 + 1.46533i −0.124911 + 0.0619216i
\(561\) 4.67456 0.197360
\(562\) −7.28232 + 12.6134i −0.307186 + 0.532062i
\(563\) 1.44116 + 2.49616i 0.0607375 + 0.105200i 0.894795 0.446477i \(-0.147321\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(564\) −0.900969 1.56052i −0.0379376 0.0657099i
\(565\) −1.10656 + 1.91662i −0.0465535 + 0.0806330i
\(566\) 27.7657 1.16708
\(567\) −2.37047 + 1.17511i −0.0995504 + 0.0493498i
\(568\) −3.36227 −0.141078
\(569\) −7.93685 + 13.7470i −0.332730 + 0.576305i −0.983046 0.183359i \(-0.941303\pi\)
0.650316 + 0.759664i \(0.274636\pi\)
\(570\) 2.40097 + 4.15860i 0.100566 + 0.174185i
\(571\) −17.1548 29.7130i −0.717907 1.24345i −0.961828 0.273656i \(-0.911767\pi\)
0.243921 0.969795i \(-0.421566\pi\)
\(572\) −5.05765 + 8.76010i −0.211471 + 0.366278i
\(573\) −19.0151 −0.794366
\(574\) −14.2576 9.48392i −0.595102 0.395851i
\(575\) 23.9801 1.00004
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −0.631687 1.09411i −0.0262975 0.0455485i 0.852577 0.522601i \(-0.175038\pi\)
−0.878875 + 0.477053i \(0.841705\pi\)
\(578\) 6.67241 + 11.5569i 0.277536 + 0.480706i
\(579\) −4.39828 + 7.61805i −0.182786 + 0.316595i
\(580\) −1.24698 −0.0517780
\(581\) −1.01357 + 15.9718i −0.0420501 + 0.662622i
\(582\) −11.6528 −0.483024
\(583\) 5.61356 9.72298i 0.232490 0.402685i
\(584\) 2.01357 + 3.48761i 0.0833223 + 0.144318i
\(585\) 2.57942 + 4.46768i 0.106646 + 0.184716i
\(586\) −14.7436 + 25.5367i −0.609054 + 1.05491i
\(587\) −2.10082 −0.0867101 −0.0433550 0.999060i \(-0.513805\pi\)
−0.0433550 + 0.999060i \(0.513805\pi\)
\(588\) 4.23825 5.57111i 0.174783 0.229749i
\(589\) −34.2717 −1.41214
\(590\) −4.43296 + 7.67811i −0.182502 + 0.316103i
\(591\) 2.96950 + 5.14333i 0.122149 + 0.211568i
\(592\) −2.91939 5.05653i −0.119986 0.207822i
\(593\) 4.43512 7.68185i 0.182128 0.315456i −0.760477 0.649365i \(-0.775035\pi\)
0.942605 + 0.333910i \(0.108368\pi\)
\(594\) −2.44504 −0.100321
\(595\) −0.399477 + 6.29492i −0.0163770 + 0.258067i
\(596\) −3.23059 −0.132330
\(597\) 10.4107 18.0318i 0.426080 0.737992i
\(598\) −14.3986 24.9391i −0.588802 1.01983i
\(599\) 8.92639 + 15.4610i 0.364722 + 0.631718i 0.988732 0.149699i \(-0.0478306\pi\)
−0.624009 + 0.781417i \(0.714497\pi\)
\(600\) 1.72252 2.98349i 0.0703216 0.121801i
\(601\) −9.43834 −0.384998 −0.192499 0.981297i \(-0.561659\pi\)
−0.192499 + 0.981297i \(0.561659\pi\)
\(602\) −27.9807 18.6122i −1.14041 0.758578i
\(603\) −0.0392287 −0.00159751
\(604\) −3.28501 + 5.68981i −0.133665 + 0.231515i
\(605\) 3.13102 + 5.42309i 0.127294 + 0.220480i
\(606\) −9.31431 16.1329i −0.378368 0.655353i
\(607\) 14.4858 25.0901i 0.587959 1.01837i −0.406540 0.913633i \(-0.633265\pi\)
0.994499 0.104742i \(-0.0334017\pi\)
\(608\) −3.85086 −0.156173
\(609\) 2.37047 1.17511i 0.0960563 0.0476177i
\(610\) −6.46011 −0.261562
\(611\) 3.72737 6.45599i 0.150793 0.261181i
\(612\) 0.955927 + 1.65571i 0.0386411 + 0.0669283i
\(613\) −4.36294 7.55683i −0.176217 0.305217i 0.764365 0.644784i \(-0.223053\pi\)
