Properties

Label 1216.3.d.e.191.16
Level $1216$
Weight $3$
Character 1216.191
Analytic conductor $33.134$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1216,3,Mod(191,1216)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1216, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1216.191"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1216 = 2^{6} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1216.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.1336001462\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 30 x^{14} + 116 x^{13} + 707 x^{12} - 2372 x^{11} - 7342 x^{10} + 12048 x^{9} + \cdots + 19859428 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: no (minimal twist has level 608)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 191.16
Root \(3.77456 - 2.45390i\) of defining polynomial
Character \(\chi\) \(=\) 1216.191
Dual form 1216.3.d.e.191.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.90780i q^{3} -6.54911 q^{5} +5.90118i q^{7} -15.0865 q^{9} -14.3924i q^{11} -22.2816 q^{13} -32.1417i q^{15} +28.3103 q^{17} -4.35890i q^{19} -28.9618 q^{21} +17.8696i q^{23} +17.8909 q^{25} -29.8711i q^{27} -32.6546 q^{29} -35.9728i q^{31} +70.6348 q^{33} -38.6475i q^{35} +52.6183 q^{37} -109.354i q^{39} -72.2594 q^{41} -58.5219i q^{43} +98.8029 q^{45} +20.2502i q^{47} +14.1761 q^{49} +138.941i q^{51} +67.1154 q^{53} +94.2572i q^{55} +21.3926 q^{57} +64.9303i q^{59} -4.97537 q^{61} -89.0278i q^{63} +145.925 q^{65} +64.2022i q^{67} -87.7003 q^{69} -7.10457i q^{71} +35.7765 q^{73} +87.8047i q^{75} +84.9319 q^{77} -58.6802i q^{79} +10.8230 q^{81} +12.7198i q^{83} -185.407 q^{85} -160.262i q^{87} +20.0413 q^{89} -131.488i q^{91} +176.547 q^{93} +28.5469i q^{95} -50.7104 q^{97} +217.130i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 40 q^{9} - 40 q^{13} - 32 q^{17} + 96 q^{21} + 88 q^{25} - 144 q^{29} + 88 q^{33} + 56 q^{37} - 104 q^{41} - 40 q^{45} - 144 q^{49} + 320 q^{53} - 8 q^{61} + 336 q^{65} - 392 q^{69} + 72 q^{77}+ \cdots - 240 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1216\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(705\) \(837\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.90780i 1.63593i 0.575267 + 0.817966i \(0.304898\pi\)
−0.575267 + 0.817966i \(0.695102\pi\)
\(4\) 0 0
\(5\) −6.54911 −1.30982 −0.654911 0.755706i \(-0.727294\pi\)
−0.654911 + 0.755706i \(0.727294\pi\)
\(6\) 0 0
\(7\) 5.90118i 0.843025i 0.906823 + 0.421513i \(0.138501\pi\)
−0.906823 + 0.421513i \(0.861499\pi\)
\(8\) 0 0
\(9\) −15.0865 −1.67627
\(10\) 0 0
\(11\) − 14.3924i − 1.30840i −0.756323 0.654199i \(-0.773006\pi\)
0.756323 0.654199i \(-0.226994\pi\)
\(12\) 0 0
\(13\) −22.2816 −1.71397 −0.856985 0.515341i \(-0.827665\pi\)
−0.856985 + 0.515341i \(0.827665\pi\)
\(14\) 0 0
\(15\) − 32.1417i − 2.14278i
\(16\) 0 0
\(17\) 28.3103 1.66531 0.832655 0.553792i \(-0.186820\pi\)
0.832655 + 0.553792i \(0.186820\pi\)
\(18\) 0 0
\(19\) − 4.35890i − 0.229416i
\(20\) 0 0
\(21\) −28.9618 −1.37913
\(22\) 0 0
\(23\) 17.8696i 0.776939i 0.921462 + 0.388469i \(0.126996\pi\)
−0.921462 + 0.388469i \(0.873004\pi\)
\(24\) 0 0
\(25\) 17.8909 0.715635
\(26\) 0 0
\(27\) − 29.8711i − 1.10634i
\(28\) 0 0
\(29\) −32.6546 −1.12602 −0.563010 0.826450i \(-0.690357\pi\)
−0.563010 + 0.826450i \(0.690357\pi\)
\(30\) 0 0
\(31\) − 35.9728i − 1.16041i −0.814469 0.580206i \(-0.802972\pi\)
0.814469 0.580206i \(-0.197028\pi\)
\(32\) 0 0
\(33\) 70.6348 2.14045
\(34\) 0 0
\(35\) − 38.6475i − 1.10421i
\(36\) 0 0
\(37\) 52.6183 1.42212 0.711058 0.703133i \(-0.248216\pi\)
0.711058 + 0.703133i \(0.248216\pi\)
\(38\) 0 0
\(39\) − 109.354i − 2.80394i
\(40\) 0 0
\(41\) −72.2594 −1.76243 −0.881213 0.472720i \(-0.843272\pi\)
−0.881213 + 0.472720i \(0.843272\pi\)
\(42\) 0 0
\(43\) − 58.5219i − 1.36097i −0.732760 0.680487i \(-0.761768\pi\)
0.732760 0.680487i \(-0.238232\pi\)
\(44\) 0 0
\(45\) 98.8029 2.19562
\(46\) 0 0
\(47\) 20.2502i 0.430855i 0.976520 + 0.215427i \(0.0691145\pi\)
−0.976520 + 0.215427i \(0.930886\pi\)
\(48\) 0 0
\(49\) 14.1761 0.289308
\(50\) 0 0
\(51\) 138.941i 2.72433i
\(52\) 0 0
\(53\) 67.1154 1.26633 0.633164 0.774017i \(-0.281756\pi\)
0.633164 + 0.774017i \(0.281756\pi\)
\(54\) 0 0
\(55\) 94.2572i 1.71377i
\(56\) 0 0
\(57\) 21.3926 0.375308
\(58\) 0 0
\(59\) 64.9303i 1.10051i 0.834995 + 0.550257i \(0.185470\pi\)
