Properties

Label 1216.3.e.p.1025.1
Level $1216$
Weight $3$
Character 1216.1025
Analytic conductor $33.134$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,3,Mod(1025,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.1025"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,-52,0,0,0,0,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} - 196 x^{18} + 1676 x^{17} + 16346 x^{16} - 161824 x^{15} - 667200 x^{14} + \cdots + 1135285065792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{27} \)
Twist minimal: no (minimal twist has level 608)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1025.1
Root \(-7.02110 - 2.30731i\) of defining polynomial
Character \(\chi\) \(=\) 1216.1025
Dual form 1216.3.e.p.1025.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.61461i q^{3} -3.04266 q^{5} -10.5588 q^{7} -12.2947 q^{9} -0.744974 q^{11} +9.55468i q^{13} +14.0407i q^{15} +9.60456 q^{17} +(18.6445 + 3.65821i) q^{19} +48.7248i q^{21} -33.8269 q^{23} -15.7422 q^{25} +15.2036i q^{27} +14.7653i q^{29} -32.7915i q^{31} +3.43777i q^{33} +32.1269 q^{35} +26.3076i q^{37} +44.0912 q^{39} +35.4097i q^{41} +6.65208 q^{43} +37.4085 q^{45} +83.1646 q^{47} +62.4884 q^{49} -44.3214i q^{51} +1.90270i q^{53} +2.26670 q^{55} +(16.8812 - 86.0372i) q^{57} -86.1200i q^{59} +81.2923 q^{61} +129.817 q^{63} -29.0717i q^{65} +76.4505i q^{67} +156.098i q^{69} +72.4205i q^{71} -49.5794 q^{73} +72.6442i q^{75} +7.86604 q^{77} -83.0953i q^{79} -40.4932 q^{81} +22.0785 q^{83} -29.2234 q^{85} +68.1360 q^{87} -143.280i q^{89} -100.886i q^{91} -151.320 q^{93} +(-56.7289 - 11.1307i) q^{95} +27.2590i q^{97} +9.15921 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 52 q^{9} + 56 q^{17} + 36 q^{25} - 64 q^{45} + 332 q^{49} + 88 q^{57} + 32 q^{61} - 152 q^{73} - 360 q^{77} - 476 q^{81} + 552 q^{85} - 336 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.61461i 1.53820i −0.639126 0.769102i \(-0.720704\pi\)
0.639126 0.769102i \(-0.279296\pi\)
\(4\) 0 0
\(5\) −3.04266 −0.608532 −0.304266 0.952587i \(-0.598411\pi\)
−0.304266 + 0.952587i \(0.598411\pi\)
\(6\) 0 0
\(7\) −10.5588 −1.50840 −0.754200 0.656644i \(-0.771975\pi\)
−0.754200 + 0.656644i \(0.771975\pi\)
\(8\) 0 0
\(9\) −12.2947 −1.36607
\(10\) 0 0
\(11\) −0.744974 −0.0677249 −0.0338625 0.999427i \(-0.510781\pi\)
−0.0338625 + 0.999427i \(0.510781\pi\)
\(12\) 0 0
\(13\) 9.55468i 0.734975i 0.930028 + 0.367488i \(0.119782\pi\)
−0.930028 + 0.367488i \(0.880218\pi\)
\(14\) 0 0
\(15\) 14.0407i 0.936048i
\(16\) 0 0
\(17\) 9.60456 0.564974 0.282487 0.959271i \(-0.408841\pi\)
0.282487 + 0.959271i \(0.408841\pi\)
\(18\) 0 0
\(19\) 18.6445 + 3.65821i 0.981290 + 0.192537i
\(20\) 0 0
\(21\) 48.7248i 2.32023i
\(22\) 0 0
\(23\) −33.8269 −1.47073 −0.735367 0.677670i \(-0.762990\pi\)
−0.735367 + 0.677670i \(0.762990\pi\)
\(24\) 0 0
\(25\) −15.7422 −0.629688
\(26\) 0 0
\(27\) 15.2036i 0.563097i
\(28\) 0 0
\(29\) 14.7653i 0.509147i 0.967053 + 0.254573i \(0.0819350\pi\)
−0.967053 + 0.254573i \(0.918065\pi\)
\(30\) 0 0
\(31\) 32.7915i 1.05779i −0.848687 0.528895i \(-0.822606\pi\)
0.848687 0.528895i \(-0.177394\pi\)
\(32\) 0 0
\(33\) 3.43777i 0.104175i
\(34\) 0 0
\(35\) 32.1269 0.917911
\(36\) 0 0
\(37\) 26.3076i 0.711016i 0.934673 + 0.355508i \(0.115692\pi\)
−0.934673 + 0.355508i \(0.884308\pi\)
\(38\) 0 0
\(39\) 44.0912 1.13054
\(40\) 0 0
\(41\) 35.4097i 0.863651i 0.901957 + 0.431825i \(0.142130\pi\)
−0.901957 + 0.431825i \(0.857870\pi\)
\(42\) 0 0
\(43\) 6.65208 0.154699 0.0773497 0.997004i \(-0.475354\pi\)
0.0773497 + 0.997004i \(0.475354\pi\)
\(44\) 0 0
\(45\) 37.4085 0.831301
\(46\) 0 0
\(47\) 83.1646 1.76946 0.884730 0.466104i \(-0.154343\pi\)
0.884730 + 0.466104i \(0.154343\pi\)
\(48\) 0 0
\(49\) 62.4884 1.27527
\(50\) 0 0
\(51\) 44.3214i 0.869046i
\(52\) 0 0
\(53\) 1.90270i 0.0359000i 0.999839 + 0.0179500i \(0.00571397\pi\)
−0.999839 + 0.0179500i \(0.994286\pi\)
\(54\) 0 0
\(55\) 2.26670 0.0412128
\(56\) 0 0
\(57\) 16.8812 86.0372i 0.296162 1.50942i
\(58\) 0 0
\(59\) 86.1200i 1.45966i −0.683628 0.729830i \(-0.739599\pi\)
0.683628 0.729830i \(-0.260401\pi\)
\(60\) 0 0
\(61\) 81.2923 1.33266 0.666330 0.745657i \(-0.267864\pi\)
0.666330 + 0.745657i \(0.267864\pi\)
\(62\) 0 0
\(63\) 129.817 2.06059
\(64\) 0 0
\(65\) 29.0717i 0.447256i
\(66\) 0 0
\(67\) 76.4505i 1.14105i 0.821280 + 0.570526i \(0.193261\pi\)