−0.940582 + 0.339567i \(0.889719\pi\)
\(614\) 1.19687 2.07303i 0.0483016 0.0836608i
\(615\) −8.07069 −0.325442
\(616\) 5.79590 2.87318i 0.233523 0.115764i
\(617\) 11.1357 0.448308 0.224154 0.974554i \(-0.428038\pi\)
0.224154 + 0.974554i \(0.428038\pi\)
\(618\) 1.46681 2.54059i 0.0590038 0.102198i
\(619\) −2.78568 4.82493i −0.111966 0.193930i 0.804597 0.593821i \(-0.202381\pi\)
−0.916563 + 0.399891i \(0.869048\pi\)
\(620\) −5.54892 9.61101i −0.222850 0.385987i
\(621\) 3.48039 6.02820i 0.139663 0.241904i
\(622\) 14.4209 0.578225
\(623\) −24.7974 16.4948i −0.993486 0.660849i
\(624\) −4.13706 −0.165615
\(625\) −2.04676 + 3.54509i −0.0818705 + 0.141804i
\(626\) −9.34146 16.1799i −0.373360 0.646678i
\(627\) −4.70775 8.15406i −0.188009 0.325642i
\(628\) −5.68814 + 9.85214i −0.226981 + 0.393143i
\(629\) −11.1629 −0.445093
\(630\) 0.208947 3.29257i 0.00832466 0.131179i
\(631\) 3.31229 0.131860 0.0659301 0.997824i \(-0.478999\pi\)
0.0659301 + 0.997824i \(0.478999\pi\)
\(632\) 4.36778 7.56522i 0.173741 0.300928i
\(633\) −7.96830 13.8015i −0.316712 0.548561i
\(634\) −10.6201 18.3946i −0.421780 0.730544i
\(635\) 6.21648 10.7673i 0.246693 0.427286i
\(636\) 4.59179 0.182076
\(637\) 28.7271 + 3.66080i 1.13821 + 0.145046i
\(638\) 2.44504 0.0968001
\(639\) 1.68114 2.91181i 0.0665047 0.115190i
\(640\) −0.623490 1.07992i −0.0246456 0.0426874i
\(641\) 22.8599 + 39.5945i 0.902911 + 1.56389i 0.823697 + 0.567030i \(0.191908\pi\)
0.0792138 + 0.996858i \(0.474759\pi\)
\(642\) 0.236094 0.408928i 0.00931791 0.0161391i
\(643\) −8.08336 −0.318777 −0.159388 0.987216i \(-0.550952\pi\)
−0.159388 + 0.987216i \(0.550952\pi\)
\(644\) −1.16637 + 18.3795i −0.0459613 + 0.724254i
\(645\) −15.8388 −0.623651
\(646\) −3.68114 + 6.37592i −0.144832 + 0.250857i
\(647\) 2.53856 + 4.39692i 0.0998013 + 0.172861i 0.911602 0.411073i \(-0.134846\pi\)
−0.811801 + 0.583934i \(0.801513\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 8.69202 15.0550i 0.341192 0.590961i
\(650\) 14.2524 0.559023
\(651\) 19.6054 + 13.0411i 0.768395 + 0.511122i
\(652\) 13.7875 0.539959
\(653\) −6.16972 + 10.6863i −0.241440 + 0.418186i −0.961125 0.276115i \(-0.910953\pi\)
0.719685 + 0.694301i \(0.244286\pi\)
\(654\) −4.76540 8.25391i −0.186342 0.322753i
\(655\) −2.11410 3.66172i −0.0826046 0.143075i
\(656\) 3.23609 5.60508i 0.126348 0.218842i
\(657\) −4.02715 −0.157114
\(658\) −4.27144 + 2.11747i −0.166518 + 0.0825475i
\(659\) −25.1444 −0.979485 −0.489743 0.871867i \(-0.662909\pi\)
−0.489743 + 0.871867i \(0.662909\pi\)
\(660\) 1.52446 2.64044i 0.0593395 0.102779i
\(661\) −0.185981 0.322128i −0.00723381 0.0125293i 0.862386 0.506252i \(-0.168969\pi\)
−0.869620 + 0.493722i \(0.835636\pi\)
\(662\) 5.33997 + 9.24910i 0.207544 + 0.359476i
\(663\) −3.95473 + 6.84979i −0.153589 + 0.266024i
\(664\) −6.04892 −0.234744
\(665\) 11.3828 5.64279i 0.441408 0.218818i
\(666\) 5.83877 0.226248
\(667\) −3.48039 + 6.02820i −0.134761 + 0.233413i