−0.834995 + 0.550257i \(0.814530\pi\)
\(60\) 0 0
\(61\) −4.97537 −0.0815635 −0.0407818 0.999168i \(-0.512985\pi\)
−0.0407818 + 0.999168i \(0.512985\pi\)
\(62\) 0 0
\(63\) − 89.0278i − 1.41314i
\(64\) 0 0
\(65\) 145.925 2.24500
\(66\) 0 0
\(67\) 64.2022i 0.958242i 0.877749 + 0.479121i \(0.159044\pi\)
−0.877749 + 0.479121i \(0.840956\pi\)
\(68\) 0 0
\(69\) −87.7003 −1.27102
\(70\) 0 0
\(71\) − 7.10457i − 0.100064i −0.998748 0.0500322i \(-0.984068\pi\)
0.998748 0.0500322i \(-0.0159324\pi\)
\(72\) 0 0
\(73\) 35.7765 0.490089 0.245045 0.969512i \(-0.421197\pi\)
0.245045 + 0.969512i \(0.421197\pi\)
\(74\) 0 0
\(75\) 87.8047i 1.17073i
\(76\) 0 0
\(77\) 84.9319 1.10301
\(78\) 0 0
\(79\) − 58.6802i − 0.742787i −0.928476 0.371394i \(-0.878880\pi\)
0.928476 0.371394i \(-0.121120\pi\)
\(80\) 0 0
\(81\) 10.8230 0.133617
\(82\) 0 0
\(83\) 12.7198i 0.153250i 0.997060 + 0.0766251i \(0.0244145\pi\)
−0.997060 + 0.0766251i \(0.975586\pi\)
\(84\) 0 0
\(85\) −185.407 −2.18126
\(86\) 0 0
\(87\) − 160.262i − 1.84209i
\(88\) 0 0
\(89\) 20.0413 0.225183 0.112592 0.993641i \(-0.464085\pi\)
0.112592 + 0.993641i \(0.464085\pi\)
\(90\) 0 0
\(91\) − 131.488i − 1.44492i
\(92\) 0 0
\(93\) 176.547 1.89836
\(94\) 0 0
\(95\) 28.5469i 0.300494i
\(96\) 0 0
\(97\) −50.7104 −0.522787 −0.261394 0.965232i \(-0.584182\pi\)
−0.261394 + 0.965232i \(0.584182\pi\)
\(98\) 0 0
\(99\) 217.130i 2.19323i
\(100\) 0 0
\(101\) −66.1632 −0.655081 −0.327540 0.944837i \(-0.606220\pi\)
−0.327540 + 0.944837i \(0.606220\pi\)
\(102\) 0 0
\(103\) − 63.4235i − 0.615762i −0.951425 0.307881i \(-0.900380\pi\)
0.951425 0.307881i \(-0.0996199\pi\)
\(104\) 0 0
\(105\) 189.674 1.80642
\(106\) 0 0
\(107\) 72.2363i 0.675106i 0.941307 + 0.337553i \(0.109599\pi\)
−0.941307 + 0.337553i \(0.890401\pi\)
\(108\) 0 0
\(109\) −15.5827 −0.142960 −0.0714802 0.997442i \(-0.522772\pi\)
−0.0714802 + 0.997442i \(0.522772\pi\)
\(110\) 0 0
\(111\) 258.240i 2.32649i
\(112\) 0 0
\(113\) −32.1877 −0.284847 −0.142424 0.989806i \(-0.545490\pi\)
−0.142424 + 0.989806i \(0.545490\pi\)
\(114\) 0 0
\(115\) − 117.030i − 1.01765i
\(116\) 0 0
\(117\) 336.151 2.87308
\(118\) 0 0
\(119\) 167.064i 1.40390i
\(120\) 0 0
\(121\) −86.1402 −0.711903
\(122\) 0 0
\(123\) − 354.635i − 2.88321i
\(124\) 0 0
\(125\) 46.5585 0.372468
\(126\) 0 0
\(127\) − 80.2601i − 0.631970i −0.948764 0.315985i \(-0.897665\pi\)
0.948764 0.315985i \(-0.102335\pi\)
\(128\) 0 0
\(129\) 287.213 2.22646
\(130\) 0 0
\(131\) − 163.160i − 1.24550i −0.782423 0.622748i \(-0.786016\pi\)
0.782423 0.622748i \(-0.213984\pi\)
\(132\) 0 0
\(133\) 25.7226 0.193403
\(134\) 0 0
\(135\) 195.629i 1.44910i
\(136\) 0 0
\(137\) 60.8760 0.444351 0.222175 0.975007i \(-0.428684\pi\)
0.222175 + 0.975007i \(0.428684\pi\)
\(138\) 0 0
\(139\) 56.0617i 0.403322i 0.979455 + 0.201661i \(0.0646339\pi\)
−0.979455 + 0.201661i \(0.935366\pi\)
\(140\) 0 0
\(141\) −99.3837 −0.704849
\(142\) 0 0
\(143\) 320.685i 2.24255i
\(144\) 0 0
\(145\) 213.859 1.47489
\(146\) 0 0
\(147\) 69.5734i 0.473289i
\(148\) 0 0
\(149\) 60.2189 0.404154 0.202077 0.979370i \(-0.435231\pi\)
0.202077 + 0.979370i \(0.435231\pi\)
\(150\) 0 0
\(151\) − 19.4247i − 0.128640i −0.997929 0.0643201i \(-0.979512\pi\)
0.997929 0.0643201i \(-0.0204879\pi\)
\(152\) 0 0
\(153\) −427.102 −2.79151
\(154\) 0 0
\(155\) 235.590i 1.51993i
\(156\) 0 0
\(157\) 161.009 1.02554 0.512768 0.858527i \(-0.328620\pi\)
0.512768 + 0.858527i \(0.328620\pi\)
\(158\) 0 0
\(159\) 329.389i 2.07163i
\(160\) 0 0
\(161\) −105.452 −0.654979
\(162\) 0 0
\(163\) 110.317i 0.676792i 0.941004 + 0.338396i \(0.109884\pi\)
−0.941004 + 0.338396i \(0.890116\pi\)
\(164\) 0 0
\(165\) −462.595 −2.80361
\(166\) 0 0
\(167\) − 245.947i − 1.47274i −0.676580 0.736369i \(-0.736539\pi\)
0.676580 0.736369i \(-0.263461\pi\)
\(168\) 0 0
\(169\) 327.471 1.93770
\(170\) 0 0
\(171\) 65.7603i 0.384563i
\(172\) 0 0
\(173\) 22.5590 0.130399 0.0651995 0.997872i \(-0.479232\pi\)
0.0651995 + 0.997872i \(0.479232\pi\)
\(174\) 0 0
\(175\) 105.577i 0.603298i
\(176\) 0 0
\(177\) −318.665 −1.80037
\(178\) 0 0
\(179\) − 149.865i − 0.837235i −0.908163 0.418617i \(-0.862515\pi\)
0.908163 0.418617i \(-0.137485\pi\)
\(180\) 0 0
\(181\) 216.352 1.19531 0.597657 0.801752i \(-0.296098\pi\)
0.597657 + 0.801752i \(0.296098\pi\)
\(182\) 0 0
\(183\) − 24.4181i − 0.133432i
