Properties

Label 119.4.a.e.1.5
Level $119$
Weight $4$
Character 119.1
Self dual yes
Analytic conductor $7.021$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [119,4,Mod(1,119)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("119.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(119, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.02122729068\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 53x^{7} + 90x^{6} + 880x^{5} - 1087x^{4} - 4674x^{3} + 2515x^{2} + 1814x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.0204472\) of defining polynomial
Character \(\chi\) \(=\) 119.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0204472 q^{2} -8.34282 q^{3} -7.99958 q^{4} -11.9677 q^{5} +0.170588 q^{6} +7.00000 q^{7} +0.327147 q^{8} +42.6027 q^{9} +0.244705 q^{10} -69.2380 q^{11} +66.7391 q^{12} +75.3431 q^{13} -0.143131 q^{14} +99.8441 q^{15} +63.9900 q^{16} +17.0000 q^{17} -0.871107 q^{18} -44.5275 q^{19} +95.7363 q^{20} -58.3998 q^{21} +1.41572 q^{22} -51.3581 q^{23} -2.72933 q^{24} +18.2250 q^{25} -1.54056 q^{26} -130.171 q^{27} -55.9971 q^{28} -78.5173 q^{29} -2.04153 q^{30} +191.447 q^{31} -3.92559 q^{32} +577.640 q^{33} -0.347603 q^{34} -83.7736 q^{35} -340.804 q^{36} -283.110 q^{37} +0.910463 q^{38} -628.574 q^{39} -3.91518 q^{40} +194.140 q^{41} +1.19411 q^{42} +113.892 q^{43} +553.875 q^{44} -509.855 q^{45} +1.05013 q^{46} +185.276 q^{47} -533.857 q^{48} +49.0000 q^{49} -0.372650 q^{50} -141.828 q^{51} -602.713 q^{52} +693.163 q^{53} +2.66163 q^{54} +828.617 q^{55} +2.29003 q^{56} +371.485 q^{57} +1.60546 q^{58} -611.213 q^{59} -798.711 q^{60} +339.563 q^{61} -3.91455 q^{62} +298.219 q^{63} -511.839 q^{64} -901.681 q^{65} -11.8111 q^{66} -56.5036 q^{67} -135.993 q^{68} +428.471 q^{69} +1.71294 q^{70} +161.004 q^{71} +13.9373 q^{72} +224.490 q^{73} +5.78881 q^{74} -152.048 q^{75} +356.201 q^{76} -484.666 q^{77} +12.8526 q^{78} +1243.28 q^{79} -765.810 q^{80} -64.2819 q^{81} -3.96962 q^{82} -445.110 q^{83} +467.174 q^{84} -203.450 q^{85} -2.32878 q^{86} +655.056 q^{87} -22.6510 q^{88} +220.783 q^{89} +10.4251 q^{90} +527.402 q^{91} +410.843 q^{92} -1597.21 q^{93} -3.78837 q^{94} +532.890 q^{95} +32.7505 q^{96} -148.526 q^{97} -1.00191 q^{98} -2949.73 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 2 q^{2} + 11 q^{3} + 38 q^{4} - 3 q^{5} + 9 q^{6} + 63 q^{7} + 24 q^{8} + 74 q^{9} + 134 q^{10} - 8 q^{11} + 56 q^{12} + 164 q^{13} + 14 q^{14} + 34 q^{15} + 178 q^{16} + 153 q^{17} + 98 q^{18} + 244 q^{19}+ \cdots - 2396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0204472 −0.00722918 −0.00361459 0.999993i \(-0.501151\pi\)
−0.00361459 + 0.999993i \(0.501151\pi\)
\(3\) −8.34282 −1.60558 −0.802789 0.596264i \(-0.796651\pi\)
−0.802789 + 0.596264i \(0.796651\pi\)
\(4\) −7.99958 −0.999948
\(5\) −11.9677 −1.07042 −0.535210 0.844719i \(-0.679768\pi\)
−0.535210 + 0.844719i \(0.679768\pi\)
\(6\) 0.170588 0.0116070
\(7\) 7.00000 0.377964
\(8\) 0.327147 0.0144580
\(9\) 42.6027 1.57788
