Properties

Label 2-1216-4.3-c2-0-35
Degree $2$
Conductor $1216$
Sign $1$
Analytic cond. $33.1336$
Root an. cond. $5.75617$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.90i·3-s − 6.54·5-s + 5.90i·7-s − 15.0·9-s − 14.3i·11-s − 22.2·13-s − 32.1i·15-s + 28.3·17-s − 4.35i·19-s − 28.9·21-s + 17.8i·23-s + 17.8·25-s − 29.8i·27-s − 32.6·29-s − 35.9i·31-s + ⋯
L(s)  = 1  + 1.63i·3-s − 1.30·5-s + 0.843i·7-s − 1.67·9-s − 1.30i·11-s − 1.71·13-s − 2.14i·15-s + 1.66·17-s − 0.229i·19-s − 1.37·21-s + 0.776i·23-s + 0.715·25-s − 1.10i·27-s − 1.12·29-s − 1.16i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1216 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1216\)    =    \(2^{6} \cdot 19\)
Sign: $1$
Analytic conductor: \(33.1336\)
Root analytic conductor: \(5.75617\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1216} (191, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1216,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6536354740\)
\(L(\frac12)\) \(\approx\) \(0.6536354740\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 4.35iT \)
good3 \( 1 - 4.90iT - 9T^{2} \)
5 \( 1 + 6.54T + 25T^{2} \)
7 \( 1 - 5.90iT - 49T^{2} \)
11 \( 1 + 14.3iT - 121T^{2} \)
13 \( 1 + 22.2T + 169T^{2} \)
17 \( 1 - 28.3T + 289T^{2} \)
23 \( 1 - 17.8iT - 529T^{2} \)
29 \( 1 + 32.6T + 841T^{2} \)
31 \( 1 + 35.9iT - 961T^{2} \)
37 \( 1 - 52.6T + 1.36e3T^{2} \)
41 \( 1 + 72.2T + 1.68e3T^{2} \)
43 \( 1 + 58.5iT - 1.84e3T^{2} \)
47 \( 1 - 20.2iT - 2.20e3T^{2} \)
53 \( 1 - 67.1T + 2.80e3T^{2} \)
59 \( 1 - 64.9iT - 3.48e3T^{2} \)
61 \( 1 + 4.97T + 3.72e3T^{2} \)
67 \( 1 - 64.2iT - 4.48e3T^{2} \)
71 \( 1 + 7.10iT - 5.04e3T^{2} \)
73 \( 1 - 35.7T + 5.32e3T^{2} \)
79 \( 1 + 58.6iT - 6.24e3T^{2} \)
83 \( 1 - 12.7iT - 6.88e3T^{2} \)
89 \( 1 - 20.0T + 7.92e3T^{2} \)
97 \( 1 + 50.7T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.582124703606939723172401278123, −8.869078671275850621699825910440, −8.023087801550178835173563621474, −7.35751427413472047307730837256, −5.63959716083848308010074089308, −5.35253265808244516364138989651, −4.20180254525933913423169620333, −3.52080939016568960211237815862, −2.73083028409959710150061304102, −0.26603313491136558676841058547, 0.829236778416248688853708372867, 2.01939273951380935096299801154, 3.20627014655166067505103769226, 4.35316671116326107337281997744, 5.28434394592819278582721084643, 6.72640755896186084878480206386, 7.22286425295620315644475251035, 7.72353522860403320327184561650, 8.154862696229350266626442269702, 9.615962081312440924414619529993

Graph of the $Z$-function along the critical line