\(184\) 0 0
\(185\) −344.603 −1.86272
\(186\) 0 0
\(187\) − 407.452i − 2.17889i
\(188\) 0 0
\(189\) 176.274 0.932669
\(190\) 0 0
\(191\) − 349.743i − 1.83112i −0.402187 0.915558i \(-0.631750\pi\)
0.402187 0.915558i \(-0.368250\pi\)
\(192\) 0 0
\(193\) 263.096 1.36319 0.681595 0.731729i \(-0.261286\pi\)
0.681595 + 0.731729i \(0.261286\pi\)
\(194\) 0 0
\(195\) 716.169i 3.67266i
\(196\) 0 0
\(197\) −173.774 −0.882100 −0.441050 0.897482i \(-0.645394\pi\)
−0.441050 + 0.897482i \(0.645394\pi\)
\(198\) 0 0
\(199\) 25.9123i 0.130213i 0.997878 + 0.0651063i \(0.0207387\pi\)
−0.997878 + 0.0651063i \(0.979261\pi\)
\(200\) 0 0
\(201\) −315.091 −1.56762
\(202\) 0 0
\(203\) − 192.700i − 0.949263i
\(204\) 0 0
\(205\) 473.235 2.30846
\(206\) 0 0
\(207\) − 269.589i − 1.30236i
\(208\) 0 0
\(209\) −62.7349 −0.300167
\(210\) 0 0
\(211\) − 395.208i − 1.87302i −0.350636 0.936512i \(-0.614034\pi\)
0.350636 0.936512i \(-0.385966\pi\)
\(212\) 0 0
\(213\) 34.8678 0.163698
\(214\) 0 0
\(215\) 383.266i 1.78263i
\(216\) 0 0
\(217\) 212.282 0.978257
\(218\) 0 0
\(219\) 175.584i 0.801752i
\(220\) 0 0
\(221\) −630.799 −2.85429
\(222\) 0 0
\(223\) 273.035i 1.22437i 0.790713 + 0.612187i \(0.209710\pi\)
−0.790713 + 0.612187i \(0.790290\pi\)
\(224\) 0 0
\(225\) −269.910 −1.19960
\(226\) 0 0
\(227\) − 193.790i − 0.853702i −0.904322 0.426851i \(-0.859623\pi\)
0.904322 0.426851i \(-0.140377\pi\)
\(228\) 0 0
\(229\) 89.1608 0.389348 0.194674 0.980868i \(-0.437635\pi\)
0.194674 + 0.980868i \(0.437635\pi\)
\(230\) 0 0
\(231\) 416.828i 1.80445i
\(232\) 0 0
\(233\) 352.701 1.51374 0.756869 0.653566i \(-0.226728\pi\)
0.756869 + 0.653566i \(0.226728\pi\)
\(234\) 0 0
\(235\) − 132.621i − 0.564343i
\(236\) 0 0
\(237\) 287.990 1.21515
\(238\) 0 0
\(239\) − 335.331i − 1.40306i −0.712641 0.701529i \(-0.752501\pi\)
0.712641 0.701529i \(-0.247499\pi\)
\(240\) 0 0
\(241\) −73.6921 −0.305776 −0.152888 0.988243i \(-0.548857\pi\)
−0.152888 + 0.988243i \(0.548857\pi\)
\(242\) 0 0
\(243\) − 215.723i − 0.887747i
\(244\) 0 0
\(245\) −92.8409 −0.378943
\(246\) 0 0
\(247\) 97.1233i 0.393212i
\(248\) 0 0
\(249\) −62.4260 −0.250707
\(250\) 0 0
\(251\) 213.324i 0.849898i 0.905217 + 0.424949i \(0.139708\pi\)
−0.905217 + 0.424949i \(0.860292\pi\)
\(252\) 0 0
\(253\) 257.186 1.01654
\(254\) 0 0
\(255\) − 909.940i − 3.56839i
\(256\) 0 0
\(257\) −484.932 −1.88689 −0.943447 0.331522i \(-0.892438\pi\)
−0.943447 + 0.331522i \(0.892438\pi\)
\(258\) 0 0
\(259\) 310.510i 1.19888i
\(260\) 0 0
\(261\) 492.642 1.88752
\(262\) 0 0
\(263\) − 58.3649i − 0.221920i −0.993825 0.110960i \(-0.964607\pi\)
0.993825 0.110960i \(-0.0353925\pi\)
\(264\) 0 0
\(265\) −439.546 −1.65867
\(266\) 0 0
\(267\) 98.3586i 0.368384i
\(268\) 0 0
\(269\) 8.05769 0.0299542 0.0149771 0.999888i \(-0.495232\pi\)
0.0149771 + 0.999888i \(0.495232\pi\)
\(270\) 0 0
\(271\) − 414.431i − 1.52927i −0.644465 0.764634i \(-0.722920\pi\)
0.644465 0.764634i \(-0.277080\pi\)
\(272\) 0 0
\(273\) 645.315 2.36379
\(274\) 0 0
\(275\) − 257.492i − 0.936334i
\(276\) 0 0
\(277\) 111.050 0.400901 0.200451 0.979704i \(-0.435759\pi\)
0.200451 + 0.979704i \(0.435759\pi\)
\(278\) 0 0
\(279\) 542.702i 1.94517i
\(280\) 0 0
\(281\) 131.151 0.466731 0.233365 0.972389i \(-0.425026\pi\)
0.233365 + 0.972389i \(0.425026\pi\)
\(282\) 0 0
\(283\) 20.5202i 0.0725095i 0.999343 + 0.0362548i \(0.0115428\pi\)
−0.999343 + 0.0362548i \(0.988457\pi\)
\(284\) 0 0
\(285\) −140.102 −0.491587
\(286\) 0 0
\(287\) − 426.416i − 1.48577i
\(288\) 0 0
\(289\) 512.472 1.77326
\(290\) 0 0
\(291\) − 248.876i − 0.855244i
\(292\) 0 0
\(293\) −503.711 −1.71915 −0.859575 0.511010i \(-0.829272\pi\)
−0.859575 + 0.511010i \(0.829272\pi\)
\(294\) 0 0
\(295\) − 425.236i − 1.44148i
\(296\) 0 0
\(297\) −429.915 −1.44753
\(298\) 0 0
\(299\) − 398.163i − 1.33165i
\(300\) 0 0
\(301\) 345.348 1.14734
\(302\) 0 0
\(303\) − 324.715i − 1.07167i
\(304\) 0 0
\(305\) 32.5843 0.106834
\(306\) 0 0
\(307\) − 464.831i − 1.51411i −0.653353 0.757054i \(-0.726638\pi\)
0.653353 0.757054i \(-0.273362\pi\)
\(308\) 0 0
\(309\) 311.269 1.00734
\(310\) 0 0
\(311\) 131.725i 0.423553i 0.977318 + 0.211777i \(0.0679249\pi\)
−0.977318 + 0.211777i \(0.932075\pi\)
\(312\) 0 0
\(313\) −553.953 −1.76982 −0.884908 0.465765i \(-0.845779\pi\)
−0.884908 + 0.465765i \(0.845779\pi\)
\(314\) 0 0