\(10\) 0.244705 0.00773827
\(11\) −69.2380 −1.89782 −0.948911 0.315545i \(-0.897813\pi\)
−0.948911 + 0.315545i \(0.897813\pi\)
\(12\) 66.7391 1.60549
\(13\) 75.3431 1.60742 0.803709 0.595023i \(-0.202857\pi\)
0.803709 + 0.595023i \(0.202857\pi\)
\(14\) −0.143131 −0.00273237
\(15\) 99.8441 1.71864
\(16\) 63.9900 0.999843
\(17\) 17.0000 0.242536
\(18\) −0.871107 −0.0114068
\(19\) −44.5275 −0.537648 −0.268824 0.963189i \(-0.586635\pi\)
−0.268824 + 0.963189i \(0.586635\pi\)
\(20\) 95.7363 1.07036
\(21\) −58.3998 −0.606851
\(22\) 1.41572 0.0137197
\(23\) −51.3581 −0.465604 −0.232802 0.972524i \(-0.574789\pi\)
−0.232802 + 0.972524i \(0.574789\pi\)
\(24\) −2.72933 −0.0232134
\(25\) 18.2250 0.145800
\(26\) −1.54056 −0.0116203
\(27\) −130.171 −0.927828
\(28\) −55.9971 −0.377945
\(29\) −78.5173 −0.502769 −0.251384 0.967887i \(-0.580886\pi\)
−0.251384 + 0.967887i \(0.580886\pi\)
\(30\) −2.04153 −0.0124244
\(31\) 191.447 1.10919 0.554594 0.832121i \(-0.312873\pi\)
0.554594 + 0.832121i \(0.312873\pi\)
\(32\) −3.92559 −0.0216860
\(33\) 577.640 3.04710
\(34\) −0.347603 −0.00175333
\(35\) −83.7736 −0.404581
\(36\) −340.804 −1.57780
\(37\) −283.110 −1.25792 −0.628959 0.777438i \(-0.716519\pi\)
−0.628959 + 0.777438i \(0.716519\pi\)
\(38\) 0.910463 0.00388675
\(39\) −628.574 −2.58083
\(40\) −3.91518 −0.0154761
\(41\) 194.140 0.739502 0.369751 0.929131i \(-0.379443\pi\)
0.369751 + 0.929131i \(0.379443\pi\)
\(42\) 1.19411 0.00438704
\(43\) 113.892 0.403916 0.201958 0.979394i \(-0.435270\pi\)
0.201958 + 0.979394i \(0.435270\pi\)
\(44\) 553.875 1.89772
\(45\) −509.855 −1.68899
\(46\) 1.05013 0.00336594
\(47\) 185.276 0.575005 0.287503 0.957780i \(-0.407175\pi\)
0.287503 + 0.957780i \(0.407175\pi\)
\(48\) −533.857 −1.60533
\(49\) 49.0000 0.142857
\(50\) −0.372650 −0.00105401
\(51\) −141.828 −0.389410
\(52\) −602.713 −1.60733
\(53\) 693.163 1.79648 0.898238 0.439508i \(-0.144847\pi\)
0.898238 + 0.439508i \(0.144847\pi\)
\(54\) 2.66163 0.00670744
\(55\) 828.617 2.03147
\(56\) 2.29003 0.00546461
\(57\) 371.485 0.863235
\(58\) 1.60546 0.00363461
\(59\) −611.213 −1.34870 −0.674349 0.738413i \(-0.735576\pi\)
−0.674349 + 0.738413i \(0.735576\pi\)
\(60\) −798.711 −1.71855
\(61\) 339.563 0.712730 0.356365 0.934347i \(-0.384016\pi\)
0.356365 + 0.934347i \(0.384016\pi\)
\(62\) −3.91455 −0.00801853
\(63\) 298.219 0.596382
\(64\) −511.839 −0.999686
\(65\) −901.681 −1.72061
\(66\) −11.8111 −0.0220280
\(67\) −56.5036 −0.103030 −0.0515150 0.998672i \(-0.516405\pi\)
−0.0515150 + 0.998672i \(0.516405\pi\)
\(68\) −135.993 −0.242523
\(69\) 428.471 0.747564
\(70\) 1.71294 0.00292479
\(71\) 161.004 0.269122 0.134561 0.990905i \(-0.457038\pi\)
0.134561 + 0.990905i \(0.457038\pi\)
\(72\) 13.9373 0.0228130
\(73\) 224.490 0.359925 0.179963 0.983673i \(-0.442402\pi\)
0.179963 + 0.983673i \(0.442402\pi\)
\(74\) 5.78881 0.00909372
\(75\) −152.048 −0.234093
\(76\) 356.201 0.537620
\(77\) −484.666 −0.717309
\(78\) 12.8526 0.0186573