−0.821280 + 0.570526i \(0.806739\pi\)
\(68\) 0 0
\(69\) 156.098i 2.26229i
\(70\) 0 0
\(71\) 72.4205i 1.02001i 0.860172 + 0.510004i \(0.170356\pi\)
−0.860172 + 0.510004i \(0.829644\pi\)
\(72\) 0 0
\(73\) −49.5794 −0.679169 −0.339585 0.940575i \(-0.610287\pi\)
−0.339585 + 0.940575i \(0.610287\pi\)
\(74\) 0 0
\(75\) 72.6442i 0.968589i
\(76\) 0 0
\(77\) 7.86604 0.102156
\(78\) 0 0
\(79\) 83.0953i 1.05184i −0.850534 0.525920i \(-0.823721\pi\)
0.850534 0.525920i \(-0.176279\pi\)
\(80\) 0 0
\(81\) −40.4932 −0.499915
\(82\) 0 0
\(83\) 22.0785 0.266006 0.133003 0.991116i \(-0.457538\pi\)
0.133003 + 0.991116i \(0.457538\pi\)
\(84\) 0 0
\(85\) −29.2234 −0.343805
\(86\) 0 0
\(87\) 68.1360 0.783172
\(88\) 0 0
\(89\) 143.280i 1.60989i −0.593347 0.804946i \(-0.702194\pi\)
0.593347 0.804946i \(-0.297806\pi\)
\(90\) 0 0
\(91\) 100.886i 1.10864i
\(92\) 0 0
\(93\) −151.320 −1.62710
\(94\) 0 0
\(95\) −56.7289 11.1307i −0.597147 0.117165i
\(96\) 0 0
\(97\) 27.2590i 0.281021i 0.990079 + 0.140510i \(0.0448743\pi\)
−0.990079 + 0.140510i \(0.955126\pi\)
\(98\) 0 0
\(99\) 9.15921 0.0925173
\(100\) 0 0
\(101\) 37.0675 0.367005 0.183502 0.983019i \(-0.441256\pi\)
0.183502 + 0.983019i \(0.441256\pi\)
\(102\) 0 0
\(103\) 133.682i 1.29789i −0.760837 0.648943i \(-0.775211\pi\)
0.760837 0.648943i \(-0.224789\pi\)
\(104\) 0 0
\(105\) 148.253i 1.41193i
\(106\) 0 0
\(107\) 89.8803i 0.840003i 0.907523 + 0.420001i \(0.137970\pi\)
−0.907523 + 0.420001i \(0.862030\pi\)
\(108\) 0 0
\(109\) 89.3900i 0.820092i −0.912065 0.410046i \(-0.865513\pi\)
0.912065 0.410046i \(-0.134487\pi\)
\(110\) 0 0
\(111\) 121.399 1.09369
\(112\) 0 0
\(113\) 215.912i 1.91073i 0.295428 + 0.955365i \(0.404538\pi\)
−0.295428 + 0.955365i \(0.595462\pi\)
\(114\) 0 0
\(115\) 102.924 0.894989
\(116\) 0 0
\(117\) 117.472i 1.00403i
\(118\) 0 0
\(119\) −101.413 −0.852208
\(120\) 0 0
\(121\) −120.445 −0.995413
\(122\) 0 0
\(123\) 163.402 1.32847
\(124\) 0 0
\(125\) 123.965 0.991718
\(126\) 0 0
\(127\) 149.423i 1.17656i 0.808659 + 0.588278i \(0.200194\pi\)
−0.808659 + 0.588278i \(0.799806\pi\)
\(128\) 0 0
\(129\) 30.6968i 0.237959i
\(130\) 0 0
\(131\) 57.6652 0.440193 0.220096 0.975478i \(-0.429363\pi\)
0.220096 + 0.975478i \(0.429363\pi\)
\(132\) 0 0
\(133\) −196.864 38.6263i −1.48018 0.290424i
\(134\) 0 0
\(135\) 46.2595i 0.342663i
\(136\) 0 0
\(137\) 5.25298 0.0383429 0.0191715 0.999816i \(-0.493897\pi\)
0.0191715 + 0.999816i \(0.493897\pi\)
\(138\) 0 0
\(139\) 233.771 1.68180 0.840902 0.541188i \(-0.182025\pi\)
0.840902 + 0.541188i \(0.182025\pi\)
\(140\) 0 0
\(141\) 383.773i 2.72179i
\(142\) 0 0
\(143\) 7.11799i 0.0497761i
\(144\) 0 0
\(145\) 44.9257i 0.309832i
\(146\) 0 0
\(147\) 288.360i 1.96163i
\(148\) 0 0
\(149\) 37.4417 0.251286 0.125643 0.992075i \(-0.459901\pi\)
0.125643 + 0.992075i \(0.459901\pi\)
\(150\) 0 0
\(151\) 191.702i 1.26955i 0.772696 + 0.634776i \(0.218908\pi\)
−0.772696 + 0.634776i \(0.781092\pi\)
\(152\) 0 0
\(153\) −118.085 −0.771797
\(154\) 0 0
\(155\) 99.7735i 0.643700i
\(156\) 0 0
\(157\) −212.399 −1.35286 −0.676431 0.736506i \(-0.736474\pi\)
−0.676431 + 0.736506i \(0.736474\pi\)
\(158\) 0 0
\(159\) 8.78023 0.0552215
\(160\) 0 0
\(161\) 357.171 2.21845
\(162\) 0 0
\(163\) 176.541 1.08307 0.541536 0.840677i \(-0.317843\pi\)
0.541536 + 0.840677i \(0.317843\pi\)
\(164\) 0 0
\(165\) 10.4600i 0.0633938i
\(166\) 0 0
\(167\) 88.7285i 0.531309i 0.964068 + 0.265654i \(0.0855880\pi\)
−0.964068 + 0.265654i \(0.914412\pi\)
\(168\) 0 0
\(169\) 77.7081 0.459811
\(170\) 0 0
\(171\) −229.228 44.9765i −1.34051 0.263020i
\(172\) 0 0
\(173\) 65.5625i 0.378974i −0.981883 0.189487i \(-0.939318\pi\)
0.981883 0.189487i \(-0.0606825\pi\)
\(174\) 0 0
\(175\) 166.219 0.949822
\(176\) 0 0
\(177\) −397.411 −2.24526
\(178\) 0 0
\(179\) 8.36841i 0.0467509i −0.999727 0.0233755i \(-0.992559\pi\)
0.999727 0.0233755i \(-0.00744132\pi\)
\(180\) 0 0
\(181\) 135.567i 0.748988i 0.927229 + 0.374494i \(0.122184\pi\)
−0.927229 + 0.374494i \(0.877816\pi\)
\(182\) 0 0
\(183\) 375.133i 2.04991i
\(184\) 0 0
\(185\) 80.0451i 0.432676i
\(186\) 0 0
\(187\) −7.15515 −0.0382628
\(188\) 0 0
\(189\) 160.532i 0.849376i
\(190\) 0 0
\(191\) −307.043 −1.60755 −0.803777 0.594931i \(-0.797179\pi\)
−0.803777 + 0.594931i \(0.797179\pi\)
\(192\) 0 0
\(193\) 329.860i 1.70912i 0.519353 + 0.854560i \(0.326173\pi\)
