Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [120,4,Mod(53,120)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(120, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 2, 2, 3]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("120.53");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.w (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.08022920069\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(64\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 | −2.82746 | − | 0.0740349i | −4.92707 | − | 1.65046i | 7.98904 | + | 0.418661i | 9.98780 | − | 5.02432i | 13.8089 | + | 5.03137i | −17.9179 | + | 17.9179i | −22.5577 | − | 1.77521i | 21.5520 | + | 16.2638i | −28.6121 | + | 13.4666i |
53.2 | −2.82670 | − | 0.0987097i | −0.743209 | + | 5.14273i | 7.98051 | + | 0.558046i | 10.6120 | + | 3.51928i | 2.60847 | − | 14.4636i | 22.4668 | − | 22.4668i | −22.5035 | − | 2.36519i | −25.8953 | − | 7.64424i | −29.6496 | − | 10.9955i |
53.3 | −2.79977 | + | 0.401606i | 4.62659 | − | 2.36530i | 7.67742 | − | 2.24881i | 3.00421 | − | 10.7692i | −12.0035 | + | 8.48037i | 13.4333 | − | 13.4333i | −20.5919 | + | 9.37945i | 15.8107 | − | 21.8866i | −4.08613 | + | 31.3577i |
53.4 | −2.79310 | + | 0.445660i | −4.73057 | − | 2.14982i | 7.60277 | − | 2.48954i | −4.08469 | + | 10.4075i | 14.1710 | + | 3.89642i | 13.5500 | − | 13.5500i | −20.1258 | + | 10.3418i | 17.7566 | + | 20.3397i | 6.77075 | − | 30.8894i |
53.5 | −2.75807 | + | 0.626941i | 0.195243 | − | 5.19248i | 7.21389 | − | 3.45829i | −10.6250 | − | 3.47979i | 2.71688 | + | 14.4436i | −17.6061 | + | 17.6061i | −17.7283 | + | 14.0609i | −26.9238 | − | 2.02759i | 31.4862 | + | 2.93625i |
53.6 | −2.75693 | − | 0.631946i | 3.22170 | + | 4.07684i | 7.20129 | + | 3.48446i | −8.53855 | − | 7.21756i | −6.30564 | − | 13.2755i | −9.44868 | + | 9.44868i | −17.6514 | − | 14.1572i | −6.24131 | + | 26.2687i | 18.9790 | + | 25.2942i |
53.7 | −2.70249 | + | 0.834608i | 4.97128 | + | 1.51207i | 6.60686 | − | 4.51103i | 2.32852 | + | 10.9352i | −14.6968 | + | 0.0627124i | −7.15720 | + | 7.15720i | −14.0900 | + | 17.7051i | 22.4273 | + | 15.0339i | −15.4194 | − | 27.6087i |
53.8 | −2.68461 | − | 0.890420i | −4.50848 | + | 2.58334i | 6.41430 | + | 4.78087i | −7.39959 | − | 8.38130i | 14.4038 | − | 2.92083i | 8.77577 | − | 8.77577i | −12.9629 | − | 18.5462i | 13.6527 | − | 23.2938i | 12.4022 | + | 29.0893i |
53.9 | −2.62963 | − | 1.04165i | 0.323055 | − | 5.18610i | 5.82991 | + | 5.47833i | 4.01180 | + | 10.4358i | −6.25164 | + | 13.3010i | −2.52357 | + | 2.52357i | −9.62399 | − | 20.4787i | −26.7913 | − | 3.35079i | 0.320933 | − | 31.6211i |
53.10 | −2.52995 | − | 1.26466i | 4.80218 | − | 1.98471i | 4.80127 | + | 6.39905i | −9.85625 | + | 5.27772i | −14.6592 | − | 1.05193i | 6.52335 | − | 6.52335i | −4.05433 | − | 22.2612i | 19.1219 | − | 19.0618i | 31.6103 | − | 0.887536i |
53.11 | −2.49705 | + | 1.32844i | 0.0934179 | + | 5.19531i | 4.47048 | − | 6.63436i | 5.77473 | − | 9.57353i | −7.13494 | − | 12.8488i | −15.4977 | + | 15.4977i | −2.34964 | + | 22.5051i | −26.9825 | + | 0.970671i | −1.70189 | + | 31.5769i |
53.12 | −2.43671 | + | 1.43613i | −3.22666 | + | 4.07292i | 3.87507 | − | 6.99884i | −9.99090 | + | 5.01815i | 2.01318 | − | 14.5584i | −4.98039 | + | 4.98039i | 0.608813 | + | 22.6192i | −6.17736 | − | 26.2838i | 17.1382 | − | 26.5760i |