\(79\) 1243.28 1.77064 0.885319 0.464984i \(-0.153940\pi\)
0.885319 + 0.464984i \(0.153940\pi\)
\(80\) −765.810 −1.07025
\(81\) −64.2819 −0.0881782
\(82\) −3.96962 −0.00534600
\(83\) −445.110 −0.588640 −0.294320 0.955707i \(-0.595093\pi\)
−0.294320 + 0.955707i \(0.595093\pi\)
\(84\) 467.174 0.606819
\(85\) −203.450 −0.259615
\(86\) −2.32878 −0.00291998
\(87\) 655.056 0.807234
\(88\) −22.6510 −0.0274387
\(89\) 220.783 0.262955 0.131477 0.991319i \(-0.458028\pi\)
0.131477 + 0.991319i \(0.458028\pi\)
\(90\) 10.4251 0.0122100
\(91\) 527.402 0.607547
\(92\) 410.843 0.465580
\(93\) −1597.21 −1.78089
\(94\) −3.78837 −0.00415682
\(95\) 532.890 0.575509
\(96\) 32.7505 0.0348186
\(97\) −148.526 −0.155470 −0.0777348 0.996974i \(-0.524769\pi\)
−0.0777348 + 0.996974i \(0.524769\pi\)
\(98\) −1.00191 −0.00103274
\(99\) −2949.73 −2.99453
\(100\) −145.792 −0.145792
\(101\) 1777.60 1.75127 0.875634 0.482976i \(-0.160444\pi\)
0.875634 + 0.482976i \(0.160444\pi\)
\(102\) 2.89999 0.00281511
\(103\) −67.5774 −0.0646466 −0.0323233 0.999477i \(-0.510291\pi\)
−0.0323233 + 0.999477i \(0.510291\pi\)
\(104\) 24.6483 0.0232400
\(105\) 698.909 0.649586
\(106\) −14.1733 −0.0129871
\(107\) 174.399 0.157568 0.0787839 0.996892i \(-0.474896\pi\)
0.0787839 + 0.996892i \(0.474896\pi\)
\(108\) 1041.31 0.927780
\(109\) 1700.63 1.49442 0.747208 0.664591i \(-0.231394\pi\)
0.747208 + 0.664591i \(0.231394\pi\)
\(110\) −16.9429 −0.0146858
\(111\) 2361.94 2.01968
\(112\) 447.930 0.377905
\(113\) −1584.74 −1.31929 −0.659643 0.751579i \(-0.729293\pi\)
−0.659643 + 0.751579i \(0.729293\pi\)
\(114\) −7.59584 −0.00624048
\(115\) 614.636 0.498392
\(116\) 628.105 0.502742
\(117\) 3209.82 2.53631
\(118\) 12.4976 0.00974998
\(119\) 119.000 0.0916698
\(120\) 32.6637 0.0248481
\(121\) 3462.90 2.60173
\(122\) −6.94311 −0.00515246
\(123\) −1619.68 −1.18733
\(124\) −1531.49 −1.10913
\(125\) 1277.85 0.914353
\(126\) −6.09775 −0.00431135
\(127\) −2620.42 −1.83090 −0.915451 0.402430i \(-0.868166\pi\)
−0.915451 + 0.402430i \(0.868166\pi\)
\(128\) 41.8704 0.0289130
\(129\) −950.182 −0.648518
\(130\) 18.4369 0.0124386
\(131\) −318.971 −0.212738 −0.106369 0.994327i \(-0.533922\pi\)
−0.106369 + 0.994327i \(0.533922\pi\)
\(132\) −4620.88 −3.04694
\(133\) −311.692 −0.203212
\(134\) 1.15534 0.000744823 0
\(135\) 1557.84 0.993166
\(136\) 5.56150 0.00350658
\(137\) 373.544 0.232949 0.116474 0.993194i \(-0.462841\pi\)
0.116474 + 0.993194i \(0.462841\pi\)
\(138\) −8.76105 −0.00540428
\(139\) −1176.24 −0.717749 −0.358874 0.933386i \(-0.616839\pi\)
−0.358874 + 0.933386i \(0.616839\pi\)
\(140\) 670.154 0.404560
\(141\) −1545.72 −0.923215
\(142\) −3.29208 −0.00194553
\(143\) −5216.60 −3.05059
\(144\) 2726.15 1.57763
\(145\) 939.668 0.538174
\(146\) −4.59019 −0.00260197
\(147\) −408.798 −0.229368
\(148\) 2264.76 1.25785
\(149\) −1174.07 −0.645529 −0.322764 0.946479i \(-0.604612\pi\)
−0.322764 + 0.946479i \(0.604612\pi\)
\(150\) 3.10895 0.00169230
\(151\) 1771.81 0.954886 0.477443 0.878663i \(-0.341564\pi\)