\(315\) 583.053i 1.85096i
\(316\) 0 0
\(317\) −226.823 −0.715531 −0.357766 0.933811i \(-0.616461\pi\)
−0.357766 + 0.933811i \(0.616461\pi\)
\(318\) 0 0
\(319\) 469.977i 1.47328i
\(320\) 0 0
\(321\) −354.521 −1.10443
\(322\) 0 0
\(323\) − 123.402i − 0.382048i
\(324\) 0 0
\(325\) −398.638 −1.22658
\(326\) 0 0
\(327\) − 76.4766i − 0.233874i
\(328\) 0 0
\(329\) −119.500 −0.363222
\(330\) 0 0
\(331\) − 448.730i − 1.35568i −0.735209 0.677840i \(-0.762916\pi\)
0.735209 0.677840i \(-0.237084\pi\)
\(332\) 0 0
\(333\) −793.824 −2.38386
\(334\) 0 0
\(335\) − 420.467i − 1.25513i
\(336\) 0 0
\(337\) −547.144 −1.62357 −0.811786 0.583955i \(-0.801505\pi\)
−0.811786 + 0.583955i \(0.801505\pi\)
\(338\) 0 0
\(339\) − 157.971i − 0.465991i
\(340\) 0 0
\(341\) −517.734 −1.51828
\(342\) 0 0
\(343\) 372.813i 1.08692i
\(344\) 0 0
\(345\) 574.359 1.66481
\(346\) 0 0
\(347\) − 113.601i − 0.327379i −0.986512 0.163690i \(-0.947660\pi\)
0.986512 0.163690i \(-0.0523396\pi\)
\(348\) 0 0
\(349\) 447.002 1.28081 0.640405 0.768038i \(-0.278767\pi\)
0.640405 + 0.768038i \(0.278767\pi\)
\(350\) 0 0
\(351\) 665.576i 1.89623i
\(352\) 0 0
\(353\) 206.696 0.585540 0.292770 0.956183i \(-0.405423\pi\)
0.292770 + 0.956183i \(0.405423\pi\)
\(354\) 0 0
\(355\) 46.5286i 0.131067i
\(356\) 0 0
\(357\) −819.916 −2.29668
\(358\) 0 0
\(359\) − 218.425i − 0.608426i −0.952604 0.304213i \(-0.901607\pi\)
0.952604 0.304213i \(-0.0983935\pi\)
\(360\) 0 0
\(361\) −19.0000 −0.0526316
\(362\) 0 0
\(363\) − 422.759i − 1.16462i
\(364\) 0 0
\(365\) −234.304 −0.641930
\(366\) 0 0
\(367\) 42.3246i 0.115326i 0.998336 + 0.0576629i \(0.0183649\pi\)
−0.998336 + 0.0576629i \(0.981635\pi\)
\(368\) 0 0
\(369\) 1090.14 2.95431
\(370\) 0 0
\(371\) 396.060i 1.06755i
\(372\) 0 0
\(373\) 318.445 0.853741 0.426871 0.904313i \(-0.359616\pi\)
0.426871 + 0.904313i \(0.359616\pi\)
\(374\) 0 0
\(375\) 228.500i 0.609332i
\(376\) 0 0
\(377\) 727.597 1.92997
\(378\) 0 0
\(379\) − 609.494i − 1.60816i −0.594518 0.804082i \(-0.702657\pi\)
0.594518 0.804082i \(-0.297343\pi\)
\(380\) 0 0
\(381\) 393.900 1.03386
\(382\) 0 0
\(383\) − 156.292i − 0.408074i −0.978963 0.204037i \(-0.934594\pi\)
0.978963 0.204037i \(-0.0654063\pi\)
\(384\) 0 0
\(385\) −556.229 −1.44475
\(386\) 0 0
\(387\) 882.888i 2.28136i
\(388\) 0 0
\(389\) −82.1082 −0.211075 −0.105538 0.994415i \(-0.533656\pi\)
−0.105538 + 0.994415i \(0.533656\pi\)
\(390\) 0 0
\(391\) 505.893i 1.29384i
\(392\) 0 0
\(393\) 800.755 2.03755
\(394\) 0 0
\(395\) 384.303i 0.972919i
\(396\) 0 0
\(397\) 75.1893 0.189394 0.0946969 0.995506i \(-0.469812\pi\)
0.0946969 + 0.995506i \(0.469812\pi\)
\(398\) 0 0
\(399\) 126.241i 0.316395i
\(400\) 0 0
\(401\) −270.041 −0.673418 −0.336709 0.941609i \(-0.609314\pi\)
−0.336709 + 0.941609i \(0.609314\pi\)
\(402\) 0 0
\(403\) 801.532i 1.98891i
\(404\) 0 0
\(405\) −70.8809 −0.175015
\(406\) 0 0
\(407\) − 757.302i − 1.86069i
\(408\) 0 0
\(409\) −117.254 −0.286685 −0.143342 0.989673i \(-0.545785\pi\)
−0.143342 + 0.989673i \(0.545785\pi\)
\(410\) 0 0
\(411\) 298.767i 0.726927i
\(412\) 0 0
\(413\) −383.165 −0.927761
\(414\) 0 0
\(415\) − 83.3032i − 0.200731i
\(416\) 0 0
\(417\) −275.140 −0.659807
\(418\) 0 0
\(419\) − 196.107i − 0.468035i −0.972232 0.234018i \(-0.924813\pi\)
0.972232 0.234018i \(-0.0751873\pi\)
\(420\) 0 0
\(421\) −333.740 −0.792732 −0.396366 0.918093i \(-0.629729\pi\)
−0.396366 + 0.918093i \(0.629729\pi\)
\(422\) 0 0
\(423\) − 305.503i − 0.722230i
\(424\) 0 0
\(425\) 506.495 1.19175
\(426\) 0 0
\(427\) − 29.3606i − 0.0687601i
\(428\) 0 0
\(429\) −1573.86 −3.66867
\(430\) 0 0
\(431\) − 688.339i − 1.59707i −0.601946 0.798537i \(-0.705608\pi\)
0.601946 0.798537i \(-0.294392\pi\)
\(432\) 0 0
\(433\) −63.1972 −0.145952 −0.0729760 0.997334i \(-0.523250\pi\)
−0.0729760 + 0.997334i \(0.523250\pi\)
\(434\) 0 0
\(435\) 1049.57i 2.41281i
\(436\) 0 0
\(437\) 77.8917 0.178242
\(438\) 0 0
\(439\) 617.043i 1.40556i 0.711405 + 0.702782i \(0.248059\pi\)
−0.711405 + 0.702782i \(0.751941\pi\)
\(440\) 0 0
\(441\) −213.867 −0.484960
\(442\) 0 0
\(443\) 35.8094i 0.0808338i 0.999183 + 0.0404169i \(0.0128686\pi\)
−0.999183 + 0.0404169i \(0.987131\pi\)
\(444\) 0 0
\(445\) −131.253 −0.294950
\(446\) 0 0
\(447\) 295.542i 0.661168i
\(448\) 0 0
\(449\) −641.286 −1.42825 −0.714127 0.700016i \(-0.753176\pi\)
−0.714127 + 0.700016i \(0.753176\pi\)