\(668\) −12.4242 21.5194i −0.480708 0.832611i
\(669\) −8.52326 14.7627i −0.329528 0.570760i
\(670\) 0.0244587 0.0423637i 0.000944921 0.00163665i
\(671\) 12.6668 0.488996
\(672\) 2.20291 + 1.46533i 0.0849790 + 0.0565265i
\(673\) 14.3418 0.552837 0.276418 0.961037i \(-0.410852\pi\)
0.276418 + 0.961037i \(0.410852\pi\)
\(674\) 13.4514 23.2985i 0.518128 0.897424i
\(675\) 1.72252 + 2.98349i 0.0662999 + 0.114835i
\(676\) −2.05765 3.56395i −0.0791403 0.137075i
\(677\) −15.2256 + 26.3716i −0.585169 + 1.01354i 0.409686 + 0.912227i \(0.365638\pi\)
−0.994854 + 0.101315i \(0.967695\pi\)
\(678\) 1.77479 0.0681604
\(679\) −1.95257 + 30.7685i −0.0749329 + 1.18079i
\(680\) −2.38404 −0.0914239
\(681\) −0.111113 + 0.192453i −0.00425785 + 0.00737481i
\(682\) 10.8802 + 18.8450i 0.416623 + 0.721612i
\(683\) −11.9291 20.6618i −0.456453 0.790600i 0.542317 0.840174i \(-0.317547\pi\)
−0.998770 + 0.0495734i \(0.984214\pi\)
\(684\) 1.92543 3.33494i 0.0736206 0.127515i
\(685\) −28.1987 −1.07742
\(686\) −14.0000 12.1244i −0.534522 0.462910i
\(687\) 19.7821 0.754734
\(688\) 6.35086 11.0000i 0.242124 0.419371i
\(689\) 9.49827 + 16.4515i 0.361855 + 0.626752i
\(690\) 4.33997 + 7.51705i 0.165220 + 0.286169i
\(691\) −2.62780 + 4.55149i −0.0999663 + 0.173147i −0.911670 0.410922i \(-0.865207\pi\)
0.811704 + 0.584069i \(0.198540\pi\)
\(692\) 14.9051 0.566609
\(693\) −0.409698 + 6.45599i −0.0155631 + 0.245243i
\(694\) −17.4450 −0.662205
\(695\) 5.67845 9.83536i 0.215396 0.373076i
\(696\) 0.500000 + 0.866025i 0.0189525 + 0.0328266i
\(697\) −6.18694 10.7161i −0.234347 0.405901i
\(698\) 9.57822 16.5900i 0.362541 0.627939i
\(699\) −3.83340 −0.144992
\(700\) −7.58911 5.04814i −0.286841 0.190802i
\(701\) −31.6243 −1.19443 −0.597217 0.802080i \(-0.703727\pi\)
−0.597217 + 0.802080i \(0.703727\pi\)
\(702\) 2.06853 3.58280i 0.0780717 0.135224i
\(703\) 11.2421 + 19.4719i 0.424005 + 0.734398i
\(704\) 1.22252 + 2.11747i 0.0460755 + 0.0798051i
\(705\) −1.12349 + 1.94594i −0.0423131 + 0.0732884i
\(706\) 31.2959 1.17784
\(707\) −44.1586 + 21.8906i −1.66075 + 0.823281i
\(708\) 7.10992 0.267207
\(709\) −2.25398 + 3.90401i −0.0846500 + 0.146618i −0.905242 0.424896i \(-0.860311\pi\)
0.820592 + 0.571514i \(0.193644\pi\)
\(710\) 2.09634 + 3.63097i 0.0786743 + 0.136268i
\(711\) 4.36778 + 7.56522i 0.163805 + 0.283718i
\(712\) 5.62833 9.74856i 0.210931 0.365343i
\(713\) −61.9493 −2.32002
\(714\) 4.53199 2.24663i 0.169606 0.0840781i
\(715\) 12.6136 0.471721
\(716\) 12.5843 21.7966i 0.470296 0.814576i
\(717\) 3.32155 + 5.75310i 0.124046 + 0.214853i
\(718\) −17.2337 29.8496i −0.643156 1.11398i
\(719\) −15.4894 + 26.8284i −0.577658 + 1.00053i 0.418090 + 0.908406i \(0.362700\pi\)
−0.995747 + 0.0921265i \(0.970634\pi\)
\(720\) 1.24698 0.0464722
\(721\) −6.46250 4.29874i −0.240676 0.160093i
\(722\) −4.17092 −0.155225
\(723\) −4.32036 + 7.48308i −0.160676 + 0.278299i
\(724\) −2.35570 4.08019i −0.0875489 0.151639i
\(725\) −1.72252 2.98349i −0.0639728 0.110804i