−0.519353 + 0.854560i \(0.673827\pi\)
\(194\) 0 0
\(195\) −134.155 −0.687972
\(196\) 0 0
\(197\) 295.125 1.49809 0.749047 0.662516i \(-0.230512\pi\)
0.749047 + 0.662516i \(0.230512\pi\)
\(198\) 0 0
\(199\) −12.7280 −0.0639600 −0.0319800 0.999489i \(-0.510181\pi\)
−0.0319800 + 0.999489i \(0.510181\pi\)
\(200\) 0 0
\(201\) 352.789 1.75517
\(202\) 0 0
\(203\) 155.903i 0.767997i
\(204\) 0 0
\(205\) 107.740i 0.525560i
\(206\) 0 0
\(207\) 415.890 2.00913
\(208\) 0 0
\(209\) −13.8897 2.72527i −0.0664578 0.0130396i
\(210\) 0 0
\(211\) 61.9360i 0.293536i 0.989171 + 0.146768i \(0.0468870\pi\)
−0.989171 + 0.146768i \(0.953113\pi\)
\(212\) 0 0
\(213\) 334.193 1.56898
\(214\) 0 0
\(215\) −20.2400 −0.0941396
\(216\) 0 0
\(217\) 346.239i 1.59557i
\(218\) 0 0
\(219\) 228.790i 1.04470i
\(220\) 0 0
\(221\) 91.7685i 0.415242i
\(222\) 0 0
\(223\) 138.551i 0.621304i −0.950524 0.310652i \(-0.899453\pi\)
0.950524 0.310652i \(-0.100547\pi\)
\(224\) 0 0
\(225\) 193.545 0.860201
\(226\) 0 0
\(227\) 224.696i 0.989851i 0.868935 + 0.494926i \(0.164805\pi\)
−0.868935 + 0.494926i \(0.835195\pi\)
\(228\) 0 0
\(229\) 80.7129 0.352458 0.176229 0.984349i \(-0.443610\pi\)
0.176229 + 0.984349i \(0.443610\pi\)
\(230\) 0 0
\(231\) 36.2987i 0.157137i
\(232\) 0 0
\(233\) 228.785 0.981908 0.490954 0.871186i \(-0.336648\pi\)
0.490954 + 0.871186i \(0.336648\pi\)
\(234\) 0 0
\(235\) −253.042 −1.07677
\(236\) 0 0
\(237\) −383.453 −1.61794
\(238\) 0 0
\(239\) −56.9787 −0.238404 −0.119202 0.992870i \(-0.538034\pi\)
−0.119202 + 0.992870i \(0.538034\pi\)
\(240\) 0 0
\(241\) 373.328i 1.54908i 0.632525 + 0.774540i \(0.282019\pi\)
−0.632525 + 0.774540i \(0.717981\pi\)
\(242\) 0 0
\(243\) 323.693i 1.33207i
\(244\) 0 0
\(245\) −190.131 −0.776045
\(246\) 0 0
\(247\) −34.9530 + 178.142i −0.141510 + 0.721224i
\(248\) 0 0
\(249\) 101.884i 0.409172i
\(250\) 0 0
\(251\) −186.042 −0.741201 −0.370601 0.928792i \(-0.620848\pi\)
−0.370601 + 0.928792i \(0.620848\pi\)
\(252\) 0 0
\(253\) 25.2001 0.0996053
\(254\) 0 0
\(255\) 134.855i 0.528843i
\(256\) 0 0
\(257\) 43.9460i 0.170996i −0.996338 0.0854980i \(-0.972752\pi\)
0.996338 0.0854980i \(-0.0272481\pi\)
\(258\) 0 0
\(259\) 277.777i 1.07250i
\(260\) 0 0
\(261\) 181.534i 0.695532i
\(262\) 0 0
\(263\) 202.871 0.771371 0.385686 0.922630i \(-0.373965\pi\)
0.385686 + 0.922630i \(0.373965\pi\)
\(264\) 0 0
\(265\) 5.78927i 0.0218463i
\(266\) 0 0
\(267\) −661.184 −2.47635
\(268\) 0 0
\(269\) 15.4568i 0.0574601i 0.999587 + 0.0287300i \(0.00914631\pi\)
−0.999587 + 0.0287300i \(0.990854\pi\)
\(270\) 0 0
\(271\) 41.7084 0.153906 0.0769528 0.997035i \(-0.475481\pi\)
0.0769528 + 0.997035i \(0.475481\pi\)
\(272\) 0 0
\(273\) −465.550 −1.70531
\(274\) 0 0
\(275\) 11.7275 0.0426456
\(276\) 0 0
\(277\) 315.358 1.13848 0.569238 0.822173i \(-0.307238\pi\)
0.569238 + 0.822173i \(0.307238\pi\)
\(278\) 0 0
\(279\) 403.161i 1.44502i
\(280\) 0 0
\(281\) 325.209i 1.15733i 0.815566 + 0.578664i \(0.196426\pi\)
−0.815566 + 0.578664i \(0.803574\pi\)
\(282\) 0 0
\(283\) 393.336 1.38988 0.694941 0.719067i \(-0.255431\pi\)
0.694941 + 0.719067i \(0.255431\pi\)
\(284\) 0 0
\(285\) −51.3639 + 261.782i −0.180224 + 0.918534i
\(286\) 0 0
\(287\) 373.884i 1.30273i
\(288\) 0 0
\(289\) −196.752 −0.680804
\(290\) 0 0
\(291\) 125.790 0.432267
\(292\) 0 0
\(293\) 552.119i 1.88437i 0.335099 + 0.942183i \(0.391230\pi\)
−0.335099 + 0.942183i \(0.608770\pi\)
\(294\) 0 0
\(295\) 262.034i 0.888251i
\(296\) 0 0
\(297\) 11.3263i 0.0381357i
\(298\) 0 0
\(299\) 323.205i 1.08095i
\(300\) 0 0
\(301\) −70.2380 −0.233349
\(302\) 0 0
\(303\) 171.052i 0.564529i
\(304\) 0 0
\(305\) −247.345 −0.810967
\(306\) 0 0
\(307\) 79.4760i 0.258880i −0.991587 0.129440i \(-0.958682\pi\)
0.991587 0.129440i \(-0.0413179\pi\)
\(308\) 0 0
\(309\) −616.892 −1.99641
\(310\) 0 0
\(311\) −339.941 −1.09306 −0.546529 0.837440i \(-0.684051\pi\)
−0.546529 + 0.837440i \(0.684051\pi\)
\(312\) 0 0
\(313\) 374.341 1.19598 0.597989 0.801505i \(-0.295967\pi\)
0.597989 + 0.801505i \(0.295967\pi\)
\(314\) 0 0
\(315\) −394.989 −1.25393
\(316\) 0 0
\(317\) 574.694i 1.81292i 0.422296 + 0.906458i \(0.361224\pi\)
−0.422296 + 0.906458i \(0.638776\pi\)
\(318\) 0 0
\(319\) 10.9997i 0.0344819i
\(320\) 0 0
\(321\) 414.763 1.29210
\(322\) 0 0
\(323\) 179.072 + 35.1355i 0.554403 + 0.108779i
\(324\) 0 0
\(325\) 150.412i 0.462805i
\(326\) 0 0
\(327\) −412.500 −1.26147
