Properties

Label 119.5.c.a.69.39
Level $119$
Weight $5$
Character 119.69
Analytic conductor $12.301$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [119,5,Mod(69,119)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("119.69"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(119, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 119.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.3010256070\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 69.39
Character \(\chi\) \(=\) 119.69
Dual form 119.5.c.a.69.40

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.58903 q^{2} -5.18871i q^{3} +27.4153 q^{4} +26.0235i q^{5} -34.1886i q^{6} +(14.9357 - 46.6683i) q^{7} +75.2159 q^{8} +54.0773 q^{9} +171.470i q^{10} +159.995 q^{11} -142.250i q^{12} -89.9878i q^{13} +(98.4115 - 307.499i) q^{14} +135.028 q^{15} +56.9547 q^{16} +70.0928i q^{17} +356.317 q^{18} +272.253i q^{19} +713.443i q^{20} +(-242.148 - 77.4968i) q^{21} +1054.21 q^{22} -918.510 q^{23} -390.273i q^{24} -52.2225 q^{25} -592.932i q^{26} -700.877i q^{27} +(409.466 - 1279.43i) q^{28} -403.212 q^{29} +889.706 q^{30} +166.296i q^{31} -828.178 q^{32} -830.165i q^{33} +461.844i q^{34} +(1214.47 + 388.678i) q^{35} +1482.55 q^{36} -1010.92 q^{37} +1793.88i q^{38} -466.921 q^{39} +1957.38i q^{40} +1431.34i q^{41} +(-1595.52 - 510.628i) q^{42} +256.675 q^{43} +4386.30 q^{44} +1407.28i q^{45} -6052.09 q^{46} +2009.34i q^{47} -295.521i q^{48} +(-1954.85 - 1394.04i) q^{49} -344.096 q^{50} +363.691 q^{51} -2467.04i q^{52} -2286.71 q^{53} -4618.10i q^{54} +4163.62i q^{55} +(1123.40 - 3510.20i) q^{56} +1412.64 q^{57} -2656.78 q^{58} +5112.51i q^{59} +3701.85 q^{60} -4872.10i q^{61} +1095.73i q^{62} +(807.679 - 2523.69i) q^{63} -6368.17 q^{64} +2341.80 q^{65} -5469.98i q^{66} +4689.48 q^{67} +1921.62i q^{68} +4765.88i q^{69} +(8002.19 + 2561.01i) q^{70} +4255.15 q^{71} +4067.47 q^{72} -8799.21i q^{73} -6660.99 q^{74} +270.967i q^{75} +7463.91i q^{76} +(2389.62 - 7466.66i) q^{77} -3076.55 q^{78} -11112.7 q^{79} +1482.16i q^{80} +743.614 q^{81} +9431.15i q^{82} +1229.58i q^{83} +(-6638.57 - 2124.60i) q^{84} -1824.06 q^{85} +1691.24 q^{86} +2092.15i q^{87} +12034.1 q^{88} +5476.97i q^{89} +9272.61i q^{90} +(-4199.57 - 1344.03i) q^{91} -25181.2 q^{92} +862.864 q^{93} +13239.6i q^{94} -7084.98 q^{95} +4297.18i q^{96} -14912.8i q^{97} +(-12880.6 - 9185.38i) q^{98} +8652.07 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 6 q^{2} + 378 q^{4} - 130 q^{7} - 6 q^{8} - 1232 q^{9} + 192 q^{11} - 294 q^{14} - 128 q^{15} + 3178 q^{16} + 682 q^{18} + 312 q^{21} + 336 q^{22} + 876 q^{23} - 3800 q^{25} - 2426 q^{28} - 3372 q^{29}+ \cdots - 19620 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/119\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(71\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 6.58903 1.64726 0.823629 0.567129i \(-0.191946\pi\)
0.823629 + 0.567129i \(0.191946\pi\)
\(3\) 5.18871i 0.576523i −0.957552 0.288262i \(-0.906923\pi\)
0.957552 0.288262i \(-0.0930773\pi\)
\(4\) 27.4153 1.71346
\(5\) 26.0235i 1.04094i 0.853880 + 0.520470i \(0.174243\pi\)
−0.853880 + 0.520470i \(0.825757\pi\)
\(6\) 34.1886i 0.949682i
\(7\) 14.9357 46.6683i 0.304809 0.952413i
\(8\) 75.2159 1.17525
\(9\) 54.0773 0.667621
\(10\) 171.470i 1.71470i
\(11\) 159.995 1.32227 0.661134 0.750268i \(-0.270075\pi\)
0.661134 + 0.750268i \(0.270075\pi\)
\(12\) 142.250i 0.987848i
\(13\) 89.9878i 0.532472i −0.963908 0.266236i \(-0.914220\pi\)
0.963908 0.266236i \(-0.0857801\pi\)
\(14\) 98.4115 307.499i 0.502099 1.56887i
\(15\) 135.028 0.600126
\(16\) 56.9547 0.222479
\(17\) 70.0928i 0.242536i
\(18\) 356.317 1.09974
\(19\) 272.253i 0.754164i 0.926180 + 0.377082i \(0.123073\pi\)
−0.926180 + 0.377082i \(0.876927\pi\)
\(20\) 713.443i 1.78361i
\(21\) −242.148 77.4968i −0.549089 0.175730i
\(22\) 1054.21 2.17812
\(23\) −918.510 −1.73631 −0.868157 0.496290i \(-0.834695\pi\)
−0.868157 + 0.496290i \(0.834695\pi\)
\(24\) 390.273i 0.677558i
\(25\) −52.2225 −0.0835560
\(26\) 592.932i 0.877119i
\(27\) 700.877i 0.961422i
\(28\) 409.466 1279.43i 0.522278 1.63192i
\(29\) −403.212 −0.479444 −0.239722 0.970842i \(-0.577056\pi\)
−0.239722 + 0.970842i \(0.577056\pi\)
\(30\) 889.706 0.988562
\(31\) 166.296i 0.173045i 0.996250 + 0.0865226i \(0.0275755\pi\)
−0.996250 + 0.0865226i \(0.972425\pi\)
\(32\) −828.178 −0.808768
\(33\) 830.165i 0.762319i
\(34\) 461.844i 0.399519i
\(35\) 1214.47 + 388.678i 0.991405 + 0.317288i
\(36\) 1482.55 1.14394
\(37\) −1010.92 −0.738437 −0.369219 0.929343i \(-0.620375\pi\)
−0.369219 + 0.929343i \(0.620375\pi\)
\(38\) 1793.88i 1.24230i
\(39\) −466.921 −0.306983
\(40\) 1957.38i 1.22336i
\(41\) 1431.34i 0.851482i 0.904845 + 0.425741i \(0.139986\pi\)
−0.904845 + 0.425741i \(0.860014\pi\)
\(42\) −1595.52 510.628i −0.904490 0.289472i
\(43\) 256.675 0.138818 0.0694090 0.997588i \(-0.477889\pi\)
0.0694090 + 0.997588i \(0.477889\pi\)
\(44\) 4386.30 2.26565
\(45\) 1407.28i 0.694953i
\(46\) −6052.09 −2.86016
\(47\) 2009.34i 0.909617i 0.890589 + 0.454809i \(0.150292\pi\)
−0.890589 + 0.454809i \(0.849708\pi\)
\(48\) 295.521i 0.128265i
\(49\) −1954.85 1394.04i −0.814183 0.580609i
\(50\) −344.096 −0.137638
\(51\) 363.691 0.139827
\(52\) 2467.04i 0.912369i
\(53\) −2286.71 −0.814065 −0.407033 0.913414i \(-0.633437\pi\)
−0.407033 + 0.913414i \(0.633437\pi\)
\(54\) 4618.10i 1.58371i
\(55\) 4163.62i 1.37640i
\(56\) 1123.40 3510.20i 0.358227 1.11932i
\(57\) 1412.64 0.434793
\(58\) −2656.78 −0.789767
\(59\) 5112.51i 1.46869i 0.678776 + 0.734345i \(0.262511\pi\)
−0.678776 + 0.734345i \(0.737489\pi\)
\(60\) 3701.85 1.02829