0.477443 + 0.878663i \(0.341564\pi\)
\(152\) −14.5670 −0.00777331
\(153\) 724.246 0.382692
\(154\) 9.91007 0.00518556
\(155\) −2291.17 −1.18730
\(156\) 5028.33 2.58070
\(157\) 2045.48 1.03979 0.519895 0.854230i \(-0.325971\pi\)
0.519895 + 0.854230i \(0.325971\pi\)
\(158\) −25.4217 −0.0128003
\(159\) −5782.94 −2.88438
\(160\) 46.9802 0.0232132
\(161\) −359.507 −0.175982
\(162\) 1.31439 0.000637456 0
\(163\) −3368.05 −1.61844 −0.809222 0.587503i \(-0.800111\pi\)
−0.809222 + 0.587503i \(0.800111\pi\)
\(164\) −1553.04 −0.739463
\(165\) −6913.00 −3.26168
\(166\) 9.10125 0.00425539
\(167\) 3306.72 1.53222 0.766112 0.642707i \(-0.222189\pi\)
0.766112 + 0.642707i \(0.222189\pi\)
\(168\) −19.1053 −0.00877385
\(169\) 3479.59 1.58379
\(170\) 4.15999 0.00187681
\(171\) −1896.99 −0.848343
\(172\) −911.090 −0.403895
\(173\) −2134.49 −0.938049 −0.469025 0.883185i \(-0.655394\pi\)
−0.469025 + 0.883185i \(0.655394\pi\)
\(174\) −13.3941 −0.00583564
\(175\) 127.575 0.0551071
\(176\) −4430.54 −1.89752
\(177\) 5099.24 2.16544
\(178\) −4.51440 −0.00190095
\(179\) −3885.16 −1.62229 −0.811147 0.584843i \(-0.801156\pi\)
−0.811147 + 0.584843i \(0.801156\pi\)
\(180\) 4078.63 1.68890
\(181\) −755.818 −0.310384 −0.155192 0.987884i \(-0.549600\pi\)
−0.155192 + 0.987884i \(0.549600\pi\)
\(182\) −10.7839 −0.00439207
\(183\) −2832.91 −1.14434
\(184\) −16.8016 −0.00673170
\(185\) 3388.16 1.34650
\(186\) 32.6584 0.0128744
\(187\) −1177.05 −0.460289
\(188\) −1482.13 −0.574975
\(189\) −911.195 −0.350686
\(190\) −10.8961 −0.00416046
\(191\) −915.498 −0.346823 −0.173411 0.984849i \(-0.555479\pi\)
−0.173411 + 0.984849i \(0.555479\pi\)
\(192\) 4270.19 1.60507
\(193\) 2760.87 1.02970 0.514849 0.857281i \(-0.327848\pi\)
0.514849 + 0.857281i \(0.327848\pi\)
\(194\) 3.03695 0.00112392
\(195\) 7522.57 2.76258
\(196\) −391.980 −0.142850
\(197\) 210.484 0.0761235 0.0380618 0.999275i \(-0.487882\pi\)
0.0380618 + 0.999275i \(0.487882\pi\)
\(198\) 60.3137 0.0216480
\(199\) −1629.97 −0.580631 −0.290316 0.956931i \(-0.593760\pi\)
−0.290316 + 0.956931i \(0.593760\pi\)
\(200\) 5.96224 0.00210797
\(201\) 471.399 0.165423
\(202\) −36.3470 −0.0126602
\(203\) −549.621 −0.190029
\(204\) 1134.56 0.389389
\(205\) −2323.40 −0.791578
\(206\) 1.38177 0.000467342 0
\(207\) −2187.99 −0.734667
\(208\) 4821.20 1.60717
\(209\) 3082.99 1.02036
\(210\) −14.2907 −0.00469598
\(211\) 1567.79 0.511522 0.255761 0.966740i \(-0.417674\pi\)
0.255761 + 0.966740i \(0.417674\pi\)
\(212\) −5545.02 −1.79638
\(213\) −1343.23 −0.432096
\(214\) −3.56597 −0.00113909
\(215\) −1363.02 −0.432360
\(216\) −42.5850 −0.0134145
\(217\) 1340.13 0.419234
\(218\) −34.7732 −0.0108034
\(219\) −1872.88 −0.577888
\(220\) −6628.59 −2.03136
\(221\) 1280.83 0.389856
\(222\) −48.2950 −0.0146007
\(223\) 3382.37 1.01570 0.507848 0.861447i \(-0.330441\pi\)
0.507848 + 0.861447i \(0.330441\pi\)
\(224\) −27.4791 −0.00819655
\(225\) 776.433 0.230054
\(226\) 32.4034 0.00953736
\(227\) 2470.11 0.722233 0.361117 0.932521i \(-0.382396\pi\)