\(450\) 0 0
\(451\) 1039.98i 2.30595i
\(452\) 0 0
\(453\) 95.3323 0.210447
\(454\) 0 0
\(455\) 861.128i 1.89259i
\(456\) 0 0
\(457\) 30.6899 0.0671552 0.0335776 0.999436i \(-0.489310\pi\)
0.0335776 + 0.999436i \(0.489310\pi\)
\(458\) 0 0
\(459\) − 845.658i − 1.84239i
\(460\) 0 0
\(461\) −489.440 −1.06169 −0.530845 0.847469i \(-0.678126\pi\)
−0.530845 + 0.847469i \(0.678126\pi\)
\(462\) 0 0
\(463\) − 174.510i − 0.376910i −0.982082 0.188455i \(-0.939652\pi\)
0.982082 0.188455i \(-0.0603480\pi\)
\(464\) 0 0
\(465\) −1156.23 −2.48651
\(466\) 0 0
\(467\) 870.782i 1.86463i 0.361649 + 0.932314i \(0.382214\pi\)
−0.361649 + 0.932314i \(0.617786\pi\)
\(468\) 0 0
\(469\) −378.869 −0.807822
\(470\) 0 0
\(471\) 790.200i 1.67771i
\(472\) 0 0
\(473\) −842.268 −1.78069
\(474\) 0 0
\(475\) − 77.9845i − 0.164178i
\(476\) 0 0
\(477\) −1012.53 −2.12271
\(478\) 0 0
\(479\) 120.972i 0.252552i 0.991995 + 0.126276i \(0.0403025\pi\)
−0.991995 + 0.126276i \(0.959698\pi\)
\(480\) 0 0
\(481\) −1172.42 −2.43747
\(482\) 0 0
\(483\) − 517.535i − 1.07150i
\(484\) 0 0
\(485\) 332.108 0.684758
\(486\) 0 0
\(487\) − 521.190i − 1.07021i −0.844787 0.535103i \(-0.820273\pi\)
0.844787 0.535103i \(-0.179727\pi\)
\(488\) 0 0
\(489\) −541.414 −1.10719
\(490\) 0 0
\(491\) 511.467i 1.04168i 0.853653 + 0.520842i \(0.174382\pi\)
−0.853653 + 0.520842i \(0.825618\pi\)
\(492\) 0 0
\(493\) −924.460 −1.87517
\(494\) 0 0
\(495\) − 1422.01i − 2.87274i
\(496\) 0 0
\(497\) 41.9253 0.0843568
\(498\) 0 0
\(499\) − 51.6278i − 0.103463i −0.998661 0.0517313i \(-0.983526\pi\)
0.998661 0.0517313i \(-0.0164739\pi\)
\(500\) 0 0
\(501\) 1207.06 2.40930
\(502\) 0 0
\(503\) − 39.1364i − 0.0778060i −0.999243 0.0389030i \(-0.987614\pi\)
0.999243 0.0389030i \(-0.0123863\pi\)
\(504\) 0 0
\(505\) 433.310 0.858040
\(506\) 0 0
\(507\) 1607.16i 3.16994i
\(508\) 0 0
\(509\) 345.383 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(510\) 0 0
\(511\) 211.124i 0.413158i
\(512\) 0 0
\(513\) −130.205 −0.253811
\(514\) 0 0
\(515\) 415.367i 0.806539i
\(516\) 0 0
\(517\) 291.448 0.563729
\(518\) 0 0
\(519\) 110.715i 0.213324i
\(520\) 0 0
\(521\) −197.584 −0.379240 −0.189620 0.981858i \(-0.560726\pi\)
−0.189620 + 0.981858i \(0.560726\pi\)
\(522\) 0 0
\(523\) − 296.857i − 0.567604i −0.958883 0.283802i \(-0.908404\pi\)
0.958883 0.283802i \(-0.0915959\pi\)
\(524\) 0 0
\(525\) −518.151 −0.986955
\(526\) 0 0
\(527\) − 1018.40i − 1.93245i
\(528\) 0 0
\(529\) 209.678 0.396366
\(530\) 0 0
\(531\) − 979.568i − 1.84476i
\(532\) 0 0
\(533\) 1610.06 3.02075
\(534\) 0 0
\(535\) − 473.084i − 0.884269i
\(536\) 0 0
\(537\) 735.507 1.36966
\(538\) 0 0
\(539\) − 204.028i − 0.378530i
\(540\) 0 0
\(541\) 750.030 1.38638 0.693189 0.720756i \(-0.256205\pi\)
0.693189 + 0.720756i \(0.256205\pi\)
\(542\) 0 0
\(543\) 1061.81i 1.95545i
\(544\) 0 0
\(545\) 102.053 0.187253
\(546\) 0 0
\(547\) 266.667i 0.487508i 0.969837 + 0.243754i \(0.0783789\pi\)
−0.969837 + 0.243754i \(0.921621\pi\)
\(548\) 0 0
\(549\) 75.0607 0.136723
\(550\) 0 0
\(551\) 142.338i 0.258327i
\(552\) 0 0
\(553\) 346.282 0.626188
\(554\) 0 0
\(555\) − 1691.24i − 3.04728i
\(556\) 0 0
\(557\) −997.639 −1.79109 −0.895547 0.444968i \(-0.853215\pi\)
−0.895547 + 0.444968i \(0.853215\pi\)
\(558\) 0 0
\(559\) 1303.96i 2.33267i
\(560\) 0 0
\(561\) 1999.69 3.56451
\(562\) 0 0
\(563\) 208.963i 0.371160i 0.982629 + 0.185580i \(0.0594163\pi\)
−0.982629 + 0.185580i \(0.940584\pi\)
\(564\) 0 0
\(565\) 210.801 0.373099
\(566\) 0 0
\(567\) 63.8683i 0.112643i
\(568\) 0 0
\(569\) −699.067 −1.22859 −0.614294 0.789077i \(-0.710559\pi\)
−0.614294 + 0.789077i \(0.710559\pi\)
\(570\) 0 0
\(571\) − 378.019i − 0.662030i −0.943626 0.331015i \(-0.892609\pi\)
0.943626 0.331015i \(-0.107391\pi\)
\(572\) 0 0
\(573\) 1716.47 2.99558
\(574\) 0 0
\(575\) 319.702i 0.556004i
\(576\) 0 0
\(577\) −262.611 −0.455131 −0.227565 0.973763i \(-0.573077\pi\)
−0.227565 + 0.973763i \(0.573077\pi\)
\(578\) 0 0
\(579\) 1291.22i 2.23009i
\(580\) 0 0
\(581\) −75.0616 −0.129194
\(582\) 0 0
\(583\) − 965.950i − 1.65686i
\(584\) 0 0
\(585\) −2201.49 −3.76323
\(586\) 0 0
\(587\) − 639.092i − 1.08874i −0.838844 0.544371i \(-0.816768\pi\)
0.838844 0.544371i \(-0.183232\pi\)
\(588\) 0 0
\(589\) −156.802 −0.266217
\(590\) 0 0
\(591\) − 852.846i − 1.44306i
\(592\) 0 0