\(328\) 0 0
\(329\) −878.119 −2.66905
\(330\) 0 0
\(331\) 393.365i 1.18841i −0.804312 0.594207i \(-0.797466\pi\)
0.804312 0.594207i \(-0.202534\pi\)
\(332\) 0 0
\(333\) 323.443i 0.971300i
\(334\) 0 0
\(335\) 232.613i 0.694367i
\(336\) 0 0
\(337\) 518.395i 1.53826i 0.639091 + 0.769131i \(0.279311\pi\)
−0.639091 + 0.769131i \(0.720689\pi\)
\(338\) 0 0
\(339\) 996.353 2.93909
\(340\) 0 0
\(341\) 24.4288i 0.0716388i
\(342\) 0 0
\(343\) −142.421 −0.415221
\(344\) 0 0
\(345\) 474.953i 1.37668i
\(346\) 0 0
\(347\) −486.736 −1.40270 −0.701349 0.712818i \(-0.747419\pi\)
−0.701349 + 0.712818i \(0.747419\pi\)
\(348\) 0 0
\(349\) 437.910 1.25476 0.627378 0.778715i \(-0.284128\pi\)
0.627378 + 0.778715i \(0.284128\pi\)
\(350\) 0 0
\(351\) −145.266 −0.413862
\(352\) 0 0
\(353\) 395.142 1.11938 0.559691 0.828701i \(-0.310920\pi\)
0.559691 + 0.828701i \(0.310920\pi\)
\(354\) 0 0
\(355\) 220.351i 0.620708i
\(356\) 0 0
\(357\) 467.981i 1.31087i
\(358\) 0 0
\(359\) −610.714 −1.70115 −0.850577 0.525851i \(-0.823747\pi\)
−0.850577 + 0.525851i \(0.823747\pi\)
\(360\) 0 0
\(361\) 334.235 + 136.411i 0.925859 + 0.377870i
\(362\) 0 0
\(363\) 555.807i 1.53115i
\(364\) 0 0
\(365\) 150.853 0.413297
\(366\) 0 0
\(367\) 417.827 1.13849 0.569246 0.822167i \(-0.307235\pi\)
0.569246 + 0.822167i \(0.307235\pi\)
\(368\) 0 0
\(369\) 435.350i 1.17981i
\(370\) 0 0
\(371\) 20.0902i 0.0541516i
\(372\) 0 0
\(373\) 380.137i 1.01913i −0.860431 0.509567i \(-0.829806\pi\)
0.860431 0.509567i \(-0.170194\pi\)
\(374\) 0 0
\(375\) 572.050i 1.52547i
\(376\) 0 0
\(377\) −141.077 −0.374210
\(378\) 0 0
\(379\) 686.740i 1.81198i 0.423300 + 0.905989i \(0.360872\pi\)
−0.423300 + 0.905989i \(0.639128\pi\)
\(380\) 0 0
\(381\) 689.528 1.80978
\(382\) 0 0
\(383\) 678.393i 1.77126i 0.464391 + 0.885630i \(0.346273\pi\)
−0.464391 + 0.885630i \(0.653727\pi\)
\(384\) 0 0
\(385\) −23.9337 −0.0621654
\(386\) 0 0
\(387\) −81.7851 −0.211331
\(388\) 0 0
\(389\) −325.724 −0.837338 −0.418669 0.908139i \(-0.637503\pi\)
−0.418669 + 0.908139i \(0.637503\pi\)
\(390\) 0 0
\(391\) −324.892 −0.830926
\(392\) 0 0
\(393\) 266.103i 0.677107i
\(394\) 0 0
\(395\) 252.831i 0.640078i
\(396\) 0 0
\(397\) −415.385 −1.04631 −0.523155 0.852238i \(-0.675245\pi\)
−0.523155 + 0.852238i \(0.675245\pi\)
\(398\) 0 0
\(399\) −178.246 + 908.450i −0.446731 + 2.27682i
\(400\) 0 0
\(401\) 546.926i 1.36391i −0.731396 0.681953i \(-0.761131\pi\)
0.731396 0.681953i \(-0.238869\pi\)
\(402\) 0 0
\(403\) 313.312 0.777450
\(404\) 0 0
\(405\) 123.207 0.304215
\(406\) 0 0
\(407\) 19.5985i 0.0481535i
\(408\) 0 0
\(409\) 336.646i 0.823095i 0.911388 + 0.411547i \(0.135012\pi\)
−0.911388 + 0.411547i \(0.864988\pi\)
\(410\) 0 0
\(411\) 24.2405i 0.0589793i
\(412\) 0 0
\(413\) 909.324i 2.20175i
\(414\) 0 0
\(415\) −67.1774 −0.161873
\(416\) 0 0
\(417\) 1078.76i 2.58696i
\(418\) 0 0
\(419\) −379.191 −0.904990 −0.452495 0.891767i \(-0.649466\pi\)
−0.452495 + 0.891767i \(0.649466\pi\)
\(420\) 0 0
\(421\) 210.111i 0.499076i −0.968365 0.249538i \(-0.919721\pi\)
0.968365 0.249538i \(-0.0802787\pi\)
\(422\) 0 0
\(423\) −1022.48 −2.41721
\(424\) 0 0
\(425\) −151.197 −0.355758
\(426\) 0 0
\(427\) −858.350 −2.01019
\(428\) 0 0
\(429\) −32.8468 −0.0765659
\(430\) 0 0
\(431\) 419.971i 0.974410i −0.873288 0.487205i \(-0.838017\pi\)
0.873288 0.487205i \(-0.161983\pi\)
\(432\) 0 0
\(433\) 560.709i 1.29494i −0.762091 0.647470i \(-0.775827\pi\)
0.762091 0.647470i \(-0.224173\pi\)
\(434\) 0 0
\(435\) −207.315 −0.476586
\(436\) 0 0
\(437\) −630.685 123.746i −1.44322 0.283171i
\(438\) 0 0
\(439\) 595.774i 1.35712i −0.734547 0.678558i \(-0.762605\pi\)
0.734547 0.678558i \(-0.237395\pi\)
\(440\) 0 0
\(441\) −768.274 −1.74212
\(442\) 0 0
\(443\) −203.741 −0.459913 −0.229956 0.973201i \(-0.573858\pi\)
−0.229956 + 0.973201i \(0.573858\pi\)
\(444\) 0 0
\(445\) 435.954i 0.979672i
\(446\) 0 0
\(447\) 172.779i 0.386530i
\(448\) 0 0
\(449\) 267.956i 0.596784i −0.954443 0.298392i \(-0.903550\pi\)
0.954443 0.298392i \(-0.0964503\pi\)
\(450\) 0 0
\(451\) 26.3793i 0.0584907i
\(452\) 0 0
\(453\) 884.633 1.95283
\(454\) 0 0
\(455\) 306.962i 0.674642i
\(456\) 0 0
\(457\) 542.354 1.18677 0.593385 0.804918i \(-0.297791\pi\)
0.593385 + 0.804918i \(0.297791\pi\)
\(458\) 0 0
\(459\) 146.024i 0.318135i
\(460\) 0 0
\(461\) 374.095 0.811486 0.405743 0.913987i \(-0.367013\pi\)