\(726\) 2.51089 4.34898i 0.0931877 0.161406i
\(727\) 39.5646 1.46737 0.733686 0.679489i \(-0.237798\pi\)
0.733686 + 0.679489i \(0.237798\pi\)
\(728\) −0.693218 + 10.9237i −0.0256924 + 0.404858i
\(729\) 1.00000 0.0370370
\(730\) 2.51089 4.34898i 0.0929320 0.160963i
\(731\) −12.1419 21.0304i −0.449085 0.777837i
\(732\) 2.59030 + 4.48653i 0.0957403 + 0.165827i
\(733\) −10.4405 + 18.0835i −0.385628 + 0.667928i −0.991856 0.127363i \(-0.959349\pi\)
0.606228 + 0.795291i \(0.292682\pi\)
\(734\) 3.71618 0.137167
\(735\) −8.65883 1.10343i −0.319386 0.0407005i
\(736\) −6.96077 −0.256577
\(737\) −0.0479579 + 0.0830654i −0.00176655 + 0.00305976i
\(738\) 3.23609 + 5.60508i 0.119122 + 0.206326i
\(739\) 17.1998 + 29.7910i 0.632707 + 1.09588i 0.986996 + 0.160744i \(0.0513895\pi\)
−0.354289 + 0.935136i \(0.615277\pi\)
\(740\) −3.64042 + 6.30538i −0.133824 + 0.231791i
\(741\) 15.9312 0.585248
\(742\) 0.769414 12.1244i 0.0282461 0.445099i
\(743\) −39.2059 −1.43833 −0.719163 0.694841i \(-0.755475\pi\)
−0.719163 + 0.694841i \(0.755475\pi\)
\(744\) −4.44989 + 7.70743i −0.163141 + 0.282568i
\(745\) 2.01424 + 3.48876i 0.0737960 + 0.127818i
\(746\) 4.37800 + 7.58292i 0.160290 + 0.277631i
\(747\) 3.02446 5.23852i 0.110659 0.191667i
\(748\) 4.67456 0.170919
\(749\) −1.04019 0.691914i −0.0380076 0.0252820i
\(750\) −10.5308 −0.384530
\(751\) 21.6036 37.4186i 0.788328 1.36542i −0.138663 0.990340i \(-0.544280\pi\)
0.926991 0.375084i \(-0.122386\pi\)
\(752\) −0.900969 1.56052i −0.0328550 0.0569064i
\(753\) −0.738783 1.27961i −0.0269227 0.0466316i
\(754\) −2.06853 + 3.58280i −0.0753315 + 0.130478i
\(755\) 8.19269 0.298162
\(756\) −2.37047 + 1.17511i −0.0862131 + 0.0427382i
\(757\) −23.8780 −0.867861 −0.433930 0.900946i \(-0.642874\pi\)
−0.433930 + 0.900946i \(0.642874\pi\)
\(758\) 9.37920 16.2452i 0.340668 0.590054i
\(759\) −8.50969 14.7392i −0.308882 0.535000i
\(760\) 2.40097 + 4.15860i 0.0870923 + 0.150848i
\(761\) −15.7763 + 27.3253i −0.571890 + 0.990542i 0.424482 + 0.905436i \(0.360456\pi\)
−0.996372 + 0.0851059i \(0.972877\pi\)
\(762\) −9.97046 −0.361192
\(763\) −22.5925 + 11.1997i −0.817902 + 0.405456i
\(764\) −19.0151 −0.687941
\(765\) 1.19202 2.06464i 0.0430976 0.0746473i
\(766\) 6.69567 + 11.5972i 0.241924 + 0.419025i
\(767\) 14.7071 + 25.4734i 0.531042 + 0.919792i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) −13.1196 −0.473105 −0.236553 0.971619i \(-0.576018\pi\)
−0.236553 + 0.971619i \(0.576018\pi\)
\(770\) −6.71648 4.46768i −0.242045 0.161004i
\(771\) −6.32006 −0.227611
\(772\) −4.39828 + 7.61805i −0.158298 + 0.274179i
\(773\) 16.6521 + 28.8423i 0.598935 + 1.03739i 0.992979 + 0.118295i \(0.0377427\pi\)
−0.394043 + 0.919092i \(0.628924\pi\)
\(774\) 6.35086 + 11.0000i 0.228277 + 0.395387i
\(775\) 15.3300 26.5524i 0.550671 0.953791i
\(776\) −11.6528 −0.418311
\(777\) 0.978361 15.4169i 0.0350985 0.553079i
\(778\) −24.6886 −0.885128
\(779\) −12.4617 + 21.5844i −0.446488 + 0.773340i