\(61\) 4872.10i 1.30935i −0.755909 0.654677i \(-0.772805\pi\)
0.755909 0.654677i \(-0.227195\pi\)
\(62\) 1095.73i 0.285050i
\(63\) 807.679 2523.69i 0.203497 0.635851i
\(64\) −6368.17 −1.55473
\(65\) 2341.80 0.554272
\(66\) 5469.98i 1.25574i
\(67\) 4689.48 1.04466 0.522330 0.852744i \(-0.325063\pi\)
0.522330 + 0.852744i \(0.325063\pi\)
\(68\) 1921.62i 0.415575i
\(69\) 4765.88i 1.00103i
\(70\) 8002.19 + 2561.01i 1.63310 + 0.522655i
\(71\) 4255.15 0.844109 0.422054 0.906571i \(-0.361309\pi\)
0.422054 + 0.906571i \(0.361309\pi\)
\(72\) 4067.47 0.784620
\(73\) 8799.21i 1.65119i −0.564261 0.825597i \(-0.690839\pi\)
0.564261 0.825597i \(-0.309161\pi\)
\(74\) −6660.99 −1.21640
\(75\) 270.967i 0.0481720i
\(76\) 7463.91i 1.29223i
\(77\) 2389.62 7466.66i 0.403040 1.25935i
\(78\) −3076.55 −0.505680
\(79\) −11112.7 −1.78060 −0.890300 0.455374i \(-0.849506\pi\)
−0.890300 + 0.455374i \(0.849506\pi\)
\(80\) 1482.16i 0.231588i
\(81\) 743.614 0.113338
\(82\) 9431.15i 1.40261i
\(83\) 1229.58i 0.178484i 0.996010 + 0.0892421i \(0.0284445\pi\)
−0.996010 + 0.0892421i \(0.971556\pi\)
\(84\) −6638.57 2124.60i −0.940840 0.301105i
\(85\) −1824.06 −0.252465
\(86\) 1691.24 0.228669
\(87\) 2092.15i 0.276410i
\(88\) 12034.1 1.55399
\(89\) 5476.97i 0.691449i 0.938336 + 0.345725i \(0.112367\pi\)
−0.938336 + 0.345725i \(0.887633\pi\)
\(90\) 9272.61i 1.14477i
\(91\) −4199.57 1344.03i −0.507134 0.162302i
\(92\) −25181.2 −2.97510
\(93\) 862.864 0.0997646
\(94\) 13239.6i 1.49837i
\(95\) −7084.98 −0.785039
\(96\) 4297.18i 0.466273i
\(97\) 14912.8i 1.58495i −0.609902 0.792477i \(-0.708791\pi\)
0.609902 0.792477i \(-0.291209\pi\)
\(98\) −12880.6 9185.38i −1.34117 0.956412i
\(99\) 8652.07 0.882774
\(100\) −1431.70 −0.143170
\(101\) 9085.72i 0.890670i −0.895364 0.445335i \(-0.853085\pi\)
0.895364 0.445335i \(-0.146915\pi\)
\(102\) 2396.37 0.230332
\(103\) 17131.0i 1.61476i 0.590031 + 0.807381i \(0.299116\pi\)
−0.590031 + 0.807381i \(0.700884\pi\)
\(104\) 6768.51i 0.625787i
\(105\) 2016.74 6301.54i 0.182924 0.571568i
\(106\) −15067.2 −1.34098
\(107\) −26.0786 −0.00227780 −0.00113890 0.999999i \(-0.500363\pi\)
−0.00113890 + 0.999999i \(0.500363\pi\)
\(108\) 19214.8i 1.64736i
\(109\) 4390.60 0.369548 0.184774 0.982781i \(-0.440845\pi\)
0.184774 + 0.982781i \(0.440845\pi\)
\(110\) 27434.2i 2.26729i
\(111\) 5245.37i 0.425726i
\(112\) 850.656 2657.98i 0.0678137 0.211892i
\(113\) 1888.59 0.147904 0.0739522 0.997262i \(-0.476439\pi\)
0.0739522 + 0.997262i \(0.476439\pi\)
\(114\) 9307.95 0.716216
\(115\) 23902.8i 1.80740i
\(116\) −11054.2 −0.821506
\(117\) 4866.30i 0.355490i
\(118\) 33686.5i 2.41931i
\(119\) 3271.11 + 1046.88i 0.230994 + 0.0739271i
\(120\) 10156.3 0.705297
\(121\) 10957.2 0.748394
\(122\) 32102.4i 2.15684i
\(123\) 7426.81 0.490899
\(124\) 4559.07i 0.296506i
\(125\) 14905.7i 0.953963i
\(126\) 5321.82 16628.7i 0.335212 1.04741i
\(127\) 30348.3 1.88160 0.940799 0.338964i \(-0.110076\pi\)
0.940799 + 0.338964i \(0.110076\pi\)
\(128\) −28709.2 −1.75227
\(129\) 1331.81i 0.0800318i
\(130\) 15430.2 0.913028
\(131\) 14817.9i 0.863463i 0.902002 + 0.431731i \(0.142097\pi\)
−0.902002 + 0.431731i \(0.857903\pi\)
\(132\) 22759.2i 1.30620i
\(133\) 12705.6 + 4066.28i 0.718276 + 0.229876i
\(134\) 30899.1 1.72082
\(135\) 18239.3 1.00078
\(136\) 5272.09i 0.285040i
\(137\) 15001.0 0.799241 0.399621 0.916681i \(-0.369142\pi\)
0.399621 + 0.916681i \(0.369142\pi\)
\(138\) 31402.5i 1.64895i
\(139\) 26905.9i 1.39257i −0.717765 0.696285i \(-0.754835\pi\)
0.717765 0.696285i \(-0.245165\pi\)
\(140\) 33295.1 + 10655.7i 1.69873 + 0.543660i
\(141\) 10425.9 0.524415
\(142\) 28037.3 1.39046
\(143\) 14397.6i 0.704071i
\(144\) 3079.96 0.148532
\(145\) 10493.0i 0.499072i
\(146\) 57978.3i 2.71994i
\(147\) −7233.28 + 10143.2i −0.334734 + 0.469395i
\(148\) −27714.7 −1.26528
\(149\) −22381.1 −1.00811 −0.504056 0.863671i \(-0.668159\pi\)
−0.504056 + 0.863671i \(0.668159\pi\)
\(150\) 1785.41i 0.0793517i
\(151\) 4139.51 0.181550 0.0907748 0.995871i \(-0.471066\pi\)
0.0907748 + 0.995871i \(0.471066\pi\)
\(152\) 20477.8i 0.886330i
\(153\) 3790.43i 0.161922i
\(154\) 15745.3 49198.1i 0.663910 2.07447i
\(155\) −4327.62 −0.180130
\(156\) −12800.8 −0.526002
\(157\) 7394.03i 0.299973i −0.988688 0.149986i \(-0.952077\pi\)
0.988688 0.149986i \(-0.0479230\pi\)
\(158\) −73222.1 −2.93311
\(159\) 11865.1i 0.469328i
\(160\) 21552.1i 0.841879i
\(161\) −13718.5 + 42865.3i −0.529244 + 1.65369i
\(162\) 4899.69 0.186698
\(163\) −1784.24 −0.0671549 −0.0335775 0.999436i \(-0.510690\pi\)
−0.0335775 + 0.999436i \(0.510690\pi\)
\(164\) 39240.7i 1.45898i
\(165\) 21603.8 0.793528
\(166\) 8101.72i 0.294009i
\(167\) 15792.2i 0.566252i −0.959083 0.283126i \(-0.908629\pi\)
0.959083 0.283126i \(-0.0913715\pi\)
\(168\) −18213.4 5828.99i −0.645315 0.206526i
\(169\) 20463.2 0.716473
\(170\) −12018.8 −0.415875
\(171\) 14722.7i 0.503496i
\(172\) 7036.82 0.237859
\(173\) 14592.4i 0.487569i −0.969829 0.243784i \(-0.921611\pi\)
0.969829 0.243784i \(-0.0783889\pi\)
\(174\) 13785.2i 0.455319i
\(175\) −779.977 + 2437.13i −0.0254686 + 0.0795798i
\(176\) 9112.44 0.294177
\(177\) 26527.3 0.846735
\(178\) 36087.9i 1.13900i
\(179\) 32441.3 1.01249 0.506247 0.862389i \(-0.331032\pi\)
0.506247 + 0.862389i \(0.331032\pi\)
\(180\) 38581.0i 1.19077i
\(181\) 25152.4i 0.767753i 0.923384 + 0.383876i \(0.125411\pi\)
−0.923384 + 0.383876i \(0.874589\pi\)
\(182\) −27671.1 8855.83i −0.835380 0.267354i
\(183\) −25279.9 −0.754873
\(184\) −69086.5 −2.04060
\(185\) 26307.7i 0.768669i
\(186\) 5685.44 0.164338
\(187\) 11214.5i 0.320697i
\(188\) 55086.8i 1.55859i
\(189\) −32708.7 10468.1i −0.915672 0.293050i