0.405743 + 0.913987i \(0.367013\pi\)
\(462\) 0 0
\(463\) 95.0496 0.205291 0.102645 0.994718i \(-0.467269\pi\)
0.102645 + 0.994718i \(0.467269\pi\)
\(464\) 0 0
\(465\) 460.416 0.990143
\(466\) 0 0
\(467\) −233.057 −0.499051 −0.249525 0.968368i \(-0.580275\pi\)
−0.249525 + 0.968368i \(0.580275\pi\)
\(468\) 0 0
\(469\) 807.226i 1.72116i
\(470\) 0 0
\(471\) 980.141i 2.08098i
\(472\) 0 0
\(473\) −4.95562 −0.0104770
\(474\) 0 0
\(475\) −293.506 57.5883i −0.617907 0.121239i
\(476\) 0 0
\(477\) 23.3931i 0.0490421i
\(478\) 0 0
\(479\) −108.804 −0.227148 −0.113574 0.993530i \(-0.536230\pi\)
−0.113574 + 0.993530i \(0.536230\pi\)
\(480\) 0 0
\(481\) −251.360 −0.522579
\(482\) 0 0
\(483\) 1648.21i 3.41244i
\(484\) 0 0
\(485\) 82.9399i 0.171010i
\(486\) 0 0
\(487\) 280.774i 0.576538i −0.957550 0.288269i \(-0.906920\pi\)
0.957550 0.288269i \(-0.0930797\pi\)
\(488\) 0 0
\(489\) 814.668i 1.66599i
\(490\) 0 0
\(491\) −795.085 −1.61932 −0.809659 0.586901i \(-0.800348\pi\)
−0.809659 + 0.586901i \(0.800348\pi\)
\(492\) 0 0
\(493\) 141.814i 0.287655i
\(494\) 0 0
\(495\) −27.8684 −0.0562998
\(496\) 0 0
\(497\) 764.674i 1.53858i
\(498\) 0 0
\(499\) −598.787 −1.19997 −0.599987 0.800010i \(-0.704827\pi\)
−0.599987 + 0.800010i \(0.704827\pi\)
\(500\) 0 0
\(501\) 409.448 0.817262
\(502\) 0 0
\(503\) 377.735 0.750965 0.375482 0.926830i \(-0.377477\pi\)
0.375482 + 0.926830i \(0.377477\pi\)
\(504\) 0 0
\(505\) −112.784 −0.223334
\(506\) 0 0
\(507\) 358.593i 0.707284i
\(508\) 0 0
\(509\) 302.308i 0.593926i −0.954889 0.296963i \(-0.904026\pi\)
0.954889 0.296963i \(-0.0959738\pi\)
\(510\) 0 0
\(511\) 523.499 1.02446
\(512\) 0 0
\(513\) −55.6181 + 283.464i −0.108417 + 0.552561i
\(514\) 0 0
\(515\) 406.750i 0.789805i
\(516\) 0 0
\(517\) −61.9555 −0.119837
\(518\) 0 0
\(519\) −302.546 −0.582940
\(520\) 0 0
\(521\) 235.449i 0.451918i 0.974137 + 0.225959i \(0.0725515\pi\)
−0.974137 + 0.225959i \(0.927449\pi\)
\(522\) 0 0
\(523\) 394.033i 0.753409i 0.926333 + 0.376705i \(0.122943\pi\)
−0.926333 + 0.376705i \(0.877057\pi\)
\(524\) 0 0
\(525\) 767.036i 1.46102i
\(526\) 0 0
\(527\) 314.948i 0.597625i
\(528\) 0 0
\(529\) 615.257 1.16306
\(530\) 0 0
\(531\) 1058.82i 1.99401i
\(532\) 0 0
\(533\) −338.328 −0.634762
\(534\) 0 0
\(535\) 273.475i 0.511169i
\(536\) 0 0
\(537\) −38.6170 −0.0719125
\(538\) 0 0
\(539\) −46.5522 −0.0863677
\(540\) 0 0
\(541\) −275.902 −0.509985 −0.254993 0.966943i \(-0.582073\pi\)
−0.254993 + 0.966943i \(0.582073\pi\)
\(542\) 0 0
\(543\) 625.589 1.15210
\(544\) 0 0
\(545\) 271.984i 0.499053i
\(546\) 0 0
\(547\) 953.772i 1.74364i 0.489825 + 0.871821i \(0.337061\pi\)
−0.489825 + 0.871821i \(0.662939\pi\)
\(548\) 0 0
\(549\) −999.462 −1.82051
\(550\) 0 0
\(551\) −54.0144 + 275.291i −0.0980298 + 0.499620i
\(552\) 0 0
\(553\) 877.387i 1.58659i
\(554\) 0 0
\(555\) −369.377 −0.665544
\(556\) 0 0
\(557\) −21.1674 −0.0380026 −0.0190013 0.999819i \(-0.506049\pi\)
−0.0190013 + 0.999819i \(0.506049\pi\)
\(558\) 0 0
\(559\) 63.5584i 0.113700i
\(560\) 0 0
\(561\) 33.0183i 0.0588561i
\(562\) 0 0
\(563\) 492.820i 0.875346i −0.899134 0.437673i \(-0.855803\pi\)
0.899134 0.437673i \(-0.144197\pi\)
\(564\) 0 0
\(565\) 656.949i 1.16274i
\(566\) 0 0
\(567\) 427.559 0.754073
\(568\) 0 0
\(569\) 227.031i 0.399000i 0.979898 + 0.199500i \(0.0639317\pi\)
−0.979898 + 0.199500i \(0.936068\pi\)
\(570\) 0 0
\(571\) 605.159 1.05982 0.529911 0.848053i \(-0.322225\pi\)
0.529911 + 0.848053i \(0.322225\pi\)
\(572\) 0 0
\(573\) 1416.88i 2.47275i
\(574\) 0 0
\(575\) 532.509 0.926103
\(576\) 0 0
\(577\) −580.531 −1.00612 −0.503060 0.864252i \(-0.667792\pi\)
−0.503060 + 0.864252i \(0.667792\pi\)
\(578\) 0 0
\(579\) 1522.18 2.62898
\(580\) 0 0
\(581\) −233.123 −0.401244
\(582\) 0 0
\(583\) 1.41746i 0.00243132i
\(584\) 0 0
\(585\) 357.426i 0.610985i
\(586\) 0 0
\(587\) −326.970 −0.557019 −0.278510 0.960433i \(-0.589840\pi\)
−0.278510 + 0.960433i \(0.589840\pi\)
\(588\) 0 0
\(589\) 119.958 611.381i 0.203664 1.03800i
\(590\) 0 0
\(591\) 1361.89i 2.30438i
\(592\) 0 0
\(593\) −395.107 −0.666285 −0.333143 0.942876i \(-0.608109\pi\)
−0.333143 + 0.942876i \(0.608109\pi\)
\(594\) 0 0
\(595\) 308.565 0.518596
\(596\) 0 0
\(597\) 58.7350i 0.0983836i
\(598\) 0 0
\(599\) 516.663i 0.862543i 0.902222 + 0.431272i \(0.141935\pi\)
−0.902222 + 0.431272i \(0.858065\pi\)
\(600\) 0 0