\(593\) 208.076 0.350887 0.175443 0.984490i \(-0.443864\pi\)
0.175443 + 0.984490i \(0.443864\pi\)
\(594\) 0 0
\(595\) − 1094.12i − 1.83886i
\(596\) 0 0
\(597\) −127.172 −0.213019
\(598\) 0 0
\(599\) 371.464i 0.620140i 0.950714 + 0.310070i \(0.100352\pi\)
−0.950714 + 0.310070i \(0.899648\pi\)
\(600\) 0 0
\(601\) 806.876 1.34256 0.671278 0.741206i \(-0.265746\pi\)
0.671278 + 0.741206i \(0.265746\pi\)
\(602\) 0 0
\(603\) − 968.584i − 1.60627i
\(604\) 0 0
\(605\) 564.142 0.932466
\(606\) 0 0
\(607\) − 490.659i − 0.808334i −0.914685 0.404167i \(-0.867561\pi\)
0.914685 0.404167i \(-0.132439\pi\)
\(608\) 0 0
\(609\) 945.734 1.55293
\(610\) 0 0
\(611\) − 451.207i − 0.738473i
\(612\) 0 0
\(613\) 705.454 1.15082 0.575411 0.817864i \(-0.304842\pi\)
0.575411 + 0.817864i \(0.304842\pi\)
\(614\) 0 0
\(615\) 2322.54i 3.77649i
\(616\) 0 0
\(617\) 935.186 1.51570 0.757850 0.652429i \(-0.226250\pi\)
0.757850 + 0.652429i \(0.226250\pi\)
\(618\) 0 0
\(619\) 1213.61i 1.96059i 0.197539 + 0.980295i \(0.436705\pi\)
−0.197539 + 0.980295i \(0.563295\pi\)
\(620\) 0 0
\(621\) 533.784 0.859555
\(622\) 0 0
\(623\) 118.267i 0.189835i
\(624\) 0 0
\(625\) −752.189 −1.20350
\(626\) 0 0
\(627\) − 307.890i − 0.491052i
\(628\) 0 0
\(629\) 1489.64 2.36827
\(630\) 0 0
\(631\) − 361.928i − 0.573578i −0.957994 0.286789i \(-0.907412\pi\)
0.957994 0.286789i \(-0.0925879\pi\)
\(632\) 0 0
\(633\) 1939.60 3.06414
\(634\) 0 0
\(635\) 525.633i 0.827768i
\(636\) 0 0
\(637\) −315.867 −0.495866
\(638\) 0 0
\(639\) 107.183i 0.167735i
\(640\) 0 0
\(641\) 126.497 0.197343 0.0986714 0.995120i \(-0.468541\pi\)
0.0986714 + 0.995120i \(0.468541\pi\)
\(642\) 0 0
\(643\) − 409.440i − 0.636765i −0.947962 0.318383i \(-0.896860\pi\)
0.947962 0.318383i \(-0.103140\pi\)
\(644\) 0 0
\(645\) −1880.99 −2.91627
\(646\) 0 0
\(647\) 237.857i 0.367630i 0.982961 + 0.183815i \(0.0588448\pi\)
−0.982961 + 0.183815i \(0.941155\pi\)
\(648\) 0 0
\(649\) 934.501 1.43991
\(650\) 0 0
\(651\) 1041.84i 1.60036i
\(652\) 0 0
\(653\) 335.904 0.514401 0.257200 0.966358i \(-0.417200\pi\)
0.257200 + 0.966358i \(0.417200\pi\)
\(654\) 0 0
\(655\) 1068.55i 1.63138i
\(656\) 0 0
\(657\) −539.741 −0.821523
\(658\) 0 0
\(659\) 25.8130i 0.0391699i 0.999808 + 0.0195850i \(0.00623448\pi\)
−0.999808 + 0.0195850i \(0.993766\pi\)
\(660\) 0 0
\(661\) 648.576 0.981204 0.490602 0.871384i \(-0.336777\pi\)
0.490602 + 0.871384i \(0.336777\pi\)
\(662\) 0 0
\(663\) − 3095.83i − 4.66943i
\(664\) 0 0
\(665\) −168.460 −0.253324
\(666\) 0 0
\(667\) − 583.524i − 0.874849i
\(668\) 0 0
\(669\) −1340.00 −2.00299
\(670\) 0 0
\(671\) 71.6074i 0.106717i
\(672\) 0 0
\(673\) 314.870 0.467860 0.233930 0.972253i \(-0.424841\pi\)
0.233930 + 0.972253i \(0.424841\pi\)
\(674\) 0 0
\(675\) − 534.419i − 0.791732i
\(676\) 0 0
\(677\) 722.428 1.06710 0.533551 0.845768i \(-0.320857\pi\)
0.533551 + 0.845768i \(0.320857\pi\)
\(678\) 0 0
\(679\) − 299.251i − 0.440723i
\(680\) 0 0
\(681\) 951.084 1.39660
\(682\) 0 0
\(683\) 503.280i 0.736867i 0.929654 + 0.368434i \(0.120106\pi\)
−0.929654 + 0.368434i \(0.879894\pi\)
\(684\) 0 0
\(685\) −398.684 −0.582021
\(686\) 0 0
\(687\) 437.583i 0.636947i
\(688\) 0 0
\(689\) −1495.44 −2.17045
\(690\) 0 0
\(691\) − 197.394i − 0.285664i −0.989747 0.142832i \(-0.954379\pi\)
0.989747 0.142832i \(-0.0456209\pi\)
\(692\) 0 0
\(693\) −1281.32 −1.84895
\(694\) 0 0
\(695\) − 367.155i − 0.528280i
\(696\) 0 0
\(697\) −2045.68 −2.93498
\(698\) 0 0
\(699\) 1730.99i 2.47637i
\(700\) 0 0
\(701\) −821.241 −1.17153 −0.585764 0.810482i \(-0.699205\pi\)
−0.585764 + 0.810482i \(0.699205\pi\)
\(702\) 0 0
\(703\) − 229.358i − 0.326256i
\(704\) 0 0
\(705\) 650.875 0.923227
\(706\) 0 0
\(707\) − 390.441i − 0.552250i
\(708\) 0 0
\(709\) −94.3101 −0.133019 −0.0665093 0.997786i \(-0.521186\pi\)
−0.0665093 + 0.997786i \(0.521186\pi\)
\(710\) 0 0
\(711\) 885.276i 1.24511i
\(712\) 0 0
\(713\) 642.819 0.901570
\(714\) 0 0
\(715\) − 2100.20i − 2.93735i
\(716\) 0 0
\(717\) 1645.74 2.29531
\(718\) 0 0
\(719\) 585.874i 0.814846i 0.913240 + 0.407423i \(0.133573\pi\)
−0.913240 + 0.407423i \(0.866427\pi\)
\(720\) 0 0
\(721\) 374.273 0.519103
\(722\) 0 0
\(723\) − 361.666i − 0.500229i
\(724\) 0 0
\(725\) −584.219 −0.805819
\(726\) 0 0
\(727\) 596.396i 0.820352i 0.912006 + 0.410176i \(0.134533\pi\)
−0.912006 + 0.410176i \(0.865467\pi\)
\(728\) 0 0
