Properties

Label 2-1197-1.1-c1-0-18
Degree $2$
Conductor $1197$
Sign $1$
Analytic cond. $9.55809$
Root an. cond. $3.09161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.61·2-s + 0.593·4-s + 0.989·5-s − 7-s − 2.26·8-s + 1.59·10-s + 3.22·11-s + 5.83·13-s − 1.61·14-s − 4.83·16-s + 0.989·17-s + 19-s + 0.586·20-s + 5.18·22-s + 6.50·23-s − 4.02·25-s + 9.39·26-s − 0.593·28-s + 2.23·29-s + 8.64·31-s − 3.25·32-s + 1.59·34-s − 0.989·35-s + 1.18·37-s + 1.61·38-s − 2.24·40-s − 3.22·41-s + ⋯
L(s)  = 1  + 1.13·2-s + 0.296·4-s + 0.442·5-s − 0.377·7-s − 0.800·8-s + 0.503·10-s + 0.971·11-s + 1.61·13-s − 0.430·14-s − 1.20·16-s + 0.239·17-s + 0.229·19-s + 0.131·20-s + 1.10·22-s + 1.35·23-s − 0.804·25-s + 1.84·26-s − 0.112·28-s + 0.414·29-s + 1.55·31-s − 0.575·32-s + 0.273·34-s − 0.167·35-s + 0.195·37-s + 0.261·38-s − 0.354·40-s − 0.502·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1197\)    =    \(3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(9.55809\)
Root analytic conductor: \(3.09161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1197,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.075714784\)
\(L(\frac12)\) \(\approx\) \(3.075714784\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good2 \( 1 - 1.61T + 2T^{2} \)
5 \( 1 - 0.989T + 5T^{2} \)
11 \( 1 - 3.22T + 11T^{2} \)
13 \( 1 - 5.83T + 13T^{2} \)
17 \( 1 - 0.989T + 17T^{2} \)
23 \( 1 - 6.50T + 23T^{2} \)
29 \( 1 - 2.23T + 29T^{2} \)
31 \( 1 - 8.64T + 31T^{2} \)
37 \( 1 - 1.18T + 37T^{2} \)
41 \( 1 + 3.22T + 41T^{2} \)
43 \( 1 - 0.165T + 43T^{2} \)
47 \( 1 + 5.52T + 47T^{2} \)
53 \( 1 - 8.00T + 53T^{2} \)
59 \( 1 + 12.2T + 59T^{2} \)
61 \( 1 + 1.18T + 61T^{2} \)
67 \( 1 - 5.62T + 67T^{2} \)
71 \( 1 + 6.76T + 71T^{2} \)
73 \( 1 + 8.85T + 73T^{2} \)
79 \( 1 - 14.8T + 79T^{2} \)
83 \( 1 + 8.67T + 83T^{2} \)
89 \( 1 + 3.22T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.645225300560866388818253624241, −9.014406702074141143368610336390, −8.235118579724050059972506326814, −6.78010027530487281159536491343, −6.26589371374337675931480052692, −5.54580355305659230935800502068, −4.50265286160104569276191232781, −3.67007988110464106903088404985, −2.88533573746528464865166161158, −1.24849247582316168855581211003, 1.24849247582316168855581211003, 2.88533573746528464865166161158, 3.67007988110464106903088404985, 4.50265286160104569276191232781, 5.54580355305659230935800502068, 6.26589371374337675931480052692, 6.78010027530487281159536491343, 8.235118579724050059972506326814, 9.014406702074141143368610336390, 9.645225300560866388818253624241

Graph of the $Z$-function along the critical line