0.361117 + 0.932521i \(0.382396\pi\)
\(228\) −2971.73 −0.863190
\(229\) 5184.13 1.49597 0.747985 0.663716i \(-0.231022\pi\)
0.747985 + 0.663716i \(0.231022\pi\)
\(230\) −12.5676 −0.00360297
\(231\) 4043.48 1.15169
\(232\) −25.6867 −0.00726902
\(233\) −1037.90 −0.291823 −0.145912 0.989298i \(-0.546611\pi\)
−0.145912 + 0.989298i \(0.546611\pi\)
\(234\) −65.6319 −0.0183354
\(235\) −2217.32 −0.615497
\(236\) 4889.45 1.34863
\(237\) −10372.5 −2.84290
\(238\) −2.43322 −0.000662698 0
\(239\) 4604.37 1.24616 0.623080 0.782158i \(-0.285881\pi\)
0.623080 + 0.782158i \(0.285881\pi\)
\(240\) 6389.02 1.71837
\(241\) −5261.84 −1.40641 −0.703206 0.710986i \(-0.748249\pi\)
−0.703206 + 0.710986i \(0.748249\pi\)
\(242\) −70.8066 −0.0188083
\(243\) 4050.90 1.06941
\(244\) −2716.36 −0.712693
\(245\) −586.415 −0.152917
\(246\) 33.1179 0.00858341
\(247\) −3354.84 −0.864224
\(248\) 62.6312 0.0160366
\(249\) 3713.47 0.945107
\(250\) −26.1284 −0.00661003
\(251\) 1950.12 0.490401 0.245200 0.969472i \(-0.421146\pi\)
0.245200 + 0.969472i \(0.421146\pi\)
\(252\) −2385.63 −0.596351
\(253\) 3555.93 0.883634
\(254\) 53.5803 0.0132359
\(255\) 1697.35 0.416832
\(256\) 4093.86 0.999477
\(257\) −6002.11 −1.45681 −0.728407 0.685145i \(-0.759739\pi\)
−0.728407 + 0.685145i \(0.759739\pi\)
\(258\) 19.4286 0.00468826
\(259\) −1981.77 −0.475448
\(260\) 7213.07 1.72052
\(261\) −3345.05 −0.793308
\(262\) 6.52207 0.00153792
\(263\) 2614.58 0.613012 0.306506 0.951869i \(-0.400840\pi\)
0.306506 + 0.951869i \(0.400840\pi\)
\(264\) 188.973 0.0440549
\(265\) −8295.54 −1.92299
\(266\) 6.37324 0.00146906
\(267\) −1841.96 −0.422194
\(268\) 452.005 0.103025
\(269\) −3359.11 −0.761371 −0.380685 0.924705i \(-0.624312\pi\)
−0.380685 + 0.924705i \(0.624312\pi\)
\(270\) −31.8535 −0.00717978
\(271\) 7741.51 1.73529 0.867644 0.497186i \(-0.165633\pi\)
0.867644 + 0.497186i \(0.165633\pi\)
\(272\) 1087.83 0.242498
\(273\) −4400.02 −0.975463
\(274\) −7.63793 −0.00168403
\(275\) −1261.86 −0.276702
\(276\) −3427.59 −0.747525
\(277\) 4799.95 1.04116 0.520580 0.853813i \(-0.325716\pi\)
0.520580 + 0.853813i \(0.325716\pi\)
\(278\) 24.0508 0.00518874
\(279\) 8156.15 1.75017
\(280\) −27.4063 −0.00584943
\(281\) 4713.91 1.00074 0.500370 0.865811i \(-0.333197\pi\)
0.500370 + 0.865811i \(0.333197\pi\)
\(282\) 31.6057 0.00667409
\(283\) 1762.06 0.370119 0.185060 0.982727i \(-0.440752\pi\)
0.185060 + 0.982727i \(0.440752\pi\)
\(284\) −1287.96 −0.269108
\(285\) −4445.81 −0.924024
\(286\) 106.665 0.0220533
\(287\) 1358.98 0.279506
\(288\) −167.241 −0.0342179
\(289\) 289.000 0.0588235
\(290\) −19.2136 −0.00389056
\(291\) 1239.13 0.249619
\(292\) −1795.82 −0.359906
\(293\) 5712.12 1.13893 0.569464 0.822017i \(-0.307151\pi\)
0.569464 + 0.822017i \(0.307151\pi\)
\(294\) 8.35879 0.00165814
\(295\) 7314.79 1.44367
\(296\) −92.6185 −0.0181870
\(297\) 9012.76 1.76085
\(298\) 24.0065 0.00466665
\(299\) −3869.48 −0.748420
\(300\) 1216.32 0.234080
\(301\) 797.245 0.152666
\(302\) −36.2286 −0.00690305