\(729\) 1156.13 1.58591
\(730\) 0 0
\(731\) − 1656.77i − 2.26644i
\(732\) 0 0
\(733\) 106.931 0.145881 0.0729407 0.997336i \(-0.476762\pi\)
0.0729407 + 0.997336i \(0.476762\pi\)
\(734\) 0 0
\(735\) − 455.644i − 0.619924i
\(736\) 0 0
\(737\) 924.022 1.25376
\(738\) 0 0
\(739\) − 1210.79i − 1.63842i −0.573492 0.819211i \(-0.694412\pi\)
0.573492 0.819211i \(-0.305588\pi\)
\(740\) 0 0
\(741\) −476.661 −0.643268
\(742\) 0 0
\(743\) − 331.817i − 0.446591i −0.974751 0.223296i \(-0.928318\pi\)
0.974751 0.223296i \(-0.0716815\pi\)
\(744\) 0 0
\(745\) −394.381 −0.529370
\(746\) 0 0
\(747\) − 191.896i − 0.256889i
\(748\) 0 0
\(749\) −426.279 −0.569131
\(750\) 0 0
\(751\) 623.487i 0.830208i 0.909774 + 0.415104i \(0.136255\pi\)
−0.909774 + 0.415104i \(0.863745\pi\)
\(752\) 0 0
\(753\) −1046.95 −1.39038
\(754\) 0 0
\(755\) 127.214i 0.168496i
\(756\) 0 0
\(757\) 1428.64 1.88723 0.943617 0.331040i \(-0.107400\pi\)
0.943617 + 0.331040i \(0.107400\pi\)
\(758\) 0 0
\(759\) 1262.21i 1.66300i
\(760\) 0 0
\(761\) −1285.24 −1.68888 −0.844440 0.535650i \(-0.820067\pi\)
−0.844440 + 0.535650i \(0.820067\pi\)
\(762\) 0 0
\(763\) − 91.9562i − 0.120519i
\(764\) 0 0
\(765\) 2797.14 3.65639
\(766\) 0 0
\(767\) − 1446.75i − 1.88625i
\(768\) 0 0
\(769\) −551.328 −0.716942 −0.358471 0.933541i \(-0.616702\pi\)
−0.358471 + 0.933541i \(0.616702\pi\)
\(770\) 0 0
\(771\) − 2379.95i − 3.08683i
\(772\) 0 0
\(773\) −447.392 −0.578773 −0.289386 0.957212i \(-0.593451\pi\)
−0.289386 + 0.957212i \(0.593451\pi\)
\(774\) 0 0
\(775\) − 643.585i − 0.830432i
\(776\) 0 0
\(777\) −1523.92 −1.96129
\(778\) 0 0
\(779\) 314.972i 0.404328i
\(780\) 0 0
\(781\) −102.252 −0.130924
\(782\) 0 0
\(783\) 975.427i 1.24576i
\(784\) 0 0
\(785\) −1054.47 −1.34327
\(786\) 0 0
\(787\) 291.863i 0.370855i 0.982658 + 0.185428i \(0.0593670\pi\)
−0.982658 + 0.185428i \(0.940633\pi\)
\(788\) 0 0
\(789\) 286.443 0.363046
\(790\) 0 0
\(791\) − 189.946i − 0.240133i
\(792\) 0 0
\(793\) 110.859 0.139797
\(794\) 0 0
\(795\) − 2157.20i − 2.71346i
\(796\) 0 0
\(797\) −224.935 −0.282227 −0.141114 0.989993i \(-0.545068\pi\)
−0.141114 + 0.989993i \(0.545068\pi\)
\(798\) 0 0
\(799\) 573.288i 0.717507i
\(800\) 0 0
\(801\) −302.352 −0.377468
\(802\) 0 0
\(803\) − 514.909i − 0.641231i
\(804\) 0 0
\(805\) 690.614 0.857906
\(806\) 0 0
\(807\) 39.5455i 0.0490031i
\(808\) 0 0
\(809\) 662.505 0.818918 0.409459 0.912328i \(-0.365717\pi\)
0.409459 + 0.912328i \(0.365717\pi\)
\(810\) 0 0
\(811\) − 364.123i − 0.448980i −0.974476 0.224490i \(-0.927928\pi\)
0.974476 0.224490i \(-0.0720716\pi\)
\(812\) 0 0
\(813\) 2033.94 2.50178
\(814\) 0 0
\(815\) − 722.479i − 0.886478i
\(816\) 0 0
\(817\) −255.091 −0.312229
\(818\) 0 0
\(819\) 1983.68i 2.42208i
\(820\) 0 0
\(821\) −1237.91 −1.50781 −0.753905 0.656983i \(-0.771832\pi\)
−0.753905 + 0.656983i \(0.771832\pi\)
\(822\) 0 0
\(823\) − 669.197i − 0.813119i −0.913624 0.406559i \(-0.866728\pi\)
0.913624 0.406559i \(-0.133272\pi\)
\(824\) 0 0
\(825\) 1263.72 1.53178
\(826\) 0 0
\(827\) − 1128.89i − 1.36504i −0.730868 0.682519i \(-0.760884\pi\)
0.730868 0.682519i \(-0.239116\pi\)
\(828\) 0 0
\(829\) −198.449 −0.239384 −0.119692 0.992811i \(-0.538191\pi\)
−0.119692 + 0.992811i \(0.538191\pi\)
\(830\) 0 0
\(831\) 545.009i 0.655847i
\(832\) 0 0
\(833\) 401.330 0.481788
\(834\) 0 0
\(835\) 1610.74i 1.92903i
\(836\) 0 0
\(837\) −1074.55 −1.28381
\(838\) 0 0
\(839\) − 397.895i − 0.474249i −0.971479 0.237124i \(-0.923795\pi\)
0.971479 0.237124i \(-0.0762049\pi\)
\(840\) 0 0
\(841\) 225.322 0.267921
\(842\) 0 0
\(843\) 643.664i 0.763540i
\(844\) 0 0
\(845\) −2144.64 −2.53804
\(846\) 0 0
\(847\) − 508.329i − 0.600152i
\(848\) 0 0
\(849\) −100.709 −0.118621
\(850\) 0 0
\(851\) 940.268i 1.10490i
\(852\) 0 0
\(853\) −483.040 −0.566284 −0.283142 0.959078i \(-0.591377\pi\)
−0.283142 + 0.959078i \(0.591377\pi\)
\(854\) 0 0
\(855\) − 430.672i − 0.503710i
\(856\) 0 0
\(857\) −1623.37 −1.89425 −0.947125 0.320864i \(-0.896027\pi\)
−0.947125 + 0.320864i \(0.896027\pi\)
\(858\) 0 0
\(859\) 242.200i 0.281956i 0.990013 + 0.140978i \(0.0450247\pi\)
−0.990013 + 0.140978i \(0.954975\pi\)
\(860\) 0 0
\(861\) 2092.76 2.43062
\(862\) 0 0
\(863\) 861.605i 0.998383i 0.866492 + 0.499192i \(0.166370\pi\)
−0.866492 + 0.499192i \(0.833630\pi\)
\(864\) 0 0
\(865\) −147.742 −0.170800
\(866\) 0 0