\(190\) −46683.2 −1.29316
\(191\) −5621.37 −0.154090 −0.0770452 0.997028i \(-0.524549\pi\)
−0.0770452 + 0.997028i \(0.524549\pi\)
\(192\) 33042.6i 0.896337i
\(193\) −13494.5 −0.362279 −0.181140 0.983457i \(-0.557979\pi\)
−0.181140 + 0.983457i \(0.557979\pi\)
\(194\) 98261.1i 2.61083i
\(195\) 12150.9i 0.319551i
\(196\) −53592.9 38218.1i −1.39507 0.994848i
\(197\) 60193.2 1.55101 0.775505 0.631341i \(-0.217495\pi\)
0.775505 + 0.631341i \(0.217495\pi\)
\(198\) 57008.7 1.45416
\(199\) 47479.3i 1.19894i 0.800397 + 0.599471i \(0.204622\pi\)
−0.800397 + 0.599471i \(0.795378\pi\)
\(200\) −3927.96 −0.0981990
\(201\) 24332.3i 0.602270i
\(202\) 59866.1i 1.46716i
\(203\) −6022.23 + 18817.2i −0.146139 + 0.456629i
\(204\) 9970.71 0.239588
\(205\) −37248.5 −0.886341
\(206\) 112877.i 2.65993i
\(207\) −49670.5 −1.15920
\(208\) 5125.23i 0.118464i
\(209\) 43559.0i 0.997207i
\(210\) 13288.3 41521.0i 0.301323 0.941520i
\(211\) −51384.0 −1.15415 −0.577076 0.816690i \(-0.695806\pi\)
−0.577076 + 0.816690i \(0.695806\pi\)
\(212\) −62690.9 −1.39487
\(213\) 22078.7i 0.486648i
\(214\) −171.832 −0.00375213
\(215\) 6679.57i 0.144501i
\(216\) 52717.1i 1.12991i
\(217\) 7760.77 + 2483.75i 0.164811 + 0.0527458i
\(218\) 28929.8 0.608740
\(219\) −45656.5 −0.951951
\(220\) 114147.i 2.35841i
\(221\) 6307.50 0.129144
\(222\) 34561.9i 0.701281i
\(223\) 56849.6i 1.14319i −0.820537 0.571594i \(-0.806325\pi\)
0.820537 0.571594i \(-0.193675\pi\)
\(224\) −12369.4 + 38649.6i −0.246520 + 0.770281i
\(225\) −2824.05 −0.0557837
\(226\) 12444.0 0.243637
\(227\) 62497.3i 1.21286i −0.795138 0.606428i \(-0.792602\pi\)
0.795138 0.606428i \(-0.207398\pi\)
\(228\) 38728.1 0.745000
\(229\) 16873.7i 0.321766i −0.986973 0.160883i \(-0.948566\pi\)
0.986973 0.160883i \(-0.0514342\pi\)
\(230\) 157497.i 2.97725i
\(231\) −38742.4 12399.1i −0.726043 0.232362i
\(232\) −30328.0 −0.563465
\(233\) 24525.1 0.451750 0.225875 0.974156i \(-0.427476\pi\)
0.225875 + 0.974156i \(0.427476\pi\)
\(234\) 32064.2i 0.585583i
\(235\) −52290.2 −0.946857
\(236\) 140161.i 2.51654i
\(237\) 57660.7i 1.02656i
\(238\) 21553.4 + 6897.93i 0.380507 + 0.121777i
\(239\) −32608.9 −0.570873 −0.285437 0.958398i \(-0.592139\pi\)
−0.285437 + 0.958398i \(0.592139\pi\)
\(240\) 7690.50 0.133516
\(241\) 71825.8i 1.23665i 0.785923 + 0.618325i \(0.212188\pi\)
−0.785923 + 0.618325i \(0.787812\pi\)
\(242\) 72197.6 1.23280
\(243\) 60629.4i 1.02676i
\(244\) 133570.i 2.24352i
\(245\) 36277.8 50872.1i 0.604379 0.847515i
\(246\) 48935.5 0.808637
\(247\) 24499.5 0.401571
\(248\) 12508.1i 0.203371i
\(249\) 6379.92 0.102900
\(250\) 98213.9i 1.57142i
\(251\) 22527.0i 0.357566i −0.983889 0.178783i \(-0.942784\pi\)
0.983889 0.178783i \(-0.0572160\pi\)
\(252\) 22142.8 69187.9i 0.348683 1.08950i
\(253\) −146957. −2.29587
\(254\) 199966. 3.09948
\(255\) 9464.52i 0.145552i
\(256\) −87275.1 −1.33171
\(257\) 94252.2i 1.42700i 0.700653 + 0.713502i \(0.252892\pi\)
−0.700653 + 0.713502i \(0.747108\pi\)
\(258\) 8775.33i 0.131833i
\(259\) −15098.8 + 47177.9i −0.225082 + 0.703298i
\(260\) 64201.1 0.949721
\(261\) −21804.6 −0.320087
\(262\) 97635.5i 1.42235i
\(263\) −38602.9 −0.558095 −0.279048 0.960277i \(-0.590019\pi\)
−0.279048 + 0.960277i \(0.590019\pi\)
\(264\) 62441.6i 0.895914i
\(265\) 59508.2i 0.847393i
\(266\) 83717.5 + 26792.8i 1.18319 + 0.378665i
\(267\) 28418.4 0.398637
\(268\) 128563. 1.78998
\(269\) 118537.i 1.63814i −0.573695 0.819069i \(-0.694490\pi\)
0.573695 0.819069i \(-0.305510\pi\)
\(270\) 120179. 1.64855
\(271\) 101988.i 1.38871i 0.719634 + 0.694354i \(0.244310\pi\)
−0.719634 + 0.694354i \(0.755690\pi\)
\(272\) 3992.11i 0.0539592i
\(273\) −6973.76 + 21790.4i −0.0935711 + 0.292374i
\(274\) 98841.8 1.31656
\(275\) −8355.31 −0.110483
\(276\) 130658.i 1.71521i
\(277\) 38937.2 0.507464 0.253732 0.967275i \(-0.418342\pi\)
0.253732 + 0.967275i \(0.418342\pi\)
\(278\) 177284.i 2.29392i
\(279\) 8992.86i 0.115529i
\(280\) 91347.6 + 29234.8i 1.16515 + 0.372892i
\(281\) 52914.4 0.670134 0.335067 0.942194i \(-0.391241\pi\)
0.335067 + 0.942194i \(0.391241\pi\)
\(282\) 68696.6 0.863847
\(283\) 119650.i 1.49396i 0.664846 + 0.746980i \(0.268497\pi\)
−0.664846 + 0.746980i \(0.731503\pi\)
\(284\) 116656. 1.44634
\(285\) 36761.9i 0.452594i
\(286\) 94865.9i 1.15979i
\(287\) 66798.2 + 21378.0i 0.810963 + 0.259539i
\(288\) −44785.6 −0.539950
\(289\) −4913.00 −0.0588235
\(290\) 69138.6i 0.822100i
\(291\) −77378.4 −0.913763
\(292\) 241233.i 2.82925i
\(293\) 26642.3i 0.310339i −0.987888 0.155169i \(-0.950408\pi\)
0.987888 0.155169i \(-0.0495923\pi\)
\(294\) −47660.3 + 66833.6i −0.551394 + 0.773215i
\(295\) −133045. −1.52882
\(296\) −76037.3 −0.867847
\(297\) 112136.i 1.27126i
\(298\) −147470. −1.66062
\(299\) 82654.7i 0.924539i
\(300\) 7428.66i 0.0825406i
\(301\) 3833.60 11978.6i 0.0423130 0.132212i
\(302\) 27275.4 0.299059
\(303\) −47143.2 −0.513492
\(304\) 15506.1i 0.167786i
\(305\) 126789. 1.36296
\(306\) 24975.2i 0.266727i
\(307\) 50393.0i 0.534679i −0.963602 0.267340i \(-0.913855\pi\)
0.963602 0.267340i \(-0.0861445\pi\)
\(308\) 65512.3 204701.i 0.690591 2.15784i
\(309\) 88887.8 0.930948
\(310\) −28514.8 −0.296720
\(311\) 70479.9i 0.728693i −0.931264 0.364346i \(-0.881292\pi\)
0.931264 0.364346i \(-0.118708\pi\)
\(312\) −35119.9 −0.360781
\(313\) 118402.i 1.20856i 0.796771 + 0.604281i \(0.206540\pi\)
−0.796771 + 0.604281i \(0.793460\pi\)
\(314\) 48719.5i 0.494132i
\(315\) 65675.3 + 21018.6i 0.661883 + 0.211828i
\(316\) −304659. −3.05098
\(317\) −141311. −1.40623 −0.703117 0.711075i \(-0.748209\pi\)
−0.703117 + 0.711075i \(0.748209\pi\)
\(318\) 78179.3i 0.773104i
\(319\) −64511.7 −0.633953