\(780\) 2.57942 + 4.46768i 0.0923579 + 0.159969i
\(781\) −4.11045 7.11951i −0.147083 0.254756i
\(782\) −6.65399 + 11.5250i −0.237946 + 0.412135i
\(783\) −1.00000 −0.0357371
\(784\) 4.23825 5.57111i 0.151366 0.198968i
\(785\) 14.1860 0.506319
\(786\) −1.69537 + 2.93647i −0.0604720 + 0.104741i
\(787\) 14.4933 + 25.1031i 0.516630 + 0.894830i 0.999814 + 0.0193105i \(0.00614712\pi\)
−0.483183 + 0.875519i \(0.660520\pi\)
\(788\) 2.96950 + 5.14333i 0.105784 + 0.183223i
\(789\) 5.08211 8.80246i 0.180928 0.313376i
\(790\) −10.8931 −0.387558
\(791\) 0.297389 4.68623i 0.0105739 0.166623i
\(792\) −2.44504 −0.0868808
\(793\) −10.7162 + 18.5611i −0.380545 + 0.659123i
\(794\) 19.7669 + 34.2373i 0.701501 + 1.21503i
\(795\) −2.86294 4.95875i −0.101538 0.175869i
\(796\) 10.4107 18.0318i 0.368996 0.639120i
\(797\) 34.5163 1.22263 0.611315 0.791387i \(-0.290641\pi\)
0.611315 + 0.791387i \(0.290641\pi\)
\(798\) −8.48307 5.64279i −0.300298 0.199753i
\(799\) −3.44504 −0.121877
\(800\) 1.72252 2.98349i 0.0609003 0.105482i
\(801\) 5.62833 + 9.74856i 0.198867 + 0.344448i
\(802\) 12.1468 + 21.0388i 0.428917 + 0.742906i
\(803\) −4.92327 + 8.52736i −0.173738 + 0.300924i
\(804\) −0.0392287 −0.00138349
\(805\) 20.5755 10.1999i 0.725192 0.359498i
\(806\) −36.8189 −1.29689
\(807\) −1.67360 + 2.89877i −0.0589136 + 0.102041i
\(808\) −9.31431 16.1329i −0.327676 0.567552i
\(809\) −3.32789 5.76407i −0.117002 0.202654i 0.801576 0.597893i \(-0.203995\pi\)
−0.918578 + 0.395239i \(0.870662\pi\)
\(810\) −0.623490 + 1.07992i −0.0219072 + 0.0379444i
\(811\) 36.9057 1.29594 0.647968 0.761668i \(-0.275619\pi\)
0.647968 + 0.761668i \(0.275619\pi\)
\(812\) 2.37047 1.17511i 0.0831872 0.0412381i
\(813\) 7.36121 0.258169
\(814\) 7.13802 12.3634i 0.250188 0.433338i
\(815\) −8.59634 14.8893i −0.301117 0.521550i
\(816\) 0.955927 + 1.65571i 0.0334641 + 0.0579616i
\(817\) −24.4562 + 42.3594i −0.855615 + 1.48197i
\(818\) 8.16421 0.285455
\(819\) −9.11356 6.06218i −0.318454 0.211830i
\(820\) −8.07069 −0.281841
\(821\) 10.6326 18.4163i 0.371082 0.642733i −0.618650 0.785666i \(-0.712320\pi\)
0.989732 + 0.142934i \(0.0456536\pi\)
\(822\) 11.3068 + 19.5839i 0.394369 + 0.683068i
\(823\) −19.9520 34.5580i −0.695484 1.20461i −0.970017 0.243037i \(-0.921856\pi\)
0.274533 0.961578i \(-0.411477\pi\)
\(824\) 1.46681 2.54059i 0.0510988 0.0885058i
\(825\) 8.42327 0.293261
\(826\) 1.19136 18.7733i 0.0414526 0.653207i
\(827\) 18.3037 0.636481 0.318240 0.948010i \(-0.396908\pi\)
0.318240 + 0.948010i \(0.396908\pi\)
\(828\) 3.48039 6.02820i 0.120952 0.209495i
\(829\) −1.08977 1.88754i −0.0378493 0.0655568i 0.846480 0.532420i \(-0.178717\pi\)
−0.884329 + 0.466863i \(0.845384\pi\)
\(830\) 3.77144 + 6.53232i 0.130909 + 0.226740i
\(831\) 12.5722 21.7757i 0.436124 0.755389i
\(832\) −4.13706 −0.143427
\(833\) −5.17270 12.3429i −0.179224 0.427656i
\(834\) −9.10752 −0.315368
\(835\) −15.4928 + 26.8343i −0.536149 + 0.928638i
\(836\) −4.70775 8.15406i −0.162821 0.282014i
