Properties

Label 1197.2.a.q
Level $1197$
Weight $2$
Character orbit 1197.a
Self dual yes
Analytic conductor $9.558$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1197,2,Mod(1,1197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1197.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1197, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1197 = 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1197.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,6,0,0,-6,0,0,12,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.55809312195\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.12730624.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 8x^{4} + 13x^{2} - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{2} + (\beta_{4} + 1) q^{4} + (\beta_{3} + \beta_{2}) q^{5} - q^{7} + (\beta_{5} + \beta_{3}) q^{8} + (\beta_{4} + 2) q^{10} + 2 \beta_{3} q^{11} + ( - \beta_{4} + \beta_1 - 1) q^{13}+ \cdots + \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{4} - 6 q^{7} + 12 q^{10} - 4 q^{13} + 10 q^{16} + 6 q^{19} + 36 q^{22} + 10 q^{25} - 6 q^{28} + 8 q^{31} + 12 q^{34} + 12 q^{37} + 28 q^{40} + 40 q^{43} - 20 q^{46} + 6 q^{49} - 28 q^{52} + 24 q^{55}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 8x^{4} + 13x^{2} - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{4} - 5\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - 6\nu^{3} + \nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - 8\nu^{3} + 11\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 7\nu^{2} + 6 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 7\nu^{3} + 8\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - \beta_{3} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} + \beta _1 + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{5} - 7\beta_{3} - 3\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -5\beta_{4} + 7\beta _1 + 23 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 29\beta_{5} - 41\beta_{3} - 13\beta_{2} ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.634243
2.43255
−1.29632
1.29632
−2.43255
0.634243
−2.51912 0 4.34596 −2.12216 0 −1.00000 −5.90976 0 5.34596
1.2 −1.61036 0 0.593272 −0.989386 0 −1.00000 2.26534 0 1.59327
1.3 −0.246506 0 −1.93923 3.81019 0 −1.00000 0.971044 0 −0.939235
1.4 0.246506 0 −1.93923 −3.81019 0 −1.00000 −0.971044 0 −0.939235
1.5 1.61036 0 0.593272 0.989386 0 −1.00000 −2.26534 0 1.59327
1.6 2.51912 0 4.34596 2.12216 0 −1.00000 5.90976 0 5.34596
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(19\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1197.2.a.q 6
3.b odd 2 1 inner 1197.2.a.q 6
7.b odd 2 1 8379.2.a.ch 6
21.c even 2 1 8379.2.a.ch 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1197.2.a.q 6 1.a even 1 1 trivial
1197.2.a.q 6 3.b odd 2 1 inner
8379.2.a.ch 6 7.b odd 2 1
8379.2.a.ch 6 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1197))\):

\( T_{2}^{6} - 9T_{2}^{4} + 17T_{2}^{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{6} - 20T_{5}^{4} + 84T_{5}^{2} - 64 \) Copy content Toggle raw display
\( T_{11}^{6} - 36T_{11}^{4} + 272T_{11}^{2} - 64 \) Copy content Toggle raw display
\( T_{13}^{3} + 2T_{13}^{2} - 32T_{13} - 80 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 9 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 20 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 36 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$13$ \( (T^{3} + 2 T^{2} - 32 T - 80)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} - 20 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 132 T^{4} + \cdots - 78400 \) Copy content Toggle raw display
$29$ \( T^{6} - 32 T^{4} + \cdots - 784 \) Copy content Toggle raw display
$31$ \( (T^{3} - 4 T^{2} + \cdots + 448)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} - 6 T^{2} - 28 T + 40)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 36 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$43$ \( (T^{3} - 20 T^{2} + \cdots - 16)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} - 128 T^{4} + \cdots - 10000 \) Copy content Toggle raw display
$53$ \( T^{6} - 336 T^{4} + \cdots - 868624 \) Copy content Toggle raw display
$59$ \( T^{6} - 272 T^{4} + \cdots - 16384 \) Copy content Toggle raw display
$61$ \( (T^{3} + 6 T^{2} - 28 T - 40)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} - 12 T^{2} + \cdots + 832)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} - 164 T^{4} + \cdots - 141376 \) Copy content Toggle raw display
$73$ \( (T^{3} - 10 T^{2} + \cdots + 664)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 8 T^{2} - 104 T + 32)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} - 272 T^{4} + \cdots - 355216 \) Copy content Toggle raw display
$89$ \( T^{6} - 36 T^{4} + \cdots - 64 \) Copy content Toggle raw display
$97$ \( (T + 2)^{6} \) Copy content Toggle raw display
show more
show less