| L(s) = 1 | + 6.58·2-s − 5.18i·3-s + 27.4·4-s + 26.0i·5-s − 34.1i·6-s + (14.9 − 46.6i)7-s + 75.2·8-s + 54.0·9-s + 171. i·10-s + 159.·11-s − 142. i·12-s − 89.9i·13-s + (98.4 − 307. i)14-s + 135.·15-s + 56.9·16-s + 70.0i·17-s + ⋯ |
| L(s) = 1 | + 1.64·2-s − 0.576i·3-s + 1.71·4-s + 1.04i·5-s − 0.949i·6-s + (0.304 − 0.952i)7-s + 1.17·8-s + 0.667·9-s + 1.71i·10-s + 1.32·11-s − 0.987i·12-s − 0.532i·13-s + (0.502 − 1.56i)14-s + 0.600·15-s + 0.222·16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.952 + 0.304i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 119 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.952 + 0.304i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(4.69002 - 0.732202i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.69002 - 0.732202i\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 + (-14.9 + 46.6i)T \) |
| 17 | \( 1 - 70.0iT \) |
| good | 2 | \( 1 - 6.58T + 16T^{2} \) |
| 3 | \( 1 + 5.18iT - 81T^{2} \) |
| 5 | \( 1 - 26.0iT - 625T^{2} \) |
| 11 | \( 1 - 159.T + 1.46e4T^{2} \) |
| 13 | \( 1 + 89.9iT - 2.85e4T^{2} \) |
| 19 | \( 1 - 272. iT - 1.30e5T^{2} \) |
| 23 | \( 1 + 918.T + 2.79e5T^{2} \) |
| 29 | \( 1 + 403.T + 7.07e5T^{2} \) |
| 31 | \( 1 - 166. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 1.01e3T + 1.87e6T^{2} \) |
| 41 | \( 1 - 1.43e3iT - 2.82e6T^{2} \) |
| 43 | \( 1 - 256.T + 3.41e6T^{2} \) |
| 47 | \( 1 - 2.00e3iT - 4.87e6T^{2} \) |
| 53 | \( 1 + 2.28e3T + 7.89e6T^{2} \) |
| 59 | \( 1 - 5.11e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 4.87e3iT - 1.38e7T^{2} \) |
| 67 | \( 1 - 4.68e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 4.25e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 8.79e3iT - 2.83e7T^{2} \) |
| 79 | \( 1 + 1.11e4T + 3.89e7T^{2} \) |
| 83 | \( 1 - 1.22e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 - 5.47e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 1.49e4iT - 8.85e7T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.84334855485919662837065094511, −12.02024417591417874899392647662, −11.02780649057888074904603236766, −10.00546747844236650399698066389, −7.77212435556028621418017139439, −6.81363028555487820823185948633, −6.10045364896192073818239587745, −4.32118928988985495719505683909, −3.46956691858426145249355971534, −1.71328429673370313977103550802,
1.88670833750943628937093081523, 3.83524477501335682654001597985, 4.63315059808396724563887747389, 5.59140540714752829687551251982, 6.83486778615142293255903018595, 8.709670356647570867385383762673, 9.596313513751922960886579608206, 11.34555398795064595450915827370, 12.08933158272973142138333043019, 12.75068210002753975138312355260