53.13 | −2.38175 | − | 1.52553i | −3.32206 | + | 3.99548i | 3.34551 | + | 7.26688i | 1.66448 | + | 11.0557i | 14.0076 | − | 4.44835i | −23.0437 | + | 23.0437i | 3.11769 | − | 22.4116i | −4.92780 | − | 26.5465i | 12.9015 | − | 28.8713i |
53.14 | −2.33291 | − | 1.59924i | −1.39809 | − | 5.00453i | 2.88489 | + | 7.46173i | 6.09990 | − | 9.36970i | −4.74181 | + | 13.9110i | 16.1295 | − | 16.1295i | 5.20287 | − | 22.0211i | −23.0907 | + | 13.9936i | −29.2148 | + | 12.1035i |
53.15 | −2.22682 | − | 1.74392i | 4.46520 | + | 2.65743i | 1.91749 | + | 7.76680i | 10.9958 | − | 2.02288i | −5.30887 | − | 13.7046i | −3.45928 | + | 3.45928i | 9.27479 | − | 20.6392i | 12.8761 | + | 23.7320i | −28.0135 | − | 14.6712i |
53.16 | −2.22355 | + | 1.74810i | 1.34563 | − | 5.01889i | 1.88832 | − | 7.77395i | 10.3996 | + | 4.10459i | 5.78143 | + | 13.5120i | 2.75574 | − | 2.75574i | 9.39082 | + | 20.5867i | −23.3786 | − | 13.5072i | −30.2993 | + | 9.05281i |
53.17 | −1.74810 | + | 2.22355i | −5.01889 | + | 1.34563i | −1.88832 | − | 7.77395i | 10.3996 | + | 4.10459i | 5.78143 | − | 13.5120i | 2.75574 | − | 2.75574i | 20.5867 | + | 9.39082i | 23.3786 | − | 13.5072i | −27.3063 | + | 15.9489i |
53.18 | −1.74392 | − | 2.22682i | −4.46520 | − | 2.65743i | −1.91749 | + | 7.76680i | −10.9958 | + | 2.02288i | 1.86933 | + | 14.5776i | −3.45928 | + | 3.45928i | 20.6392 | − | 9.27479i | 12.8761 | + | 23.7320i | 23.6804 | + | 20.9580i |
53.19 | −1.59924 | − | 2.33291i | 1.39809 | + | 5.00453i | −2.88489 | + | 7.46173i | −6.09990 | + | 9.36970i | 9.43922 | − | 11.2650i | 16.1295 | − | 16.1295i | 22.0211 | − | 5.20287i | −23.0907 | + | 13.9936i | 31.6138 | − | 0.753871i |
53.20 | −1.52553 | − | 2.38175i | 3.32206 | − | 3.99548i | −3.34551 | + | 7.26688i | −1.66448 | − | 11.0557i | −14.5842 | − | 1.81710i | −23.0437 | + | 23.0437i | 22.4116 | − | 3.11769i | −4.92780 | − | 26.5465i | −23.7929 | + | 20.8303i |
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
8.b | even | 2 | 1 | inner |
15.e | even | 4 | 1 | inner |
24.h | odd | 2 | 1 | inner |
40.i | odd | 4 | 1 | inner |
120.w | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 120.4.w.c | ✓ | 128 |
3.b | odd | 2 | 1 | inner | 120.4.w.c | ✓ | 128 |
5.c | odd | 4 | 1 | inner | 120.4.w.c | ✓ | 128 |
8.b | even | 2 | 1 | inner | 120.4.w.c | ✓ | 128 |
15.e | even | 4 | 1 | inner | 120.4.w.c | ✓ | 128 |
24.h | odd | 2 | 1 | inner | 120.4.w.c | ✓ | 128 |
40.i | odd | 4 | 1 | inner | 120.4.w.c | ✓ | 128 |
120.w | even | 4 | 1 | inner | 120.4.w.c | ✓ | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
120.4.w.c | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
120.4.w.c | ✓ | 128 | 3.b | odd | 2 | 1 | inner |
120.4.w.c | ✓ | 128 | 5.c | odd | 4 | 1 | inner |
120.4.w.c | ✓ | 128 | 8.b | even | 2 | 1 | inner |
120.4.w.c | ✓ | 128 | 15.e | even | 4 | 1 | inner |
120.4.w.c | ✓ | 128 | 24.h | odd | 2 | 1 | inner |
120.4.w.c | ✓ | 128 | 40.i | odd | 4 | 1 | inner |
120.4.w.c | ✓ | 128 | 120.w | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(120, [\chi])\):
\( T_{7}^{32} + 36 T_{7}^{31} + 648 T_{7}^{30} - 1740 T_{7}^{29} + 1620908 T_{7}^{28} + \cdots + 77\!\cdots\!00 \) |
\( T_{11}^{32} - 20810 T_{11}^{30} + 191023336 T_{11}^{28} - 1022421127568 T_{11}^{26} + \cdots + 58\!\cdots\!00 \) |