\(320\) 165722.i 1.61838i
\(321\) 135.314i 0.00131321i
\(322\) −90391.9 + 282440.i −0.871802 + 2.72405i
\(323\) −19083.0 −0.182912
\(324\) 20386.4 0.194201
\(325\) 4699.39i 0.0444912i
\(326\) −11756.4 −0.110621
\(327\) 22781.5i 0.213053i
\(328\) 107660.i 1.00070i
\(329\) 93772.6 + 30010.9i 0.866332 + 0.277260i
\(330\) 142348. 1.30715
\(331\) −123071. −1.12331 −0.561657 0.827370i \(-0.689836\pi\)
−0.561657 + 0.827370i \(0.689836\pi\)
\(332\) 33709.3i 0.305825i
\(333\) −54667.9 −0.492996
\(334\) 104055.i 0.932763i
\(335\) 122037.i 1.08743i
\(336\) −13791.5 4413.81i −0.122161 0.0390962i
\(337\) −131496. −1.15785 −0.578924 0.815381i \(-0.696527\pi\)
−0.578924 + 0.815381i \(0.696527\pi\)
\(338\) 134833. 1.18022
\(339\) 9799.35i 0.0852704i
\(340\) −50007.2 −0.432588
\(341\) 26606.5i 0.228812i
\(342\) 97008.4i 0.829387i
\(343\) −94254.5 + 70408.7i −0.801150 + 0.598464i
\(344\) 19306.0 0.163146
\(345\) −124025. −1.04201
\(346\) 96150.1i 0.803151i
\(347\) −129949. −1.07923 −0.539615 0.841912i \(-0.681430\pi\)
−0.539615 + 0.841912i \(0.681430\pi\)
\(348\) 57357.0i 0.473618i
\(349\) 103853.i 0.852647i −0.904571 0.426324i \(-0.859808\pi\)
0.904571 0.426324i \(-0.140192\pi\)
\(350\) −5139.29 + 16058.3i −0.0419534 + 0.131089i
\(351\) −63070.4 −0.511931
\(352\) −132504. −1.06941
\(353\) 68143.3i 0.546857i −0.961892 0.273429i \(-0.911842\pi\)
0.961892 0.273429i \(-0.0881577\pi\)
\(354\) 174789. 1.39479
\(355\) 110734.i 0.878666i
\(356\) 150153.i 1.18477i
\(357\) 5431.96 16972.8i 0.0426207 0.133174i
\(358\) 213757. 1.66784
\(359\) 231390. 1.79538 0.897690 0.440627i \(-0.145244\pi\)
0.897690 + 0.440627i \(0.145244\pi\)
\(360\) 105850.i 0.816743i
\(361\) 56199.2 0.431237
\(362\) 165730.i 1.26469i
\(363\) 56853.9i 0.431467i
\(364\) −115133. 36846.9i −0.868952 0.278098i
\(365\) 228986. 1.71879
\(366\) −166570. −1.24347
\(367\) 230663.i 1.71256i −0.516511 0.856281i \(-0.672769\pi\)
0.516511 0.856281i \(-0.327231\pi\)
\(368\) −52313.5 −0.386294
\(369\) 77403.0i 0.568467i
\(370\) 173342.i 1.26620i
\(371\) −34153.5 + 106717.i −0.248135 + 0.775327i
\(372\) 23655.7 0.170942
\(373\) −51324.0 −0.368895 −0.184447 0.982842i \(-0.559050\pi\)
−0.184447 + 0.982842i \(0.559050\pi\)
\(374\) 73892.4i 0.528271i
\(375\) 77341.2 0.549982
\(376\) 151135.i 1.06903i
\(377\) 36284.2i 0.255290i
\(378\) −215519. 68974.3i −1.50835 0.482729i
\(379\) 255626. 1.77962 0.889810 0.456332i \(-0.150837\pi\)
0.889810 + 0.456332i \(0.150837\pi\)
\(380\) −194237. −1.34513
\(381\) 157469.i 1.08479i
\(382\) −37039.4 −0.253826
\(383\) 96361.4i 0.656910i −0.944520 0.328455i \(-0.893472\pi\)
0.944520 0.328455i \(-0.106528\pi\)
\(384\) 148964.i 1.01022i
\(385\) 194309. + 62186.3i 1.31090 + 0.419540i
\(386\) −88915.9 −0.596767
\(387\) 13880.3 0.0926778
\(388\) 408840.i 2.71575i
\(389\) 7743.98 0.0511759 0.0255879 0.999673i \(-0.491854\pi\)
0.0255879 + 0.999673i \(0.491854\pi\)
\(390\) 80062.7i 0.526382i
\(391\) 64380.9i 0.421118i
\(392\) −147036. 104854.i −0.956867 0.682360i
\(393\) 76885.7 0.497806
\(394\) 396615. 2.55491
\(395\) 289192.i 1.85350i
\(396\) 237199. 1.51260
\(397\) 9358.50i 0.0593779i 0.999559 + 0.0296890i \(0.00945168\pi\)
−0.999559 + 0.0296890i \(0.990548\pi\)
\(398\) 312842.i 1.97497i
\(399\) 21098.7 65925.6i 0.132529 0.414103i
\(400\) −2974.32 −0.0185895
\(401\) 313553. 1.94994 0.974971 0.222332i \(-0.0713669\pi\)
0.974971 + 0.222332i \(0.0713669\pi\)
\(402\) 160326.i 0.992094i
\(403\) 14964.7 0.0921418
\(404\) 249088.i 1.52613i
\(405\) 19351.4i 0.117979i
\(406\) −39680.7 + 123987.i −0.240728 + 0.752185i
\(407\) −161742. −0.976413
\(408\) 27355.4 0.164332
\(409\) 28317.5i 0.169281i 0.996412 + 0.0846405i \(0.0269742\pi\)
−0.996412 + 0.0846405i \(0.973026\pi\)
\(410\) −245431. −1.46003
\(411\) 77835.6i 0.460781i
\(412\) 469652.i 2.76683i
\(413\) 238592. + 76358.7i 1.39880 + 0.447670i
\(414\) −327281. −1.90950
\(415\) −31997.9 −0.185791
\(416\) 74525.9i 0.430646i
\(417\) −139607. −0.802850
\(418\) 287012.i 1.64266i
\(419\) 220178.i 1.25414i 0.778964 + 0.627069i \(0.215745\pi\)
−0.778964 + 0.627069i \(0.784255\pi\)
\(420\) 55289.5 172759.i 0.313432 0.979358i
\(421\) 176205. 0.994154 0.497077 0.867706i \(-0.334407\pi\)
0.497077 + 0.867706i \(0.334407\pi\)
\(422\) −338571. −1.90119
\(423\) 108660.i 0.607279i
\(424\) −171997. −0.956729
\(425\) 3660.42i 0.0202653i
\(426\) 145478.i 0.801635i
\(427\) −227373. 72768.0i −1.24705 0.399103i
\(428\) −714.952 −0.00390292
\(429\) −74704.7 −0.405914
\(430\) 44011.9i 0.238031i
\(431\) 178574. 0.961311 0.480656 0.876909i \(-0.340399\pi\)
0.480656 + 0.876909i \(0.340399\pi\)
\(432\) 39918.2i 0.213897i
\(433\) 63507.0i 0.338724i 0.985554 + 0.169362i \(0.0541706\pi\)
−0.985554 + 0.169362i \(0.945829\pi\)
\(434\) 51135.9 + 16365.5i 0.271486 + 0.0868859i
\(435\) −54445.1 −0.287727
\(436\) 120370. 0.633204
\(437\) 250067.i 1.30946i
\(438\) −300832. −1.56811
\(439\) 128385.i 0.666170i 0.942897 + 0.333085i \(0.108090\pi\)
−0.942897 + 0.333085i \(0.891910\pi\)
\(440\) 313170.i 1.61761i
\(441\) −105713. 75386.0i −0.543565 0.387627i
\(442\) 41560.3 0.212733
\(443\) −10947.7 −0.0557850 −0.0278925 0.999611i \(-0.508880\pi\)
−0.0278925 + 0.999611i \(0.508880\pi\)
\(444\) 143804.i 0.729464i
\(445\) −142530. −0.719757
\(446\) 374584.i 1.88313i
\(447\) 116129.i 0.581200i
\(448\) −95112.7 + 297191.i −0.473895 + 1.48074i
\(449\) −1853.11 −0.00919198 −0.00459599 0.999989i \(-0.501463\pi\)
−0.00459599 + 0.999989i \(0.501463\pi\)
\(450\) −18607.8 −0.0918902
\(451\) 229007.i 1.12589i
\(452\) 51776.4 0.253428
\(453\) 21478.7i 0.104668i
\(454\) 411796.i 1.99789i
\(455\) 34976.3 109288.i 0.168947 0.527896i