\(303\) −14830.2 −2.81179
\(304\) −2849.31 −0.537563
\(305\) −4063.77 −0.762921
\(306\) −14.8088 −0.00276655
\(307\) −7791.05 −1.44840 −0.724199 0.689591i \(-0.757790\pi\)
−0.724199 + 0.689591i \(0.757790\pi\)
\(308\) 3877.12 0.717271
\(309\) 563.786 0.103795
\(310\) 46.8481 0.00858320
\(311\) 4492.19 0.819064 0.409532 0.912296i \(-0.365692\pi\)
0.409532 + 0.912296i \(0.365692\pi\)
\(312\) −205.636 −0.0373136
\(313\) 6630.29 1.19734 0.598668 0.800998i \(-0.295697\pi\)
0.598668 + 0.800998i \(0.295697\pi\)
\(314\) −41.8244 −0.00751684
\(315\) −3568.98 −0.638379
\(316\) −9945.75 −1.77055
\(317\) 7059.01 1.25071 0.625353 0.780342i \(-0.284955\pi\)
0.625353 + 0.780342i \(0.284955\pi\)
\(318\) 118.245 0.0208517
\(319\) 5436.38 0.954165
\(320\) 6125.52 1.07008
\(321\) −1454.98 −0.252987
\(322\) 7.35091 0.00127221
\(323\) −756.967 −0.130399
\(324\) 514.228 0.0881736
\(325\) 1373.13 0.234361
\(326\) 68.8673 0.0117000
\(327\) −14188.1 −2.39940
\(328\) 63.5123 0.0106917
\(329\) 1296.93 0.217332
\(330\) 141.352 0.0235793
\(331\) 6836.44 1.13524 0.567621 0.823290i \(-0.307864\pi\)
0.567621 + 0.823290i \(0.307864\pi\)
\(332\) 3560.69 0.588609
\(333\) −12061.2 −1.98484
\(334\) −67.6131 −0.0110767
\(335\) 676.215 0.110285
\(336\) −3737.00 −0.606756
\(337\) −5137.61 −0.830456 −0.415228 0.909717i \(-0.636298\pi\)
−0.415228 + 0.909717i \(0.636298\pi\)
\(338\) −71.1479 −0.0114495
\(339\) 13221.2 2.11822
\(340\) 1627.52 0.259601
\(341\) −13255.4 −2.10504
\(342\) 38.7882 0.00613283
\(343\) 343.000 0.0539949
\(344\) 37.2595 0.00583981
\(345\) −5127.80 −0.800207
\(346\) 43.6445 0.00678133
\(347\) 16.9107 0.00261618 0.00130809 0.999999i \(-0.499584\pi\)
0.00130809 + 0.999999i \(0.499584\pi\)
\(348\) −5240.17 −0.807192
\(349\) 565.027 0.0866624 0.0433312 0.999061i \(-0.486203\pi\)
0.0433312 + 0.999061i \(0.486203\pi\)
\(350\) −2.60855 −0.000398379 0
\(351\) −9807.47 −1.49141
\(352\) 271.800 0.0411562
\(353\) 1908.19 0.287714 0.143857 0.989599i \(-0.454050\pi\)
0.143857 + 0.989599i \(0.454050\pi\)
\(354\) −104.265 −0.0156543
\(355\) −1926.84 −0.288073
\(356\) −1766.17 −0.262941
\(357\) −992.796 −0.147183
\(358\) 79.4407 0.0117279
\(359\) −2618.85 −0.385008 −0.192504 0.981296i \(-0.561661\pi\)
−0.192504 + 0.981296i \(0.561661\pi\)
\(360\) −166.798 −0.0244194
\(361\) −4876.30 −0.710935
\(362\) 15.4544 0.00224382
\(363\) −28890.3 −4.17727
\(364\) −4218.99 −0.607515
\(365\) −2686.62 −0.385271
\(366\) 57.9252 0.00827267
\(367\) 1611.70 0.229237 0.114618 0.993410i \(-0.463436\pi\)
0.114618 + 0.993410i \(0.463436\pi\)
\(368\) −3286.40 −0.465531
\(369\) 8270.89 1.16684
\(370\) −69.2785 −0.00973410
\(371\) 4852.14 0.679004
\(372\) 12777.0 1.78080
\(373\) −11845.1 −1.64428 −0.822141 0.569285i \(-0.807220\pi\)
−0.822141 + 0.569285i \(0.807220\pi\)
\(374\) 24.0673 0.00332752
\(375\) −10660.9 −1.46807
\(376\) 60.6124 0.00831342
\(377\) −5915.74 −0.808159
\(378\) 18.6314 0.00253517
\(379\) 3158.08 0.428020 0.214010 0.976831i \(-0.431348\pi\)