\(837\) −4.44989 7.70743i −0.153811 0.266408i
\(838\) 11.6109 20.1106i 0.401091 0.694710i
\(839\) 6.88876 0.237826 0.118913 0.992905i \(-0.462059\pi\)
0.118913 + 0.992905i \(0.462059\pi\)
\(840\) 0.208947 3.29257i 0.00720937 0.113605i
\(841\) 1.00000 0.0344828
\(842\) −19.8931 + 34.4558i −0.685560 + 1.18743i
\(843\) −7.28232 12.6134i −0.250817 0.434427i
\(844\) −7.96830 13.8015i −0.274280 0.475067i
\(845\) −2.56584 + 4.44417i −0.0882677 + 0.152884i
\(846\) 1.80194 0.0619519
\(847\) −11.0625 7.35857i −0.380112 0.252843i
\(848\) 4.59179 0.157683
\(849\) −13.8828 + 24.0458i −0.476458 + 0.825250i
\(850\) −3.29321 5.70400i −0.112956 0.195646i
\(851\) 20.3212 + 35.1973i 0.696601 + 1.20655i
\(852\) 1.68114 2.91181i 0.0575948 0.0997571i
\(853\) −35.0828 −1.20121 −0.600606 0.799545i \(-0.705074\pi\)
−0.600606 + 0.799545i \(0.705074\pi\)
\(854\) 12.2805 6.08776i 0.420229 0.208319i
\(855\) −4.80194 −0.164223
\(856\) 0.236094 0.408928i 0.00806954 0.0139769i
\(857\) −18.0308 31.2303i −0.615920 1.06681i −0.990222 0.139498i \(-0.955451\pi\)
0.374302 0.927307i \(-0.377882\pi\)
\(858\) −5.05765 8.76010i −0.172665 0.299065i
\(859\) 21.4361 37.1284i 0.731389 1.26680i −0.224900 0.974382i \(-0.572206\pi\)
0.956289 0.292422i \(-0.0944611\pi\)
\(860\) −15.8388 −0.540098
\(861\) 15.3421 7.60551i 0.522858 0.259195i
\(862\) −14.3907 −0.490151
\(863\) 0.973385 1.68595i 0.0331344 0.0573905i −0.848983 0.528421i \(-0.822784\pi\)
0.882117 + 0.471030i \(0.156118\pi\)
\(864\) −0.500000 0.866025i −0.0170103 0.0294628i
\(865\) −9.29321 16.0963i −0.315979 0.547291i
\(866\) −0.205595 + 0.356101i −0.00698640 + 0.0121008i
\(867\) −13.3448 −0.453214
\(868\) 19.6054 + 13.0411i 0.665450 + 0.442645i
\(869\) 21.3588 0.724548
\(870\) 0.623490 1.07992i 0.0211383 0.0366126i
\(871\) −0.0811457 0.140549i −0.00274952 0.00476230i
\(872\) −4.76540 8.25391i −0.161377 0.279513i
\(873\) 5.82640 10.0916i 0.197194 0.341549i
\(874\) 26.8049 0.906690
\(875\) −1.76457 + 27.8059i −0.0596533 + 0.940012i
\(876\) −4.02715 −0.136065
\(877\) 19.6196 33.9822i 0.662507 1.14750i −0.317448 0.948276i \(-0.602826\pi\)
0.979955 0.199220i \(-0.0638408\pi\)
\(878\) 17.0688 + 29.5641i 0.576045 + 0.997739i
\(879\) −14.7436 25.5367i −0.497290 0.861332i
\(880\) 1.52446 2.64044i 0.0513895 0.0890092i
\(881\) −40.1584 −1.35297 −0.676485 0.736457i \(-0.736498\pi\)
−0.676485 + 0.736457i \(0.736498\pi\)
\(882\) 2.70560 + 6.45599i 0.0911021 + 0.217384i
\(883\) −31.4596 −1.05870 −0.529350 0.848403i \(-0.677564\pi\)
−0.529350 + 0.848403i \(0.677564\pi\)
\(884\) −3.95473 + 6.84979i −0.133012 + 0.230384i
\(885\) −4.43296 7.67811i −0.149012 0.258097i
\(886\) −5.32586 9.22467i −0.178926 0.309909i
\(887\) −7.23609 + 12.5333i −0.242964 + 0.420826i −0.961557 0.274604i \(-0.911453\pi\)
0.718593 + 0.695431i \(0.244786\pi\)
\(888\) 5.83877 0.195936
\(889\) −1.67068 + 26.3264i −0.0560327 + 0.882959i
\(890\) −14.0368 −0.470516
\(891\) 1.22252 2.11747i 0.0409560 0.0709379i
