Defining parameters
Level: | \( N \) | \(=\) | \( 120 = 2^{3} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 120.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 120 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 152 | 0 |
Cusp forms | 136 | 136 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(120, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
120.4.w.a | $4$ | $7.080$ | \(\Q(i, \sqrt{6})\) | \(\Q(\sqrt{-6}) \) | \(-8\) | \(0\) | \(-28\) | \(68\) | \(q+(-2+2\beta _{2})q^{2}-\beta _{1}q^{3}-8\beta _{2}q^{4}+\cdots\) |
120.4.w.b | $4$ | $7.080$ | \(\Q(i, \sqrt{6})\) | \(\Q(\sqrt{-6}) \) | \(8\) | \(0\) | \(28\) | \(68\) | \(q+(2-2\beta _{2})q^{2}+\beta _{1}q^{3}-8\beta _{2}q^{4}+(7+\cdots)q^{5}+\cdots\) |
120.4.w.c | $128$ | $7.080$ | None | \(0\) | \(0\) | \(0\) | \(-144\) |