# Properties

 Label 1216.2.a.e Level $1216$ Weight $2$ Character orbit 1216.a Self dual yes Analytic conductor $9.710$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1216,2,Mod(1,1216)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1216, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1216.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1216 = 2^{6} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1216.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$9.70980888579$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 38) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{3} - q^{7} - 2 q^{9}+O(q^{10})$$ q - q^3 - q^7 - 2 * q^9 $$q - q^{3} - q^{7} - 2 q^{9} + 6 q^{11} - 5 q^{13} + 3 q^{17} - q^{19} + q^{21} + 3 q^{23} - 5 q^{25} + 5 q^{27} - 9 q^{29} - 4 q^{31} - 6 q^{33} - 2 q^{37} + 5 q^{39} - 8 q^{43} - 6 q^{49} - 3 q^{51} + 3 q^{53} + q^{57} - 9 q^{59} + 10 q^{61} + 2 q^{63} - 5 q^{67} - 3 q^{69} - 6 q^{71} - 7 q^{73} + 5 q^{75} - 6 q^{77} - 10 q^{79} + q^{81} + 6 q^{83} + 9 q^{87} - 12 q^{89} + 5 q^{91} + 4 q^{93} - 10 q^{97} - 12 q^{99}+O(q^{100})$$ q - q^3 - q^7 - 2 * q^9 + 6 * q^11 - 5 * q^13 + 3 * q^17 - q^19 + q^21 + 3 * q^23 - 5 * q^25 + 5 * q^27 - 9 * q^29 - 4 * q^31 - 6 * q^33 - 2 * q^37 + 5 * q^39 - 8 * q^43 - 6 * q^49 - 3 * q^51 + 3 * q^53 + q^57 - 9 * q^59 + 10 * q^61 + 2 * q^63 - 5 * q^67 - 3 * q^69 - 6 * q^71 - 7 * q^73 + 5 * q^75 - 6 * q^77 - 10 * q^79 + q^81 + 6 * q^83 + 9 * q^87 - 12 * q^89 + 5 * q^91 + 4 * q^93 - 10 * q^97 - 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 0 0 −1.00000 0 −2.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$19$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1216.2.a.e 1
4.b odd 2 1 1216.2.a.m 1
8.b even 2 1 38.2.a.a 1
8.d odd 2 1 304.2.a.c 1
24.f even 2 1 2736.2.a.n 1
24.h odd 2 1 342.2.a.e 1
40.e odd 2 1 7600.2.a.n 1
40.f even 2 1 950.2.a.d 1
40.i odd 4 2 950.2.b.b 2
56.h odd 2 1 1862.2.a.b 1
88.b odd 2 1 4598.2.a.p 1
104.e even 2 1 6422.2.a.h 1
120.i odd 2 1 8550.2.a.m 1
152.b even 2 1 5776.2.a.m 1
152.g odd 2 1 722.2.a.e 1
152.l odd 6 2 722.2.c.c 2
152.p even 6 2 722.2.c.e 2
152.s odd 18 6 722.2.e.e 6
152.t even 18 6 722.2.e.f 6
456.p even 2 1 6498.2.a.f 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
38.2.a.a 1 8.b even 2 1
304.2.a.c 1 8.d odd 2 1
342.2.a.e 1 24.h odd 2 1
722.2.a.e 1 152.g odd 2 1
722.2.c.c 2 152.l odd 6 2
722.2.c.e 2 152.p even 6 2
722.2.e.e 6 152.s odd 18 6
722.2.e.f 6 152.t even 18 6
950.2.a.d 1 40.f even 2 1
950.2.b.b 2 40.i odd 4 2
1216.2.a.e 1 1.a even 1 1 trivial
1216.2.a.m 1 4.b odd 2 1
1862.2.a.b 1 56.h odd 2 1
2736.2.a.n 1 24.f even 2 1
4598.2.a.p 1 88.b odd 2 1
5776.2.a.m 1 152.b even 2 1
6422.2.a.h 1 104.e even 2 1
6498.2.a.f 1 456.p even 2 1
7600.2.a.n 1 40.e odd 2 1
8550.2.a.m 1 120.i odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1216))$$:

 $$T_{3} + 1$$ T3 + 1 $$T_{5}$$ T5 $$T_{7} + 1$$ T7 + 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T + 1$$
$11$ $$T - 6$$
$13$ $$T + 5$$
$17$ $$T - 3$$
$19$ $$T + 1$$
$23$ $$T - 3$$
$29$ $$T + 9$$
$31$ $$T + 4$$
$37$ $$T + 2$$
$41$ $$T$$
$43$ $$T + 8$$
$47$ $$T$$
$53$ $$T - 3$$
$59$ $$T + 9$$
$61$ $$T - 10$$
$67$ $$T + 5$$
$71$ $$T + 6$$
$73$ $$T + 7$$
$79$ $$T + 10$$
$83$ $$T - 6$$
$89$ $$T + 12$$
$97$ $$T + 10$$