Defining parameters
Level: | \( N \) | \(=\) | \( 1216 = 2^{6} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1216.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1216))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 172 | 36 | 136 |
Cusp forms | 149 | 36 | 113 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(8\) |
\(+\) | \(-\) | \(-\) | \(11\) |
\(-\) | \(+\) | \(-\) | \(10\) |
\(-\) | \(-\) | \(+\) | \(7\) |
Plus space | \(+\) | \(15\) | |
Minus space | \(-\) | \(21\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1216))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1216))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1216)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(304))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(608))\)\(^{\oplus 2}\)