\(456\) 106253. 0.510990
\(457\) −33867.6 −0.162163 −0.0810815 0.996707i \(-0.525837\pi\)
−0.0810815 + 0.996707i \(0.525837\pi\)
\(458\) 111181.i 0.530031i
\(459\) 49126.4 0.233179
\(460\) 655304.i 3.09690i
\(461\) 316325.i 1.48844i 0.667933 + 0.744221i \(0.267179\pi\)
−0.667933 + 0.744221i \(0.732821\pi\)
\(462\) −255275. 81697.7i −1.19598 0.382760i
\(463\) 41525.0 0.193708 0.0968541 0.995299i \(-0.469122\pi\)
0.0968541 + 0.995299i \(0.469122\pi\)
\(464\) −22964.8 −0.106666
\(465\) 22454.7i 0.103849i
\(466\) 161596. 0.744149
\(467\) 171791.i 0.787708i 0.919173 + 0.393854i \(0.128858\pi\)
−0.919173 + 0.393854i \(0.871142\pi\)
\(468\) 133411.i 0.609116i
\(469\) 70040.4 218850.i 0.318422 0.994947i
\(470\) −344541. −1.55972
\(471\) −38365.5 −0.172941
\(472\) 384542.i 1.72608i
\(473\) 41066.5 0.183555
\(474\) 379928.i 1.69101i
\(475\) 14217.7i 0.0630149i
\(476\) 89678.5 + 28700.6i 0.395799 + 0.126671i
\(477\) −123659. −0.543487
\(478\) −214861. −0.940376
\(479\) 167966.i 0.732068i −0.930601 0.366034i \(-0.880715\pi\)
0.930601 0.366034i \(-0.119285\pi\)
\(480\) −111828. −0.485363
\(481\) 90970.6i 0.393197i
\(482\) 473263.i 2.03708i
\(483\) 222415. + 71181.5i 0.953390 + 0.305122i
\(484\) 300396. 1.28234
\(485\) 388084. 1.64984
\(486\) 399489.i 1.69135i
\(487\) 208154. 0.877660 0.438830 0.898570i \(-0.355393\pi\)
0.438830 + 0.898570i \(0.355393\pi\)
\(488\) 366460.i 1.53882i
\(489\) 9257.90i 0.0387164i
\(490\) 239036. 335198.i 0.995568 1.39608i
\(491\) −404286. −1.67697 −0.838485 0.544925i \(-0.816558\pi\)
−0.838485 + 0.544925i \(0.816558\pi\)
\(492\) 203608. 0.841135
\(493\) 28262.3i 0.116282i
\(494\) 161428. 0.661492
\(495\) 225157.i 0.918915i
\(496\) 9471.37i 0.0384990i
\(497\) 63553.5 198581.i 0.257292 0.803940i
\(498\) 42037.5 0.169503
\(499\) 383335. 1.53949 0.769745 0.638351i \(-0.220383\pi\)
0.769745 + 0.638351i \(0.220383\pi\)
\(500\) 408644.i 1.63458i
\(501\) −81941.2 −0.326458
\(502\) 148431.i 0.589004i
\(503\) 25407.1i 0.100420i 0.998739 + 0.0502099i \(0.0159890\pi\)
−0.998739 + 0.0502099i \(0.984011\pi\)
\(504\) 60750.3 189822.i 0.239159 0.747283i
\(505\) 236442. 0.927134
\(506\) −968301. −3.78189
\(507\) 106178.i 0.413064i
\(508\) 832009. 3.22404
\(509\) 369143.i 1.42482i −0.701765 0.712408i \(-0.747604\pi\)
0.701765 0.712408i \(-0.252396\pi\)
\(510\) 62362.0i 0.239762i
\(511\) −410644. 131422.i −1.57262 0.503299i
\(512\) −115711. −0.441403
\(513\) 190816. 0.725070
\(514\) 621031.i 2.35064i
\(515\) −445809. −1.68087
\(516\) 36512.0i 0.137131i
\(517\) 321484.i 1.20276i
\(518\) −99486.2 + 310857.i −0.370769 + 1.15851i
\(519\) −75716.0 −0.281095
\(520\) 176140. 0.651407
\(521\) 230936.i 0.850780i −0.905010 0.425390i \(-0.860137\pi\)
0.905010 0.425390i \(-0.139863\pi\)
\(522\) −143671. −0.527265
\(523\) 382943.i 1.40001i −0.714139 0.700004i \(-0.753182\pi\)
0.714139 0.700004i \(-0.246818\pi\)
\(524\) 406237.i 1.47951i
\(525\) 12645.6 + 4047.07i 0.0458796 + 0.0146833i
\(526\) −254356. −0.919327
\(527\) −11656.2 −0.0419696
\(528\) 47281.8i 0.169600i
\(529\) 563819. 2.01478
\(530\) 392101.i 1.39587i
\(531\) 276471.i 0.980529i
\(532\) 348328. + 111478.i 1.23074 + 0.393883i
\(533\) 128803. 0.453390
\(534\) 187250. 0.656657
\(535\) 678.655i 0.00237105i
\(536\) 352723. 1.22773
\(537\) 168329.i 0.583726i
\(538\) 781046.i 2.69844i
\(539\) −312766. 223039.i −1.07657 0.767721i
\(540\) 500035. 1.71480
\(541\) 51686.7 0.176597 0.0882987 0.996094i \(-0.471857\pi\)
0.0882987 + 0.996094i \(0.471857\pi\)
\(542\) 672003.i 2.28756i
\(543\) 130508. 0.442627
\(544\) 58049.3i 0.196155i
\(545\) 114259.i 0.384677i
\(546\) −45950.3 + 143577.i −0.154136 + 0.481616i
\(547\) −74882.5 −0.250268 −0.125134 0.992140i \(-0.539936\pi\)
−0.125134 + 0.992140i \(0.539936\pi\)
\(548\) 411256. 1.36947
\(549\) 263470.i 0.874152i
\(550\) −55053.4 −0.181995
\(551\) 109776.i 0.361579i
\(552\) 358470.i 1.17645i
\(553\) −165976. + 518612.i −0.542743 + 1.69587i
\(554\) 256559. 0.835925
\(555\) −136503. −0.443156
\(556\) 737633.i 2.38611i
\(557\) 2145.72 0.00691612 0.00345806 0.999994i \(-0.498899\pi\)
0.00345806 + 0.999994i \(0.498899\pi\)
\(558\) 59254.2i 0.190305i
\(559\) 23097.6i 0.0739168i
\(560\) 69169.9 + 22137.0i 0.220567 + 0.0705900i
\(561\) 58188.6 0.184889
\(562\) 348655. 1.10388
\(563\) 18179.6i 0.0573544i −0.999589 0.0286772i \(-0.990871\pi\)
0.999589 0.0286772i \(-0.00912949\pi\)
\(564\) 285830. 0.898564
\(565\) 49147.8i 0.153960i
\(566\) 788376.i 2.46094i
\(567\) 11106.4 34703.2i 0.0345466 0.107945i
\(568\) 320055. 0.992037
\(569\) −413942. −1.27854 −0.639272 0.768981i \(-0.720764\pi\)
−0.639272 + 0.768981i \(0.720764\pi\)
\(570\) 242225.i 0.745538i
\(571\) −436476. −1.33872 −0.669358 0.742940i \(-0.733431\pi\)
−0.669358 + 0.742940i \(0.733431\pi\)
\(572\) 394714.i 1.20640i
\(573\) 29167.7i 0.0888367i
\(574\) 440135. + 140860.i 1.33586 + 0.427528i
\(575\) 47966.9 0.145079
\(576\) −344373. −1.03797
\(577\) 481056.i 1.44492i −0.691413 0.722460i \(-0.743011\pi\)
0.691413 0.722460i \(-0.256989\pi\)
\(578\) −32371.9 −0.0968975
\(579\) 70019.3i 0.208862i
\(580\) 287669.i 0.855139i
\(581\) 57382.2 + 18364.5i 0.169991 + 0.0544036i
\(582\) −509848. −1.50520
\(583\) −365861. −1.07641
\(584\) 661840.i 1.94056i
\(585\) 126638. 0.370043
\(586\) 175547.i 0.511208i
\(587\) 475026.i 1.37861i 0.724472 + 0.689304i \(0.242084\pi\)
−0.724472 + 0.689304i \(0.757916\pi\)
\(588\) −198303. + 278078.i −0.573553 + 0.804289i
\(589\) −45274.7 −0.130504
\(590\) −876641. −2.51836
\(591\) 312325.i 0.894194i
\(592\) −57576.7 −0.164287
\(593\) 335743.i 0.954768i −0.878695 0.477384i \(-0.841585\pi\)