\(601\) 711.606i 1.18404i 0.805925 + 0.592018i \(0.201669\pi\)
−0.805925 + 0.592018i \(0.798331\pi\)
\(602\) 0 0
\(603\) 939.933i 1.55876i
\(604\) 0 0
\(605\) 366.474 0.605741
\(606\) 0 0
\(607\) 416.619i 0.686358i −0.939270 0.343179i \(-0.888496\pi\)
0.939270 0.343179i \(-0.111504\pi\)
\(608\) 0 0
\(609\) −719.434 −1.18134
\(610\) 0 0
\(611\) 794.611i 1.30051i
\(612\) 0 0
\(613\) −487.985 −0.796060 −0.398030 0.917372i \(-0.630306\pi\)
−0.398030 + 0.917372i \(0.630306\pi\)
\(614\) 0 0
\(615\) −497.177 −0.808418
\(616\) 0 0
\(617\) −850.573 −1.37856 −0.689281 0.724494i \(-0.742073\pi\)
−0.689281 + 0.724494i \(0.742073\pi\)
\(618\) 0 0
\(619\) 1113.88 1.79948 0.899740 0.436425i \(-0.143756\pi\)
0.899740 + 0.436425i \(0.143756\pi\)
\(620\) 0 0
\(621\) 514.291i 0.828166i
\(622\) 0 0
\(623\) 1512.87i 2.42836i
\(624\) 0 0
\(625\) 16.3722 0.0261954
\(626\) 0 0
\(627\) −12.5761 + 64.0955i −0.0200575 + 0.102226i
\(628\) 0 0
\(629\) 252.673i 0.401706i
\(630\) 0 0
\(631\) 633.935 1.00465 0.502326 0.864678i \(-0.332478\pi\)
0.502326 + 0.864678i \(0.332478\pi\)
\(632\) 0 0
\(633\) 285.811 0.451518
\(634\) 0 0
\(635\) 454.642i 0.715972i
\(636\) 0 0
\(637\) 597.056i 0.937294i
\(638\) 0 0
\(639\) 890.386i 1.39341i
\(640\) 0 0
\(641\) 230.942i 0.360283i −0.983641 0.180142i \(-0.942344\pi\)
0.983641 0.180142i \(-0.0576556\pi\)
\(642\) 0 0
\(643\) −665.863 −1.03556 −0.517778 0.855515i \(-0.673241\pi\)
−0.517778 + 0.855515i \(0.673241\pi\)
\(644\) 0 0
\(645\) 93.3999i 0.144806i
\(646\) 0 0
\(647\) −418.479 −0.646800 −0.323400 0.946262i \(-0.604826\pi\)
−0.323400 + 0.946262i \(0.604826\pi\)
\(648\) 0 0
\(649\) 64.1572i 0.0988554i
\(650\) 0 0
\(651\) 1597.76 2.45432
\(652\) 0 0
\(653\) 456.869 0.699647 0.349823 0.936816i \(-0.386242\pi\)
0.349823 + 0.936816i \(0.386242\pi\)
\(654\) 0 0
\(655\) −175.456 −0.267872
\(656\) 0 0
\(657\) 609.562 0.927796
\(658\) 0 0
\(659\) 638.685i 0.969173i −0.874743 0.484587i \(-0.838970\pi\)
0.874743 0.484587i \(-0.161030\pi\)
\(660\) 0 0
\(661\) 264.809i 0.400619i −0.979733 0.200310i \(-0.935805\pi\)
0.979733 0.200310i \(-0.0641948\pi\)
\(662\) 0 0
\(663\) 423.476 0.638727
\(664\) 0 0
\(665\) 598.990 + 117.527i 0.900736 + 0.176732i
\(666\) 0 0
\(667\) 499.462i 0.748819i
\(668\) 0 0
\(669\) −639.359 −0.955693
\(670\) 0 0
\(671\) −60.5607 −0.0902543
\(672\) 0 0
\(673\) 912.276i 1.35554i −0.735276 0.677768i \(-0.762947\pi\)
0.735276 0.677768i \(-0.237053\pi\)
\(674\) 0 0
\(675\) 239.339i 0.354576i
\(676\) 0 0
\(677\) 81.3790i 0.120205i 0.998192 + 0.0601027i \(0.0191428\pi\)
−0.998192 + 0.0601027i \(0.980857\pi\)
\(678\) 0 0
\(679\) 287.822i 0.423892i
\(680\) 0 0
\(681\) 1036.89 1.52259
\(682\) 0 0
\(683\) 1192.27i 1.74563i 0.488051 + 0.872815i \(0.337708\pi\)
−0.488051 + 0.872815i \(0.662292\pi\)
\(684\) 0 0
\(685\) −15.9830 −0.0233329
\(686\) 0 0
\(687\) 372.459i 0.542153i
\(688\) 0 0
\(689\) −18.1797 −0.0263856
\(690\) 0 0
\(691\) −274.429 −0.397148 −0.198574 0.980086i \(-0.563631\pi\)
−0.198574 + 0.980086i \(0.563631\pi\)
\(692\) 0 0
\(693\) −96.7103 −0.139553
\(694\) 0 0
\(695\) −711.285 −1.02343
\(696\) 0 0
\(697\) 340.095i 0.487941i
\(698\) 0 0
\(699\) 1055.75i 1.51038i
\(700\) 0 0
\(701\) −39.0692 −0.0557335 −0.0278667 0.999612i \(-0.508871\pi\)
−0.0278667 + 0.999612i \(0.508871\pi\)
\(702\) 0 0
\(703\) −96.2387 + 490.492i −0.136897 + 0.697712i
\(704\) 0 0
\(705\) 1167.69i 1.65630i
\(706\) 0 0
\(707\) −391.388 −0.553590
\(708\) 0 0
\(709\) 1179.61 1.66377 0.831885 0.554948i \(-0.187262\pi\)
0.831885 + 0.554948i \(0.187262\pi\)
\(710\) 0 0
\(711\) 1021.63i 1.43689i
\(712\) 0 0
\(713\) 1109.23i 1.55573i
\(714\) 0 0
\(715\) 21.6576i 0.0302904i
\(716\) 0 0
\(717\) 262.935i 0.366715i
\(718\) 0 0
\(719\) −541.922 −0.753716 −0.376858 0.926271i \(-0.622996\pi\)
−0.376858 + 0.926271i \(0.622996\pi\)
\(720\) 0 0
\(721\) 1411.52i 1.95773i
\(722\) 0 0
\(723\) 1722.77 2.38280
\(724\) 0 0
\(725\) 232.438i 0.320604i
\(726\) 0 0
\(727\) −74.6095 −0.102627 −0.0513133 0.998683i \(-0.516341\pi\)
−0.0513133 + 0.998683i \(0.516341\pi\)
\(728\) 0 0
\(729\) 1129.28 1.54908
\(730\) 0 0
\(731\) 63.8903 0.0874012
\(732\) 0 0
\(733\) −450.558 −0.614677 −0.307338 0.951600i \(-0.599438\pi\)
−0.307338 + 0.951600i \(0.599438\pi\)
\(734\) 0 0
\(735\) 877.381i 1.19372i
\(736\) 0 0
\(737\) 56.9536i 0.0772776i
\(738\) 0 0
\(739\) 147.137 0.199102 0.0995511 0.995032i \(-0.468259\pi\)
