Properties

Label 120.4.w.c
Level $120$
Weight $4$
Character orbit 120.w
Analytic conductor $7.080$
Analytic rank $0$
Dimension $128$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(53,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 2, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.53");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(128\)
Relative dimension: \(64\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 128 q - 4 q^{6} - 144 q^{7}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 128 q - 4 q^{6} - 144 q^{7} - 156 q^{10} - 56 q^{12} + 212 q^{15} + 636 q^{16} + 220 q^{18} - 188 q^{22} - 8 q^{25} + 908 q^{28} + 328 q^{30} - 544 q^{31} - 1624 q^{33} - 1268 q^{36} - 136 q^{40} + 328 q^{42} + 568 q^{46} - 148 q^{48} + 616 q^{52} + 728 q^{55} - 112 q^{57} + 2196 q^{58} - 424 q^{60} - 2304 q^{63} + 304 q^{66} - 4740 q^{70} + 224 q^{72} + 1280 q^{73} - 1624 q^{76} - 1448 q^{78} + 7056 q^{81} - 1472 q^{82} - 5720 q^{87} + 1516 q^{88} - 996 q^{90} + 2732 q^{96} - 3792 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1 −2.82746 0.0740349i −4.92707 1.65046i 7.98904 + 0.418661i 9.98780 5.02432i 13.8089 + 5.03137i −17.9179 + 17.9179i −22.5577 1.77521i 21.5520 + 16.2638i −28.6121 + 13.4666i
53.2 −2.82670 0.0987097i −0.743209 + 5.14273i 7.98051 + 0.558046i 10.6120 + 3.51928i 2.60847 14.4636i 22.4668 22.4668i −22.5035 2.36519i −25.8953 7.64424i −29.6496 10.9955i
53.3 −2.79977 + 0.401606i 4.62659 2.36530i 7.67742 2.24881i 3.00421 10.7692i −12.0035 + 8.48037i 13.4333 13.4333i −20.5919 + 9.37945i 15.8107 21.8866i −4.08613 + 31.3577i
53.4 −2.79310 + 0.445660i −4.73057 2.14982i 7.60277 2.48954i −4.08469 + 10.4075i 14.1710 + 3.89642i 13.5500 13.5500i −20.1258 + 10.3418i 17.7566 + 20.3397i 6.77075 30.8894i
53.5 −2.75807 + 0.626941i 0.195243 5.19248i 7.21389 3.45829i −10.6250 3.47979i 2.71688 + 14.4436i −17.6061 + 17.6061i −17.7283 + 14.0609i −26.9238 2.02759i 31.4862 + 2.93625i
53.6 −2.75693 0.631946i 3.22170 + 4.07684i 7.20129 + 3.48446i −8.53855 7.21756i −6.30564 13.2755i −9.44868 + 9.44868i −17.6514 14.1572i −6.24131 + 26.2687i 18.9790 + 25.2942i
53.7 −2.70249 + 0.834608i 4.97128 + 1.51207i 6.60686 4.51103i 2.32852 + 10.9352i −14.6968 + 0.0627124i −7.15720 + 7.15720i −14.0900 + 17.7051i 22.4273 + 15.0339i −15.4194 27.6087i
53.8 −2.68461 0.890420i −4.50848 + 2.58334i 6.41430 + 4.78087i −7.39959 8.38130i 14.4038 2.92083i 8.77577 8.77577i −12.9629 18.5462i 13.6527 23.2938i 12.4022 + 29.0893i
53.9 −2.62963 1.04165i 0.323055 5.18610i 5.82991 + 5.47833i 4.01180 + 10.4358i −6.25164 + 13.3010i −2.52357 + 2.52357i −9.62399 20.4787i −26.7913 3.35079i 0.320933 31.6211i
53.10 −2.52995 1.26466i 4.80218 1.98471i 4.80127 + 6.39905i −9.85625 + 5.27772i −14.6592 1.05193i 6.52335 6.52335i −4.05433 22.2612i 19.1219 19.0618i 31.6103 0.887536i