\(892\) −8.52326 14.7627i −0.285380 0.494293i
\(893\) 3.46950 + 6.00935i 0.116102 + 0.201095i
\(894\) 1.61529 2.79777i 0.0540235 0.0935714i
\(895\) −31.3846 −1.04907
\(896\) 2.20291 + 1.46533i 0.0735939 + 0.0489534i
\(897\) 28.7972 0.961509
\(898\) −7.70895 + 13.3523i −0.257251 + 0.445572i
\(899\) 4.44989 + 7.70743i 0.148412 + 0.257057i
\(900\) 1.72252 + 2.98349i 0.0574174 + 0.0994498i
\(901\) 4.38942 7.60270i 0.146233 0.253283i
\(902\) 15.8248 0.526907
\(903\) 30.1090 14.9259i 1.00197 0.496702i
\(904\) 1.77479 0.0590287
\(905\) −2.93751 + 5.08792i −0.0976461 + 0.169128i
\(906\) −3.28501 5.68981i −0.109137 0.189031i
\(907\) 27.9294 + 48.3751i 0.927380 + 1.60627i 0.787689 + 0.616073i \(0.211277\pi\)
0.139691 + 0.990195i \(0.455389\pi\)
\(908\) −0.111113 + 0.192453i −0.00368741 + 0.00638677i
\(909\) 18.6286 0.617873
\(910\) 12.2289 6.06218i 0.405383 0.200959i
\(911\) 29.3201 0.971417 0.485708 0.874121i \(-0.338562\pi\)
0.485708 + 0.874121i \(0.338562\pi\)
\(912\) 1.92543 3.33494i 0.0637573 0.110431i
\(913\) −7.39493 12.8084i −0.244736 0.423896i
\(914\) −9.86563 17.0878i −0.326326 0.565213i
\(915\) 3.23005 5.59462i 0.106782 0.184952i
\(916\) 19.7821 0.653619
\(917\) 7.46950 + 4.96858i 0.246665 + 0.164077i
\(918\) −1.91185 −0.0631006
\(919\) 10.6884 18.5129i 0.352579 0.610684i −0.634122 0.773233i \(-0.718638\pi\)
0.986701 + 0.162549i \(0.0519715\pi\)
\(920\) 4.33997 + 7.51705i 0.143085 + 0.247830i
\(921\) 1.19687 + 2.07303i 0.0394381 + 0.0683087i
\(922\) −8.46562 + 14.6629i −0.278800 + 0.482896i
\(923\) 13.9099 0.457851
\(924\) −0.409698 + 6.45599i −0.0134781 + 0.212386i
\(925\) −20.1148 −0.661371
\(926\) 4.89881 8.48499i 0.160985 0.278834i
\(927\) 1.46681 + 2.54059i 0.0481764 + 0.0834440i
\(928\) 0.500000 + 0.866025i 0.0164133 + 0.0284287i
\(929\) 13.3756 23.1672i 0.438840 0.760092i −0.558761 0.829329i \(-0.688723\pi\)
0.997600 + 0.0692366i \(0.0220563\pi\)
\(930\) 11.0978 0.363912
\(931\) −16.3209 + 21.4535i −0.534896 + 0.703111i
\(932\) −3.83340 −0.125567
\(933\) −7.21044 + 12.4888i −0.236059 + 0.408867i
\(934\) −5.71260 9.89451i −0.186922 0.323758i
\(935\) −2.91454 5.04814i −0.0953157 0.165092i
\(936\) 2.06853 3.58280i 0.0676121 0.117108i
\(937\) 16.2983 0.532442 0.266221 0.963912i \(-0.414225\pi\)
0.266221 + 0.963912i \(0.414225\pi\)
\(938\) −0.00657326 + 0.103581i −0.000214625 + 0.00338204i
\(939\) 18.6829 0.609694
\(940\) −1.12349 + 1.94594i −0.0366442 + 0.0634696i
\(941\) 15.9100 + 27.5569i 0.518651 + 0.898330i 0.999765 + 0.0216719i \(0.00689891\pi\)
−0.481114 + 0.876658i \(0.659768\pi\)
\(942\) −5.68814 9.85214i −0.185330 0.321000i
\(943\) −22.5257 + 39.0157i −0.733538 + 1.27053i
\(944\) 7.10992 0.231408
\(945\) 2.74698 + 1.82724i 0.0893593 + 0.0594402i
\(946\) 31.0562 1.00972
\(947\) −18.5155 + 32.0698i −0.601673 + 1.04213i 0.390895 + 0.920435i \(0.372165\pi\)
−0.992568 + 0.121692i \(0.961168\pi\)
\(948\) 4.36778 + 7.56522i 0.141859 + 0.245707i
\(949\) −8.33028 14.4285i −0.270412 0.468368i