0.0995511 + 0.995032i \(0.468259\pi\)
\(740\) 0 0
\(741\) 822.058 + 161.295i 1.10939 + 0.217672i
\(742\) 0 0
\(743\) 246.029i 0.331130i −0.986199 0.165565i \(-0.947055\pi\)
0.986199 0.165565i \(-0.0529447\pi\)
\(744\) 0 0
\(745\) −113.922 −0.152916
\(746\) 0 0
\(747\) −271.448 −0.363384
\(748\) 0 0
\(749\) 949.029i 1.26706i
\(750\) 0 0
\(751\) 759.697i 1.01158i 0.862656 + 0.505790i \(0.168799\pi\)
−0.862656 + 0.505790i \(0.831201\pi\)
\(752\) 0 0
\(753\) 858.510i 1.14012i
\(754\) 0 0
\(755\) 583.286i 0.772564i
\(756\) 0 0
\(757\) 883.598 1.16724 0.583618 0.812028i \(-0.301636\pi\)
0.583618 + 0.812028i \(0.301636\pi\)
\(758\) 0 0
\(759\) 116.289i 0.153213i
\(760\) 0 0
\(761\) 967.768 1.27171 0.635853 0.771810i \(-0.280648\pi\)
0.635853 + 0.771810i \(0.280648\pi\)
\(762\) 0 0
\(763\) 943.852i 1.23703i
\(764\) 0 0
\(765\) 359.293 0.469663
\(766\) 0 0
\(767\) 822.849 1.07281
\(768\) 0 0
\(769\) −172.159 −0.223874 −0.111937 0.993715i \(-0.535705\pi\)
−0.111937 + 0.993715i \(0.535705\pi\)
\(770\) 0 0
\(771\) −202.794 −0.263027
\(772\) 0 0
\(773\) 231.818i 0.299894i −0.988694 0.149947i \(-0.952090\pi\)
0.988694 0.149947i \(-0.0479103\pi\)
\(774\) 0 0
\(775\) 516.211i 0.666078i
\(776\) 0 0
\(777\) −1281.83 −1.64972
\(778\) 0 0
\(779\) −129.536 + 660.196i −0.166285 + 0.847492i
\(780\) 0 0
\(781\) 53.9514i 0.0690799i
\(782\) 0 0
\(783\) −224.485 −0.286699
\(784\) 0 0
\(785\) 646.259 0.823260
\(786\) 0 0
\(787\) 1399.98i 1.77888i −0.457047 0.889442i \(-0.651093\pi\)
0.457047 0.889442i \(-0.348907\pi\)
\(788\) 0 0
\(789\) 936.170i 1.18653i
\(790\) 0 0
\(791\) 2279.78i 2.88215i
\(792\) 0 0
\(793\) 776.722i 0.979473i
\(794\) 0 0
\(795\) −26.7153 −0.0336041
\(796\) 0 0
\(797\) 1091.52i 1.36954i 0.728759 + 0.684770i \(0.240098\pi\)
−0.728759 + 0.684770i \(0.759902\pi\)
\(798\) 0 0
\(799\) 798.760 0.999699
\(800\) 0 0
\(801\) 1761.59i 2.19923i
\(802\) 0 0
\(803\) 36.9353 0.0459967
\(804\) 0 0
\(805\) −1086.75 −1.35000
\(806\) 0 0
\(807\) 71.3270 0.0883853
\(808\) 0 0
\(809\) −961.211 −1.18815 −0.594074 0.804411i \(-0.702481\pi\)
−0.594074 + 0.804411i \(0.702481\pi\)
\(810\) 0 0
\(811\) 269.569i 0.332391i −0.986093 0.166195i \(-0.946852\pi\)
0.986093 0.166195i \(-0.0531483\pi\)
\(812\) 0 0
\(813\) 192.468i 0.236738i
\(814\) 0 0
\(815\) −537.154 −0.659085
\(816\) 0 0
\(817\) 124.025 + 24.3347i 0.151805 + 0.0297854i
\(818\) 0 0
\(819\) 1240.36i 1.51448i
\(820\) 0 0
\(821\) −978.779 −1.19218 −0.596089 0.802918i \(-0.703280\pi\)
−0.596089 + 0.802918i \(0.703280\pi\)
\(822\) 0 0
\(823\) 821.505 0.998184 0.499092 0.866549i \(-0.333667\pi\)
0.499092 + 0.866549i \(0.333667\pi\)
\(824\) 0 0
\(825\) 54.1181i 0.0655976i
\(826\) 0 0
\(827\) 1042.24i 1.26026i 0.776489 + 0.630130i \(0.216998\pi\)
−0.776489 + 0.630130i \(0.783002\pi\)
\(828\) 0 0
\(829\) 686.208i 0.827754i 0.910333 + 0.413877i \(0.135826\pi\)
−0.910333 + 0.413877i \(0.864174\pi\)
\(830\) 0 0
\(831\) 1455.26i 1.75121i
\(832\) 0 0
\(833\) 600.173 0.720496
\(834\) 0 0
\(835\) 269.971i 0.323319i
\(836\) 0 0
\(837\) 498.550 0.595639
\(838\) 0 0
\(839\) 1278.82i 1.52422i −0.647448 0.762110i \(-0.724164\pi\)
0.647448 0.762110i \(-0.275836\pi\)
\(840\) 0 0
\(841\) 622.987 0.740770
\(842\) 0 0
\(843\) 1500.72 1.78021
\(844\) 0 0
\(845\) −236.440 −0.279810
\(846\) 0 0
\(847\) 1271.76 1.50148
\(848\) 0 0
\(849\) 1815.10i 2.13792i
\(850\) 0 0
\(851\) 889.903i 1.04571i
\(852\) 0 0
\(853\) 624.553 0.732185 0.366092 0.930579i \(-0.380695\pi\)
0.366092 + 0.930579i \(0.380695\pi\)
\(854\) 0 0
\(855\) 697.463 + 136.848i 0.815747 + 0.160056i
\(856\) 0 0
\(857\) 449.009i 0.523931i −0.965077 0.261965i \(-0.915629\pi\)
0.965077 0.261965i \(-0.0843706\pi\)
\(858\) 0 0
\(859\) 29.9823 0.0349037 0.0174519 0.999848i \(-0.494445\pi\)
0.0174519 + 0.999848i \(0.494445\pi\)
\(860\) 0 0
\(861\) −1725.33 −2.00387
\(862\) 0 0
\(863\) 398.762i 0.462065i −0.972946 0.231033i \(-0.925790\pi\)
0.972946 0.231033i \(-0.0742104\pi\)
\(864\) 0 0
\(865\) 199.485i 0.230618i
\(866\) 0 0
\(867\) 907.936i 1.04722i
\(868\) 0 0
\(869\) 61.9038i 0.0712357i
\(870\) 0 0
\(871\) −730.460 −0.838645
\(872\) 0 0
\(873\) 335.140i 0.383895i
\(874\) 0 0
\(875\) −1308.92 −1.49591
\(876\) 0 0
\(877\) 1265.59i 1.44309i −0.692369 0.721543i \(-0.743433\pi\)
0.692369 0.721543i \(-0.256567\pi\)
\(878\) 0 0
\(879\) 2547.82 2.89854