53.11 −2.49705 + 1.32844i 0.0934179 + 5.19531i 4.47048 6.63436i 5.77473 9.57353i −7.13494 12.8488i −15.4977 + 15.4977i −2.34964 + 22.5051i −26.9825 + 0.970671i −1.70189 + 31.5769i
53.12 −2.43671 + 1.43613i −3.22666 + 4.07292i 3.87507 6.99884i −9.99090 + 5.01815i 2.01318 14.5584i −4.98039 + 4.98039i 0.608813 + 22.6192i −6.17736 26.2838i 17.1382 26.5760i
53.13 −2.38175 1.52553i −3.32206 + 3.99548i 3.34551 + 7.26688i 1.66448 + 11.0557i 14.0076 4.44835i −23.0437 + 23.0437i 3.11769 22.4116i −4.92780 26.5465i 12.9015 28.8713i
53.14 −2.33291 1.59924i −1.39809 5.00453i 2.88489 + 7.46173i 6.09990 9.36970i −4.74181 + 13.9110i 16.1295 16.1295i 5.20287 22.0211i −23.0907 + 13.9936i −29.2148 + 12.1035i
53.15 −2.22682 1.74392i 4.46520 + 2.65743i 1.91749 + 7.76680i 10.9958 2.02288i −5.30887 13.7046i −3.45928 + 3.45928i 9.27479 20.6392i 12.8761 + 23.7320i −28.0135 14.6712i
53.16 −2.22355 + 1.74810i 1.34563 5.01889i 1.88832 7.77395i 10.3996 + 4.10459i 5.78143 + 13.5120i 2.75574 2.75574i 9.39082 + 20.5867i −23.3786 13.5072i −30.2993 + 9.05281i
53.17 −1.74810 + 2.22355i −5.01889 + 1.34563i −1.88832 7.77395i 10.3996 + 4.10459i 5.78143 13.5120i 2.75574 2.75574i 20.5867 + 9.39082i 23.3786 13.5072i −27.3063 + 15.9489i
53.18 −1.74392 2.22682i −4.46520 2.65743i −1.91749 + 7.76680i −10.9958 + 2.02288i 1.86933 + 14.5776i −3.45928 + 3.45928i 20.6392 9.27479i 12.8761 + 23.7320i 23.6804 + 20.9580i
53.19 −1.59924 2.33291i 1.39809 + 5.00453i −2.88489 + 7.46173i −6.09990 + 9.36970i 9.43922 11.2650i 16.1295 16.1295i 22.0211 5.20287i −23.0907 + 13.9936i 31.6138 0.753871i
53.20 −1.52553 2.38175i 3.32206 3.99548i −3.34551 + 7.26688i −1.66448 11.0557i −14.5842 1.81710i −23.0437 + 23.0437i 22.4116 3.11769i −4.92780 26.5465i −23.7929 + 20.8303i
See next 80 embeddings (of 128 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 53.64
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
8.b even 2 1 inner
15.e even 4 1 inner
24.h odd 2 1 inner
40.i odd 4 1 inner
120.w even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.4.w.c 128
3.b odd 2 1 inner 120.4.w.c 128
5.c odd 4 1 inner 120.4.w.c 128
8.b even 2 1 inner 120.4.w.c 128
15.e even 4 1 inner 120.4.w.c 128
24.h odd 2 1 inner 120.4.w.c 128
40.i odd 4 1 inner 120.4.w.c 128
120.w even 4 1 inner 120.4.w.c 128
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.w.c 128 1.a even 1 1 trivial
120.4.w.c 128 3.b odd 2 1 inner
120.4.w.c 128 5.c odd 4 1 inner
120.4.w.c 128 8.b even 2 1 inner
120.4.w.c 128 15.e even 4 1 inner
120.4.w.c 128 24.h odd 2 1 inner
120.4.w.c 128 40.i odd 4 1 inner
120.4.w.c 128 120.w even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(120, [\chi])\):

\( T_{7}^{32} + 36 T_{7}^{31} + 648 T_{7}^{30} - 1740 T_{7}^{29} + 1620908 T_{7}^{28} + \cdots + 77\!\cdots\!00 \) Copy content Toggle raw display
\( T_{11}^{32} - 20810 T_{11}^{30} + 191023336 T_{11}^{28} - 1022421127568 T_{11}^{26} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display