\(950\) −6.63318 + 11.4890i −0.215209 + 0.372752i
\(951\) 21.2403 0.688763
\(952\) 4.53199 2.24663i 0.146883 0.0728138i
\(953\) 47.7904 1.54808 0.774042 0.633134i \(-0.218232\pi\)
0.774042 + 0.633134i \(0.218232\pi\)
\(954\) −2.29590 + 3.97661i −0.0743324 + 0.128748i
\(955\) 11.8557 + 20.5347i 0.383641 + 0.664486i
\(956\) 3.32155 + 5.75310i 0.107427 + 0.186068i
\(957\) −1.22252 + 2.11747i −0.0395185 + 0.0684480i
\(958\) −33.0441 −1.06761
\(959\) 53.6048 26.5733i 1.73099 0.858098i
\(960\) 1.24698 0.0402461
\(961\) −24.1030 + 41.7476i −0.777515 + 1.34670i
\(962\) 12.0777 + 20.9192i 0.389400 + 0.674461i
\(963\) 0.236094 + 0.408928i 0.00760804 + 0.0131775i
\(964\) −4.32036 + 7.48308i −0.139149 + 0.241014i
\(965\) 10.9691 0.353109
\(966\) −15.3339 10.1999i −0.493361 0.328175i
\(967\) −12.8522 −0.413298 −0.206649 0.978415i \(-0.566256\pi\)
−0.206649 + 0.978415i \(0.566256\pi\)
\(968\) 2.51089 4.34898i 0.0807029 0.139782i
\(969\) −3.68114 6.37592i −0.118255 0.204824i
\(970\) 7.26540 + 12.5840i 0.233278 + 0.404049i
\(971\) 23.9983 41.5662i 0.770141 1.33392i −0.167344 0.985899i \(-0.553519\pi\)
0.937485 0.348025i \(-0.113148\pi\)
\(972\) 1.00000 0.0320750
\(973\) −1.52608 + 24.0479i −0.0489239 + 0.770939i
\(974\) 40.8015 1.30736
\(975\) −7.12618 + 12.3429i −0.228220 + 0.395289i
\(976\) 2.59030 + 4.48653i 0.0829135 + 0.143610i
\(977\) −19.8666 34.4099i −0.635588 1.10087i −0.986390 0.164422i \(-0.947424\pi\)
0.350802 0.936450i \(-0.385909\pi\)
\(978\) −6.89373 + 11.9403i −0.220437 + 0.381808i
\(979\) 27.5230 0.879640
\(980\) −8.65883 1.10343i −0.276596 0.0352477i
\(981\) 9.53079 0.304295
\(982\) −12.7778 + 22.1318i −0.407755 + 0.706253i
\(983\) −12.2959 21.2971i −0.392178 0.679273i 0.600558 0.799581i \(-0.294945\pi\)
−0.992737 + 0.120308i \(0.961612\pi\)
\(984\) 3.23609 + 5.60508i 0.103163 + 0.178683i
\(985\) 3.70291 6.41362i 0.117984 0.204355i
\(986\) 1.91185 0.0608858
\(987\) 0.301938 4.75791i 0.00961078 0.151446i
\(988\) 15.9312 0.506840
\(989\) −44.2068 + 76.5685i −1.40570 + 2.43474i
\(990\) 1.52446 + 2.64044i 0.0484505 + 0.0839187i
\(991\) −6.70613 11.6154i −0.213027 0.368974i 0.739633 0.673010i \(-0.234999\pi\)
−0.952660 + 0.304036i \(0.901666\pi\)
\(992\) −4.44989 + 7.70743i −0.141284 + 0.244711i
\(993\) −10.6799 −0.338918
\(994\) −7.40677 4.92685i −0.234929 0.156270i
\(995\) −25.9638 −0.823106
\(996\) 3.02446 5.23852i 0.0958336 0.165989i
\(997\) 24.4746 + 42.3913i 0.775120 + 1.34255i 0.934727 + 0.355366i \(0.115644\pi\)
−0.159608 + 0.987181i \(0.551023\pi\)
\(998\) 3.44451 + 5.96607i 0.109034 + 0.188852i
\(999\) −2.91939 + 5.05653i −0.0923653 + 0.159981i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1218.2.i.a.1045.1 yes 6
7.2 even 3 8526.2.a.cb.1.3 3
7.4 even 3 inner 1218.2.i.a.697.1 6
7.5 odd 6 8526.2.a.bz.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.i.a.697.1 6 7.4 even 3 inner
1218.2.i.a.1045.1 yes 6 1.1 even 1 trivial
8526.2.a.bz.1.1 3 7.5 odd 6
8526.2.a.cb.1.3 3 7.2 even 3