0.214010 + 0.976831i \(0.431348\pi\)
\(380\) −4262.90 −0.575479
\(381\) 21861.7 2.93965
\(382\) 18.7194 0.00250724
\(383\) −6718.35 −0.896323 −0.448161 0.893953i \(-0.647921\pi\)
−0.448161 + 0.893953i \(0.647921\pi\)
\(384\) −349.318 −0.0464220
\(385\) 5800.32 0.767822
\(386\) −56.4521 −0.00744387
\(387\) 4852.12 0.637330
\(388\) 1188.15 0.155462
\(389\) 1221.71 0.159237 0.0796184 0.996825i \(-0.474630\pi\)
0.0796184 + 0.996825i \(0.474630\pi\)
\(390\) −153.816 −0.0199712
\(391\) −873.087 −0.112926
\(392\) 16.0302 0.00206543
\(393\) 2661.12 0.341567
\(394\) −4.30380 −0.000550311 0
\(395\) −14879.2 −1.89533
\(396\) 23596.6 2.99437
\(397\) −5381.44 −0.680320 −0.340160 0.940368i \(-0.610481\pi\)
−0.340160 + 0.940368i \(0.610481\pi\)
\(398\) 33.3284 0.00419749
\(399\) 2600.40 0.326272
\(400\) 1166.21 0.145777
\(401\) 12397.7 1.54391 0.771956 0.635675i \(-0.219278\pi\)
0.771956 + 0.635675i \(0.219278\pi\)
\(402\) −9.63880 −0.00119587
\(403\) 14424.2 1.78293
\(404\) −14220.1 −1.75118
\(405\) 769.304 0.0943877
\(406\) 11.2382 0.00137375
\(407\) 19602.0 2.38730
\(408\) −46.3986 −0.00563008
\(409\) −5664.85 −0.684862 −0.342431 0.939543i \(-0.611250\pi\)
−0.342431 + 0.939543i \(0.611250\pi\)
\(410\) 47.5071 0.00572246
\(411\) −3116.41 −0.374017
\(412\) 540.591 0.0646432
\(413\) −4278.49 −0.509760
\(414\) 44.7384 0.00531104
\(415\) 5326.92 0.630092
\(416\) −295.766 −0.0348585
\(417\) 9813.14 1.15240
\(418\) −63.0386 −0.00737636
\(419\) 14028.0 1.63559 0.817794 0.575510i \(-0.195197\pi\)
0.817794 + 0.575510i \(0.195197\pi\)
\(420\) −5590.98 −0.649552
\(421\) 14096.9 1.63192 0.815962 0.578106i \(-0.196208\pi\)
0.815962 + 0.578106i \(0.196208\pi\)
\(422\) −32.0569 −0.00369788
\(423\) 7893.25 0.907288
\(424\) 226.766 0.0259734
\(425\) 309.824 0.0353616
\(426\) 27.4652 0.00312370
\(427\) 2376.94 0.269387
\(428\) −1395.12 −0.157560
\(429\) 43521.2 4.89796
\(430\) 27.8700 0.00312561
\(431\) 4248.58 0.474818 0.237409 0.971410i \(-0.423702\pi\)
0.237409 + 0.971410i \(0.423702\pi\)
\(432\) −8329.62 −0.927683
\(433\) 937.201 0.104016 0.0520081 0.998647i \(-0.483438\pi\)
0.0520081 + 0.998647i \(0.483438\pi\)
\(434\) −27.4019 −0.00303072
\(435\) −7839.49 −0.864079
\(436\) −13604.4 −1.49434
\(437\) 2286.85 0.250331
\(438\) 38.2952 0.00417766
\(439\) −4569.76 −0.496817 −0.248409 0.968655i \(-0.579908\pi\)
−0.248409 + 0.968655i \(0.579908\pi\)
\(440\) 271.079 0.0293709
\(441\) 2087.53 0.225411
\(442\) −26.1895 −0.00281834
\(443\) −5024.96 −0.538923 −0.269462 0.963011i \(-0.586846\pi\)
−0.269462 + 0.963011i \(0.586846\pi\)
\(444\) −18894.5 −2.01958
\(445\) −2642.26 −0.281472
\(446\) −69.1601 −0.00734265
\(447\) 9795.08 1.03645
\(448\) −3582.88 −0.377846
\(449\) −4591.17 −0.482563 −0.241281 0.970455i \(-0.577568\pi\)
−0.241281 + 0.970455i \(0.577568\pi\)
\(450\) −15.8759 −0.00166310
\(451\) −13441.9 −1.40344
\(452\) 12677.2 1.31922
\(453\) −14781.9 −1.53314
\(454\) −50.5069 −0.00522116
\(455\) −6311.77 −0.650330
\(456\) 121.530 0.0124806