0.878695 0.477384i \(-0.158415\pi\)
\(594\) 738870.i 2.09409i
\(595\) −27243.5 + 85125.7i −0.0769537 + 0.240451i
\(596\) −613585. −1.72736
\(597\) 246356. 0.691218
\(598\) 544614.i 1.52295i
\(599\) 67850.0 0.189102 0.0945510 0.995520i \(-0.469858\pi\)
0.0945510 + 0.995520i \(0.469858\pi\)
\(600\) 20381.1i 0.0566140i
\(601\) 396974.i 1.09904i −0.835481 0.549520i \(-0.814811\pi\)
0.835481 0.549520i \(-0.185189\pi\)
\(602\) 25259.7 78927.1i 0.0697004 0.217787i
\(603\) 253594. 0.697436
\(604\) 113486. 0.311077
\(605\) 285146.i 0.779034i
\(606\) −310628. −0.845854
\(607\) 206429.i 0.560265i −0.959961 0.280133i \(-0.909622\pi\)
0.959961 0.280133i \(-0.0903784\pi\)
\(608\) 225474.i 0.609943i
\(609\) 97637.0 + 31247.6i 0.263257 + 0.0842524i
\(610\) 835418. 2.24514
\(611\) 180816. 0.484346
\(612\) 103916.i 0.277446i
\(613\) −255556. −0.680089 −0.340044 0.940409i \(-0.610442\pi\)
−0.340044 + 0.940409i \(0.610442\pi\)
\(614\) 332041.i 0.880754i
\(615\) 193272.i 0.510996i
\(616\) 179738. 561612.i 0.473672 1.48004i
\(617\) 454159. 1.19299 0.596496 0.802616i \(-0.296559\pi\)
0.596496 + 0.802616i \(0.296559\pi\)
\(618\) 585684. 1.53351
\(619\) 617532.i 1.61168i 0.592135 + 0.805839i \(0.298285\pi\)
−0.592135 + 0.805839i \(0.701715\pi\)
\(620\) −118643. −0.308645
\(621\) 643762.i 1.66933i
\(622\) 464394.i 1.20034i
\(623\) 255601. + 81802.1i 0.658546 + 0.210760i
\(624\) −26593.3 −0.0682973
\(625\) −420537. −1.07657
\(626\) 780152.i 1.99081i
\(627\) 226015. 0.574913
\(628\) 202710.i 0.513991i
\(629\) 70858.3i 0.179097i
\(630\) 432737. + 138492.i 1.09029 + 0.348935i
\(631\) −610459. −1.53320 −0.766598 0.642127i \(-0.778052\pi\)
−0.766598 + 0.642127i \(0.778052\pi\)
\(632\) −835854. −2.09265
\(633\) 266617.i 0.665396i
\(634\) −931102. −2.31643
\(635\) 789769.i 1.95863i
\(636\) 325285.i 0.804173i
\(637\) −125447. + 175913.i −0.309158 + 0.433530i
\(638\) −425070. −1.04428
\(639\) 230107. 0.563545
\(640\) 747114.i 1.82401i
\(641\) 252745. 0.615129 0.307564 0.951527i \(-0.400486\pi\)
0.307564 + 0.951527i \(0.400486\pi\)
\(642\) 891.588i 0.00216319i
\(643\) 157343.i 0.380563i −0.981730 0.190282i \(-0.939060\pi\)
0.981730 0.190282i \(-0.0609401\pi\)
\(644\) −376098. + 1.17516e6i −0.906838 + 2.83352i
\(645\) 34658.3 0.0833083
\(646\) −125738. −0.301303
\(647\) 533657.i 1.27483i −0.770519 0.637417i \(-0.780003\pi\)
0.770519 0.637417i \(-0.219997\pi\)
\(648\) 55931.6 0.133201
\(649\) 817974.i 1.94200i
\(650\) 30964.4i 0.0732885i
\(651\) 12887.4 40268.4i 0.0304092 0.0950172i
\(652\) −48915.5 −0.115067
\(653\) 148297. 0.347781 0.173891 0.984765i \(-0.444366\pi\)
0.173891 + 0.984765i \(0.444366\pi\)
\(654\) 150108.i 0.350953i
\(655\) −385613. −0.898813
\(656\) 81521.6i 0.189437i
\(657\) 475837.i 1.10237i
\(658\) 617870. + 197742.i 1.42707 + 0.456718i
\(659\) 56743.2 0.130660 0.0653301 0.997864i \(-0.479190\pi\)
0.0653301 + 0.997864i \(0.479190\pi\)
\(660\) 592275. 1.35968
\(661\) 372082.i 0.851600i −0.904817 0.425800i \(-0.859993\pi\)
0.904817 0.425800i \(-0.140007\pi\)
\(662\) −810921. −1.85039
\(663\) 32727.8i 0.0744542i
\(664\) 92483.8i 0.209763i
\(665\) −105819. + 330644.i −0.239287 + 0.747682i
\(666\) −360208. −0.812092
\(667\) 370354. 0.832464
\(668\) 432948.i 0.970249i
\(669\) −294976. −0.659075
\(670\) 804103.i 1.79127i
\(671\) 779510.i 1.73132i
\(672\) 200542. + 64181.1i 0.444085 + 0.142124i
\(673\) −853196. −1.88373 −0.941865 0.335990i \(-0.890929\pi\)
−0.941865 + 0.335990i \(0.890929\pi\)
\(674\) −866429. −1.90727
\(675\) 36601.5i 0.0803326i
\(676\) 561005. 1.22765
\(677\) 556621.i 1.21446i −0.794527 0.607229i \(-0.792281\pi\)
0.794527 0.607229i \(-0.207719\pi\)
\(678\) 64568.2i 0.140462i
\(679\) −695956. 222733.i −1.50953 0.483109i
\(680\) −137198. −0.296709
\(681\) −324280. −0.699240
\(682\) 175311.i 0.376913i
\(683\) 403219. 0.864370 0.432185 0.901785i \(-0.357743\pi\)
0.432185 + 0.901785i \(0.357743\pi\)
\(684\) 403628.i 0.862718i
\(685\) 390378.i 0.831962i
\(686\) −621046. + 463925.i −1.31970 + 0.985824i
\(687\) −87552.9 −0.185506
\(688\) 14618.8 0.0308841
\(689\) 205776.i 0.433467i
\(690\) −817204. −1.71645
\(691\) 771714.i 1.61622i 0.589032 + 0.808110i \(0.299509\pi\)
−0.589032 + 0.808110i \(0.700491\pi\)
\(692\) 400057.i 0.835428i
\(693\) 129224. 403777.i 0.269078 0.840766i
\(694\) −856237. −1.77777
\(695\) 700185. 1.44958
\(696\) 157363.i 0.324851i
\(697\) −100327. −0.206515
\(698\) 684293.i 1.40453i
\(699\) 127254.i 0.260445i
\(700\) −21383.3 + 66814.8i −0.0436394 + 0.136357i
\(701\) −504883. −1.02744 −0.513718 0.857959i \(-0.671732\pi\)
−0.513718 + 0.857959i \(0.671732\pi\)
\(702\) −415573. −0.843282
\(703\) 275226.i 0.556903i
\(704\) −1.01887e6 −2.05577
\(705\) 271318.i 0.545885i
\(706\) 448999.i 0.900815i
\(707\) −424015. 135701.i −0.848286 0.271484i
\(708\) 727256. 1.45084
\(709\) −516087. −1.02667 −0.513335 0.858188i \(-0.671590\pi\)
−0.513335 + 0.858188i \(0.671590\pi\)
\(710\) 729629.i 1.44739i
\(711\) −600946. −1.18877
\(712\) 411955.i 0.812625i
\(713\) 152745.i 0.300461i
\(714\) 35791.4 111835.i 0.0702073 0.219371i
\(715\) 374675. 0.732896
\(716\) 889389. 1.73486
\(717\) 169198.i 0.329122i
\(718\) 1.52464e6 2.95745
\(719\) 127596.i 0.246819i 0.992356 + 0.123410i \(0.0393829\pi\)
−0.992356 + 0.123410i \(0.960617\pi\)
\(720\) 80151.2i 0.154613i
\(721\) 799474. + 255863.i 1.53792 + 0.492194i
\(722\) 370298. 0.710358
\(723\) 372683. 0.712957
\(724\) 689560.i 1.31551i
\(725\) 21056.7 0.0400604
\(726\) 374612.i 0.710737i
\(727\) 195688.i 0.370249i 0.982715 + 0.185125i \(0.0592689\pi\)
−0.982715 + 0.185125i \(0.940731\pi\)
\(728\) −315875. 101092.i −0.596008 0.190746i