\(880\) 0 0
\(881\) 396.725 0.450312 0.225156 0.974323i \(-0.427711\pi\)
0.225156 + 0.974323i \(0.427711\pi\)
\(882\) 0 0
\(883\) −1183.69 −1.34053 −0.670267 0.742120i \(-0.733820\pi\)
−0.670267 + 0.742120i \(0.733820\pi\)
\(884\) 0 0
\(885\) 1209.19 1.36631
\(886\) 0 0
\(887\) 1461.28i 1.64744i 0.566996 + 0.823721i \(0.308106\pi\)
−0.566996 + 0.823721i \(0.691894\pi\)
\(888\) 0 0
\(889\) 1577.72i 1.77472i
\(890\) 0 0
\(891\) 30.1664 0.0338567
\(892\) 0 0
\(893\) 1550.56 + 304.234i 1.73635 + 0.340687i
\(894\) 0 0
\(895\) 25.4623i 0.0284494i
\(896\) 0 0
\(897\) −1491.47 −1.66273
\(898\) 0 0
\(899\) 484.175 0.538571
\(900\) 0 0
\(901\) 18.2746i 0.0202826i
\(902\) 0 0
\(903\) 324.121i 0.358938i
\(904\) 0 0
\(905\) 412.484i 0.455784i
\(906\) 0 0
\(907\) 1236.34i 1.36310i −0.731769 0.681552i \(-0.761305\pi\)
0.731769 0.681552i \(-0.238695\pi\)
\(908\) 0 0
\(909\) −455.732 −0.501356
\(910\) 0 0
\(911\) 78.5080i 0.0861778i −0.999071 0.0430889i \(-0.986280\pi\)
0.999071 0.0430889i \(-0.0137199\pi\)
\(912\) 0 0
\(913\) −16.4479 −0.0180152
\(914\) 0 0
\(915\) 1141.40i 1.24743i
\(916\) 0 0
\(917\) −608.876 −0.663987
\(918\) 0 0
\(919\) 525.085 0.571366 0.285683 0.958324i \(-0.407780\pi\)
0.285683 + 0.958324i \(0.407780\pi\)
\(920\) 0 0
\(921\) −366.751 −0.398210
\(922\) 0 0
\(923\) −691.955 −0.749680
\(924\) 0 0
\(925\) 414.139i 0.447718i
\(926\) 0 0
\(927\) 1643.58i 1.77301i
\(928\) 0 0
\(929\) −987.073 −1.06251 −0.531256 0.847212i \(-0.678280\pi\)
−0.531256 + 0.847212i \(0.678280\pi\)
\(930\) 0 0
\(931\) 1165.06 + 228.596i 1.25141 + 0.245538i
\(932\) 0 0
\(933\) 1568.70i 1.68135i
\(934\) 0 0
\(935\) 21.7707 0.0232842
\(936\) 0 0
\(937\) 645.896 0.689323 0.344662 0.938727i \(-0.387994\pi\)
0.344662 + 0.938727i \(0.387994\pi\)
\(938\) 0 0
\(939\) 1727.44i 1.83966i
\(940\) 0 0
\(941\) 75.1337i 0.0798446i 0.999203 + 0.0399223i \(0.0127110\pi\)
−0.999203 + 0.0399223i \(0.987289\pi\)
\(942\) 0 0
\(943\) 1197.80i 1.27020i
\(944\) 0 0
\(945\) 488.445i 0.516873i
\(946\) 0 0
\(947\) −10.5722 −0.0111639 −0.00558193 0.999984i \(-0.501777\pi\)
−0.00558193 + 0.999984i \(0.501777\pi\)
\(948\) 0 0
\(949\) 473.715i 0.499173i
\(950\) 0 0
\(951\) 2651.99 2.78864
\(952\) 0 0
\(953\) 810.970i 0.850965i −0.904967 0.425483i \(-0.860104\pi\)
0.904967 0.425483i \(-0.139896\pi\)
\(954\) 0 0
\(955\) 934.227 0.978248
\(956\) 0 0
\(957\) −50.7595 −0.0530403
\(958\) 0 0
\(959\) −55.4652 −0.0578365
\(960\) 0 0
\(961\) −114.283 −0.118921
\(962\) 0 0
\(963\) 1105.05i 1.14751i
\(964\) 0 0
\(965\) 1003.65i 1.04006i
\(966\) 0 0
\(967\) −658.111 −0.680569 −0.340285 0.940322i \(-0.610523\pi\)
−0.340285 + 0.940322i \(0.610523\pi\)
\(968\) 0 0
\(969\) 162.137 826.350i 0.167324 0.852786i
\(970\) 0 0
\(971\) 766.876i 0.789779i −0.918729 0.394890i \(-0.870783\pi\)
0.918729 0.394890i \(-0.129217\pi\)
\(972\) 0 0
\(973\) −2468.34 −2.53683
\(974\) 0 0
\(975\) −694.092 −0.711889
\(976\) 0 0
\(977\) 619.720i 0.634310i 0.948374 + 0.317155i \(0.102727\pi\)
−0.948374 + 0.317155i \(0.897273\pi\)
\(978\) 0 0
\(979\) 106.740i 0.109030i
\(980\) 0 0
\(981\) 1099.02i 1.12031i
\(982\) 0 0
\(983\) 1020.53i 1.03818i 0.854721 + 0.519088i \(0.173728\pi\)
−0.854721 + 0.519088i \(0.826272\pi\)
\(984\) 0 0
\(985\) −897.965 −0.911639
\(986\) 0 0
\(987\) 4052.18i 4.10555i
\(988\) 0 0
\(989\) −225.019 −0.227522
\(990\) 0 0
\(991\) 139.383i 0.140649i 0.997524 + 0.0703243i \(0.0224034\pi\)
−0.997524 + 0.0703243i \(0.977597\pi\)
\(992\) 0 0
\(993\) −1815.23 −1.82802
\(994\) 0 0
\(995\) 38.7271 0.0389218
\(996\) 0 0
\(997\) 478.232 0.479671 0.239836 0.970813i \(-0.422906\pi\)
0.239836 + 0.970813i \(0.422906\pi\)
\(998\) 0 0
\(999\) −399.970 −0.400371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.e.p.1025.1 20
4.3 odd 2 inner 1216.3.e.p.1025.20 20
8.3 odd 2 608.3.e.b.417.2 yes 20
8.5 even 2 608.3.e.b.417.19 yes 20
19.18 odd 2 inner 1216.3.e.p.1025.19 20
76.75 even 2 inner 1216.3.e.p.1025.2 20
152.37 odd 2 608.3.e.b.417.1 20
152.75 even 2 608.3.e.b.417.20 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.e.b.417.1 20 152.37 odd 2
608.3.e.b.417.2 yes 20 8.3 odd 2
608.3.e.b.417.19 yes 20 8.5 even 2
608.3.e.b.417.20 yes 20 152.75 even 2
1216.3.e.p.1025.1 20 1.1 even 1 trivial
1216.3.e.p.1025.2 20 76.75 even 2 inner
1216.3.e.p.1025.19 20 19.18 odd 2 inner
1216.3.e.p.1025.20 20 4.3 odd 2 inner