\(867\) 2515.11i 2.90093i
\(868\) 0 0
\(869\) −844.547 −0.971861
\(870\) 0 0
\(871\) − 1430.53i − 1.64240i
\(872\) 0 0
\(873\) 765.039 0.876334
\(874\) 0 0
\(875\) 274.750i 0.314000i
\(876\) 0 0
\(877\) 900.709 1.02703 0.513517 0.858079i \(-0.328342\pi\)
0.513517 + 0.858079i \(0.328342\pi\)
\(878\) 0 0
\(879\) − 2472.11i − 2.81241i
\(880\) 0 0
\(881\) 667.165 0.757282 0.378641 0.925544i \(-0.376392\pi\)
0.378641 + 0.925544i \(0.376392\pi\)
\(882\) 0 0
\(883\) 782.377i 0.886045i 0.896511 + 0.443022i \(0.146094\pi\)
−0.896511 + 0.443022i \(0.853906\pi\)
\(884\) 0 0
\(885\) 2086.97 2.35816
\(886\) 0 0
\(887\) 986.381i 1.11204i 0.831168 + 0.556021i \(0.187673\pi\)
−0.831168 + 0.556021i \(0.812327\pi\)
\(888\) 0 0
\(889\) 473.629 0.532766
\(890\) 0 0
\(891\) − 155.768i − 0.174824i
\(892\) 0 0
\(893\) 88.2685 0.0988449
\(894\) 0 0
\(895\) 981.483i 1.09663i
\(896\) 0 0
\(897\) 1954.10 2.17849
\(898\) 0 0
\(899\) 1174.68i 1.30665i
\(900\) 0 0
\(901\) 1900.06 2.10883
\(902\) 0 0
\(903\) 1694.90i 1.87696i
\(904\) 0 0
\(905\) −1416.91 −1.56565
\(906\) 0 0
\(907\) 1433.03i 1.57997i 0.613126 + 0.789985i \(0.289912\pi\)
−0.613126 + 0.789985i \(0.710088\pi\)
\(908\) 0 0
\(909\) 998.167 1.09809
\(910\) 0 0
\(911\) 613.690i 0.673644i 0.941568 + 0.336822i \(0.109352\pi\)
−0.941568 + 0.336822i \(0.890648\pi\)
\(912\) 0 0
\(913\) 183.068 0.200512
\(914\) 0 0
\(915\) 159.917i 0.174773i
\(916\) 0 0
\(917\) 962.835 1.04998
\(918\) 0 0
\(919\) 554.724i 0.603617i 0.953369 + 0.301808i \(0.0975903\pi\)
−0.953369 + 0.301808i \(0.902410\pi\)
\(920\) 0 0
\(921\) 2281.30 2.47698
\(922\) 0 0
\(923\) 158.301i 0.171507i
\(924\) 0 0
\(925\) 941.388 1.01772
\(926\) 0 0
\(927\) 956.835i 1.03218i
\(928\) 0 0
\(929\) 1644.41 1.77009 0.885043 0.465510i \(-0.154129\pi\)
0.885043 + 0.465510i \(0.154129\pi\)
\(930\) 0 0
\(931\) − 61.7922i − 0.0663719i
\(932\) 0 0
\(933\) −646.479 −0.692904
\(934\) 0 0
\(935\) 2668.45i 2.85395i
\(936\) 0 0
\(937\) 92.0136 0.0982002 0.0491001 0.998794i \(-0.484365\pi\)
0.0491001 + 0.998794i \(0.484365\pi\)
\(938\) 0 0
\(939\) − 2718.69i − 2.89530i
\(940\) 0 0
\(941\) 779.771 0.828662 0.414331 0.910126i \(-0.364016\pi\)
0.414331 + 0.910126i \(0.364016\pi\)
\(942\) 0 0
\(943\) − 1291.25i − 1.36930i
\(944\) 0 0
\(945\) −1154.44 −1.22163
\(946\) 0 0
\(947\) 324.236i 0.342383i 0.985238 + 0.171191i \(0.0547616\pi\)
−0.985238 + 0.171191i \(0.945238\pi\)
\(948\) 0 0
\(949\) −797.159 −0.839999
\(950\) 0 0
\(951\) − 1113.20i − 1.17056i
\(952\) 0 0
\(953\) −1230.50 −1.29118 −0.645592 0.763682i \(-0.723389\pi\)
−0.645592 + 0.763682i \(0.723389\pi\)
\(954\) 0 0
\(955\) 2290.51i 2.39844i
\(956\) 0 0
\(957\) −2306.55 −2.41019
\(958\) 0 0
\(959\) 359.240i 0.374599i
\(960\) 0 0
\(961\) −333.042 −0.346558
\(962\) 0 0
\(963\) − 1089.79i − 1.13166i
\(964\) 0 0
\(965\) −1723.04 −1.78554
\(966\) 0 0
\(967\) − 699.842i − 0.723725i −0.932232 0.361862i \(-0.882141\pi\)
0.932232 0.361862i \(-0.117859\pi\)
\(968\) 0 0
\(969\) 605.630 0.625005
\(970\) 0 0
\(971\) 758.268i 0.780915i 0.920621 + 0.390457i \(0.127683\pi\)
−0.920621 + 0.390457i \(0.872317\pi\)
\(972\) 0 0
\(973\) −330.830 −0.340011
\(974\) 0 0
\(975\) − 1956.43i − 2.00660i
\(976\) 0 0
\(977\) 806.924 0.825920 0.412960 0.910749i \(-0.364495\pi\)
0.412960 + 0.910749i \(0.364495\pi\)
\(978\) 0 0
\(979\) − 288.442i − 0.294629i
\(980\) 0 0
\(981\) 235.087 0.239641
\(982\) 0 0
\(983\) − 959.544i − 0.976138i −0.872805 0.488069i \(-0.837701\pi\)
0.872805 0.488069i \(-0.162299\pi\)
\(984\) 0 0
\(985\) 1138.06 1.15539
\(986\) 0 0
\(987\) − 586.481i − 0.594206i
\(988\) 0 0
\(989\) 1045.76 1.05739
\(990\) 0 0
\(991\) 282.782i 0.285350i 0.989770 + 0.142675i \(0.0455703\pi\)
−0.989770 + 0.142675i \(0.954430\pi\)
\(992\) 0 0
\(993\) 2202.28 2.21780
\(994\) 0 0
\(995\) − 169.703i − 0.170555i
\(996\) 0 0
\(997\) −1511.38 −1.51593 −0.757966 0.652294i \(-0.773807\pi\)
−0.757966 + 0.652294i \(0.773807\pi\)
\(998\) 0 0
\(999\) − 1571.77i − 1.57334i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1216.3.d.e.191.16 16
4.3 odd 2 inner 1216.3.d.e.191.1 16
8.3 odd 2 608.3.d.a.191.16 yes 16
8.5 even 2 608.3.d.a.191.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.3.d.a.191.1 16 8.5 even 2
608.3.d.a.191.16 yes 16 8.3 odd 2
1216.3.d.e.191.1 16 4.3 odd 2 inner
1216.3.d.e.191.16 16 1.1 even 1 trivial