\(729\) −254356. −0.478615
\(730\) 1.50880e6 2.83129
\(731\) 17991.0i 0.0336683i
\(732\) −693058. −1.29344
\(733\) 409372.i 0.761922i −0.924591 0.380961i \(-0.875593\pi\)
0.924591 0.380961i \(-0.124407\pi\)
\(734\) 1.51985e6i 2.82103i
\(735\) −263961. 188235.i −0.488612 0.348438i
\(736\) 760690. 1.40427
\(737\) 750290. 1.38132
\(738\) 510011.i 0.936411i
\(739\) 943818. 1.72822 0.864111 0.503301i \(-0.167881\pi\)
0.864111 + 0.503301i \(0.167881\pi\)
\(740\) 721234.i 1.31708i
\(741\) 127121.i 0.231515i
\(742\) −225038. + 703160.i −0.408742 + 1.27716i
\(743\) 899503. 1.62939 0.814695 0.579890i \(-0.196905\pi\)
0.814695 + 0.579890i \(0.196905\pi\)
\(744\) 64901.1 0.117248
\(745\) 582434.i 1.04938i
\(746\) −338175. −0.607665
\(747\) 66492.2i 0.119160i
\(748\) 307448.i 0.549501i
\(749\) −389.500 + 1217.04i −0.000694295 + 0.00216941i
\(750\) 509604. 0.905962
\(751\) −632810. −1.12200 −0.561001 0.827815i \(-0.689583\pi\)
−0.561001 + 0.827815i \(0.689583\pi\)
\(752\) 114442.i 0.202371i
\(753\) −116886. −0.206145
\(754\) 239078.i 0.420529i
\(755\) 107725.i 0.188982i
\(756\) −896720. 286985.i −1.56896 0.502129i
\(757\) 619820. 1.08162 0.540808 0.841146i \(-0.318118\pi\)
0.540808 + 0.841146i \(0.318118\pi\)
\(758\) 1.68433e6 2.93149
\(759\) 762515.i 1.32362i
\(760\) −532903. −0.922616
\(761\) 768144.i 1.32640i −0.748444 0.663198i \(-0.769199\pi\)
0.748444 0.663198i \(-0.230801\pi\)
\(762\) 1.03757e6i 1.78692i
\(763\) 65576.4 204901.i 0.112642 0.351962i
\(764\) −154112. −0.264027
\(765\) −98640.2 −0.168551
\(766\) 634928.i 1.08210i
\(767\) 460064. 0.782037
\(768\) 452845.i 0.767763i
\(769\) 1.17178e6i 1.98150i −0.135693 0.990751i \(-0.543326\pi\)
0.135693 0.990751i \(-0.456674\pi\)
\(770\) 1.28031e6 + 409748.i 2.15940 + 0.691091i
\(771\) 489048. 0.822702
\(772\) −369957. −0.620750
\(773\) 596498.i 0.998275i 0.866523 + 0.499138i \(0.166350\pi\)
−0.866523 + 0.499138i \(0.833650\pi\)
\(774\) 91457.5 0.152664
\(775\) 8684.42i 0.0144590i
\(776\) 1.12168e6i 1.86271i
\(777\) 244792. + 78343.1i 0.405467 + 0.129765i
\(778\) 51025.3 0.0842998
\(779\) −389687. −0.642157
\(780\) 333121.i 0.547536i
\(781\) 680801. 1.11614
\(782\) 424208.i 0.693690i
\(783\) 282602.i 0.460948i
\(784\) −111338. 79397.2i −0.181139 0.129173i
\(785\) 192419. 0.312254
\(786\) 506602. 0.820015
\(787\) 177090.i 0.285920i 0.989728 + 0.142960i \(0.0456621\pi\)
−0.989728 + 0.142960i \(0.954338\pi\)
\(788\) 1.65022e6 2.65759
\(789\) 200299.i 0.321755i
\(790\) 1.90550e6i 3.05319i
\(791\) 28207.3 88137.3i 0.0450826 0.140866i
\(792\) 650773. 1.03748
\(793\) −438430. −0.697194
\(794\) 61663.4i 0.0978108i
\(795\) −308771. −0.488542
\(796\) 1.30166e6i 2.05434i
\(797\) 1.11542e6i 1.75599i 0.478666 + 0.877997i \(0.341120\pi\)
−0.478666 + 0.877997i \(0.658880\pi\)
\(798\) 139020. 434386.i 0.218309 0.682134i
\(799\) −140841. −0.220615
\(800\) 43249.5 0.0675774
\(801\) 296180.i 0.461626i
\(802\) 2.06601e6 3.21206
\(803\) 1.40782e6i 2.18332i
\(804\) 667079.i 1.03196i
\(805\) −1.11550e6 357004.i −1.72139 0.550911i
\(806\) 98602.6 0.151781
\(807\) −615056. −0.944425
\(808\) 683391.i 1.04676i
\(809\) −76077.2 −0.116241 −0.0581203 0.998310i \(-0.518511\pi\)
−0.0581203 + 0.998310i \(0.518511\pi\)
\(810\) 127507.i 0.194341i
\(811\) 1.25940e6i 1.91480i 0.288764 + 0.957400i \(0.406756\pi\)
−0.288764 + 0.957400i \(0.593244\pi\)
\(812\) −165101. + 515880.i −0.250403 + 0.782414i
\(813\) 529187. 0.800623
\(814\) −1.06572e6 −1.60840
\(815\) 46432.1i 0.0699042i
\(816\) 20713.9 0.0311087
\(817\) 69880.5i 0.104692i
\(818\) 186585.i 0.278849i
\(819\) −227102. 72681.3i −0.338573 0.108357i
\(820\) −1.02118e6 −1.51871
\(821\) −1.15542e6 −1.71417 −0.857087 0.515171i \(-0.827728\pi\)
−0.857087 + 0.515171i \(0.827728\pi\)
\(822\) 512861.i 0.759026i
\(823\) −388695. −0.573864 −0.286932 0.957951i \(-0.592635\pi\)
−0.286932 + 0.957951i \(0.592635\pi\)
\(824\) 1.28852e6i 1.89775i
\(825\) 43353.3i 0.0636963i
\(826\) 1.57209e6 + 503130.i 2.30419 + 0.737429i
\(827\) 685878. 1.00285 0.501425 0.865201i \(-0.332809\pi\)
0.501425 + 0.865201i \(0.332809\pi\)
\(828\) −1.36173e6 −1.98624
\(829\) 559594.i 0.814262i 0.913370 + 0.407131i \(0.133471\pi\)
−0.913370 + 0.407131i \(0.866529\pi\)
\(830\) −210835. −0.306046
\(831\) 202034.i 0.292565i
\(832\) 573057.i 0.827850i
\(833\) 97712.3 137021.i 0.140818 0.197468i
\(834\) −919873. −1.32250
\(835\) 410968. 0.589434
\(836\) 1.19418e6i 1.70867i
\(837\) 116553. 0.166370
\(838\) 1.45076e6i 2.06589i
\(839\) 1.25364e6i 1.78094i 0.455046 + 0.890468i \(0.349623\pi\)
−0.455046 + 0.890468i \(0.650377\pi\)
\(840\) 151691. 473976.i 0.214981 0.671735i
\(841\) −544701. −0.770134
\(842\) 1.16102e6 1.63763
\(843\) 274558.i 0.386348i
\(844\) −1.40871e6 −1.97759
\(845\) 532524.i 0.745806i
\(846\) 715963.i 1.00035i
\(847\) 163654. 511355.i 0.228117 0.712781i
\(848\) −130239. −0.181113
\(849\) 620828. 0.861303
\(850\) 24118.6i 0.0333822i
\(851\) 928541. 1.28216
\(852\) 605296.i 0.833851i
\(853\) 928155.i 1.27562i 0.770193 + 0.637811i \(0.220160\pi\)
−0.770193 + 0.637811i \(0.779840\pi\)
\(854\) −1.49817e6 479471.i −2.05421 0.657425i
\(855\) −383137. −0.524109
\(856\) −1961.52 −0.00267698
\(857\) 500430.i 0.681368i −0.940178 0.340684i \(-0.889341\pi\)
0.940178 0.340684i \(-0.110659\pi\)
\(858\) −492232. −0.668644
\(859\) 937091.i 1.26998i −0.772522 0.634988i \(-0.781005\pi\)
0.772522 0.634988i \(-0.218995\pi\)
\(860\) 183123.i 0.247597i
\(861\) 110924. 346596.i 0.149631 0.467539i
\(862\) 1.17663e6 1.58353
\(863\) −290438. −0.389970 −0.194985 0.980806i \(-0.562466\pi\)
−0.194985 + 0.980806i \(0.562466\pi\)
\(864\) 580451.i 0.777567i
\(865\) 379746. 0.507530
