Defining parameters
Level: | \( N \) | \(=\) | \( 1216 = 2^{6} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1216.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1216, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 332 | 82 | 250 |
Cusp forms | 308 | 78 | 230 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1216, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(1216, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1216, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 2}\)