\(866\) 418449.i 0.557965i
\(867\) 25492.1i 0.0339131i
\(868\) 212764. + 68092.7i 0.282396 + 0.0903776i
\(869\) −1.77798e6 −2.35443
\(870\) −358740. −0.473960
\(871\) 421996.i 0.556252i
\(872\) 330243. 0.434310
\(873\) 806446.i 1.05815i
\(874\) 1.64770e6i 2.15703i
\(875\) 695622. + 222626.i 0.908567 + 0.290777i
\(876\) −1.25169e6 −1.63113
\(877\) −54446.7 −0.0707901 −0.0353950 0.999373i \(-0.511269\pi\)
−0.0353950 + 0.999373i \(0.511269\pi\)
\(878\) 845933.i 1.09735i
\(879\) −138239. −0.178918
\(880\) 237138.i 0.306221i
\(881\) 713208.i 0.918892i −0.888206 0.459446i \(-0.848048\pi\)
0.888206 0.459446i \(-0.151952\pi\)
\(882\) −696547. 496721.i −0.895392 0.638521i
\(883\) −828642. −1.06279 −0.531393 0.847126i \(-0.678331\pi\)
−0.531393 + 0.847126i \(0.678331\pi\)
\(884\) 172922. 0.221282
\(885\) 690334.i 0.881400i
\(886\) −72135.0 −0.0918922
\(887\) 262680.i 0.333872i 0.985968 + 0.166936i \(0.0533873\pi\)
−0.985968 + 0.166936i \(0.946613\pi\)
\(888\) 394536.i 0.500334i
\(889\) 453272. 1.41630e6i 0.573529 1.79206i
\(890\) −939134. −1.18563
\(891\) 118974. 0.149864
\(892\) 1.55855e6i 1.95880i
\(893\) −547050. −0.686000
\(894\) 765177.i 0.957386i
\(895\) 844236.i 1.05394i
\(896\) −428790. + 1.33981e6i −0.534108 + 1.66889i
\(897\) 428871. 0.533018
\(898\) −12210.2 −0.0151416
\(899\) 67052.7i 0.0829654i
\(900\) −77422.3 −0.0955830
\(901\) 160282.i 0.197440i
\(902\) 1.50893e6i 1.85463i
\(903\) −62153.2 19891.4i −0.0762234 0.0243944i
\(904\) 142052. 0.173824
\(905\) −654552. −0.799185
\(906\) 141524.i 0.172414i
\(907\) −830192. −1.00917 −0.504585 0.863362i \(-0.668354\pi\)
−0.504585 + 0.863362i \(0.668354\pi\)
\(908\) 1.71338e6i 2.07818i
\(909\) 491331.i 0.594630i
\(910\) 230460. 720100.i 0.278299 0.869580i
\(911\) −706572. −0.851372 −0.425686 0.904871i \(-0.639967\pi\)
−0.425686 + 0.904871i \(0.639967\pi\)
\(912\) 80456.7 0.0967325
\(913\) 196726.i 0.236004i
\(914\) −223155. −0.267124
\(915\) 657872.i 0.785777i
\(916\) 462599.i 0.551332i
\(917\) 691525. + 221315.i 0.822373 + 0.263191i
\(918\) 323695. 0.384106
\(919\) 370685. 0.438909 0.219454 0.975623i \(-0.429572\pi\)
0.219454 + 0.975623i \(0.429572\pi\)
\(920\) 1.79787e6i 2.12414i
\(921\) −261475. −0.308255
\(922\) 2.08428e6i 2.45185i
\(923\) 382912.i 0.449464i
\(924\) −1.06213e6 339924.i −1.24404 0.398142i
\(925\) 52792.8 0.0617009
\(926\) 273610. 0.319087
\(927\) 926398.i 1.07805i
\(928\) 333931. 0.387758
\(929\) 1.53465e6i 1.77819i 0.457726 + 0.889093i \(0.348664\pi\)
−0.457726 + 0.889093i \(0.651336\pi\)
\(930\) 147955.i 0.171066i
\(931\) 379532. 532215.i 0.437874 0.614027i
\(932\) 672363. 0.774055
\(933\) −365700. −0.420108
\(934\) 1.13193e6i 1.29756i
\(935\) −291840. −0.333827
\(936\) 366023.i 0.417789i
\(937\) 282152.i 0.321369i 0.987006 + 0.160685i \(0.0513702\pi\)
−0.987006 + 0.160685i \(0.948630\pi\)
\(938\) 461498. 1.44201e6i 0.524523 1.63893i
\(939\) 614352. 0.696765
\(940\) −1.43355e6 −1.62240
\(941\) 676437.i 0.763921i 0.924179 + 0.381960i \(0.124751\pi\)
−0.924179 + 0.381960i \(0.875249\pi\)
\(942\) −252791. −0.284879
\(943\) 1.31470e6i 1.47844i
\(944\) 291182.i 0.326753i
\(945\) 272415. 851195.i 0.305048 0.953159i
\(946\) 270589. 0.302362
\(947\) −169249. −0.188723 −0.0943616 0.995538i \(-0.530081\pi\)
−0.0943616 + 0.995538i \(0.530081\pi\)
\(948\) 1.58079e6i 1.75896i
\(949\) −791822. −0.879215
\(950\) 93681.1i 0.103802i
\(951\) 733222.i 0.810726i
\(952\) 246039. + 78742.1i 0.271476 + 0.0868827i
\(953\) −62012.3 −0.0682798 −0.0341399 0.999417i \(-0.510869\pi\)
−0.0341399 + 0.999417i \(0.510869\pi\)
\(954\) −814793. −0.895263
\(955\) 146288.i 0.160399i
\(956\) −893983. −0.978168
\(957\) 334733.i 0.365489i
\(958\) 1.10674e6i 1.20590i
\(959\) 224049. 700069.i 0.243616 0.761208i
\(960\) −859883. −0.933033
\(961\) 895866. 0.970055
\(962\) 599408.i 0.647697i
\(963\) −1410.26 −0.00152071
\(964\) 1.96913e6i 2.11895i
\(965\) 351175.i 0.377111i
\(966\) 1.46550e6 + 469017.i 1.57048 + 0.502614i
\(967\) 885946. 0.947446 0.473723 0.880674i \(-0.342910\pi\)
0.473723 + 0.880674i \(0.342910\pi\)
\(968\) 824159. 0.879549
\(969\) 99016.1i 0.105453i
\(970\) 2.55710e6 2.71771
\(971\) 17300.0i 0.0183489i 0.999958 + 0.00917443i \(0.00292035\pi\)
−0.999958 + 0.00917443i \(0.997080\pi\)
\(972\) 1.66218e6i 1.75932i
\(973\) −1.25565e6 401857.i −1.32630 0.424468i
\(974\) 1.37153e6 1.44573
\(975\) 24383.8 0.0256502
\(976\) 277489.i 0.291304i
\(977\) 990621. 1.03781 0.518906 0.854832i \(-0.326340\pi\)
0.518906 + 0.854832i \(0.326340\pi\)
\(978\) 61000.6i 0.0637758i
\(979\) 876285.i 0.914282i
\(980\) 994569. 1.39468e6i 1.03558 1.45218i
\(981\) 237432. 0.246718
\(982\) −2.66385e6 −2.76240
\(983\) 150923.i 0.156189i −0.996946 0.0780943i \(-0.975116\pi\)
0.996946 0.0780943i \(-0.0248835\pi\)
\(984\) 558614. 0.576928
\(985\) 1.56644e6i 1.61451i
\(986\) 186221.i 0.191547i
\(987\) 155718. 486559.i 0.159847 0.499460i
\(988\) 671661. 0.688076
\(989\) −235758. −0.241032
\(990\) 1.48357e6i 1.51369i
\(991\) −149168. −0.151890 −0.0759448 0.997112i \(-0.524197\pi\)
−0.0759448 + 0.997112i \(0.524197\pi\)
\(992\) 137723.i 0.139953i
\(993\) 638582.i 0.647617i
\(994\) 418756. 1.30845e6i 0.423826 1.32430i
\(995\) −1.23558e6 −1.24803
\(996\) 174908. 0.176315
\(997\) 288865.i 0.290606i 0.989387 + 0.145303i \(0.0464158\pi\)
−0.989387 + 0.145303i \(0.953584\pi\)
\(998\) 2.52580e6 2.53594
\(999\) 708531.i 0.709950i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.5.c.a.69.39 44
7.6 odd 2 inner 119.5.c.a.69.40 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.5.c.a.69.39 44 1.1 even 1 trivial
119.5.c.a.69.40 yes 44 7.6 odd 2 inner