\(457\) 3061.00 0.313320 0.156660 0.987653i \(-0.449927\pi\)
0.156660 + 0.987653i \(0.449927\pi\)
\(458\) −106.001 −0.0108146
\(459\) −2212.90 −0.225031
\(460\) −4916.83 −0.498366
\(461\) 1438.10 0.145291 0.0726453 0.997358i \(-0.476856\pi\)
0.0726453 + 0.997358i \(0.476856\pi\)
\(462\) −82.6780 −0.00832581
\(463\) 5152.77 0.517213 0.258606 0.965983i \(-0.416737\pi\)
0.258606 + 0.965983i \(0.416737\pi\)
\(464\) −5024.32 −0.502690
\(465\) 19114.8 1.90630
\(466\) 21.2221 0.00210964
\(467\) 17831.0 1.76685 0.883425 0.468573i \(-0.155232\pi\)
0.883425 + 0.468573i \(0.155232\pi\)
\(468\) −25677.2 −2.53618
\(469\) −395.525 −0.0389417
\(470\) 45.3380 0.00444954
\(471\) −17065.1 −1.66946
\(472\) −199.956 −0.0194995
\(473\) −7885.66 −0.766560
\(474\) 212.089 0.0205518
\(475\) −811.512 −0.0783889
\(476\) −951.950 −0.0916651
\(477\) 29530.6 2.83462
\(478\) −94.1466 −0.00900871
\(479\) −5902.23 −0.563005 −0.281503 0.959560i \(-0.590833\pi\)
−0.281503 + 0.959560i \(0.590833\pi\)
\(480\) −391.947 −0.0372706
\(481\) −21330.4 −2.02200
\(482\) 107.590 0.0101672
\(483\) 2999.30 0.282553
\(484\) −27701.7 −2.60159
\(485\) 1777.51 0.166418
\(486\) −82.8297 −0.00773093
\(487\) −195.193 −0.0181623 −0.00908115 0.999959i \(-0.502891\pi\)
−0.00908115 + 0.999959i \(0.502891\pi\)
\(488\) 111.087 0.0103046
\(489\) 28099.1 2.59854
\(490\) 11.9906 0.00110547
\(491\) 1176.02 0.108092 0.0540458 0.998538i \(-0.482788\pi\)
0.0540458 + 0.998538i \(0.482788\pi\)
\(492\) 12956.7 1.18727
\(493\) −1334.79 −0.121939
\(494\) 68.5972 0.00624764
\(495\) 35301.3 3.20541
\(496\) 12250.7 1.10902
\(497\) 1127.03 0.101718
\(498\) −75.9302 −0.00683235
\(499\) −9379.34 −0.841437 −0.420718 0.907191i \(-0.638222\pi\)
−0.420718 + 0.907191i \(0.638222\pi\)
\(500\) −10222.2 −0.914306
\(501\) −27587.3 −2.46010
\(502\) −39.8746 −0.00354520
\(503\) 17417.2 1.54393 0.771965 0.635665i \(-0.219274\pi\)
0.771965 + 0.635665i \(0.219274\pi\)
\(504\) 97.5614 0.00862248
\(505\) −21273.7 −1.87459
\(506\) −72.7089 −0.00638795
\(507\) −29029.6 −2.54290
\(508\) 20962.3 1.83081
\(509\) −6927.46 −0.603250 −0.301625 0.953427i \(-0.597529\pi\)
−0.301625 + 0.953427i \(0.597529\pi\)
\(510\) −34.7061 −0.00301336
\(511\) 1571.43 0.136039
\(512\) −418.672 −0.0361384
\(513\) 5796.18 0.498845
\(514\) 122.726 0.0105316
\(515\) 808.743 0.0691990
\(516\) 7601.06 0.648485
\(517\) −12828.1 −1.09126
\(518\) 40.5217 0.00343710
\(519\) 17807.7 1.50611
\(520\) −294.982 −0.0248766
\(521\) 2456.06 0.206529 0.103265 0.994654i \(-0.467071\pi\)
0.103265 + 0.994654i \(0.467071\pi\)
\(522\) 68.3969 0.00573497
\(523\) −13939.6 −1.16546 −0.582729 0.812666i \(-0.698015\pi\)
−0.582729 + 0.812666i \(0.698015\pi\)
\(524\) 2551.63 0.212726
\(525\) −1064.33 −0.0884787
\(526\) −53.4610 −0.00443158
\(527\) 3254.60 0.269018
\(528\) 36963.2 3.04662
\(529\) −9529.35 −0.783213
\(530\) 169.621 0.0139016
\(531\) −26039.3 −2.12808
\(532\) 2493.41 0.203201
\(533\) 14627.1 1.18869
\(534\) 37.6629 0.00305212
\(535\) −2087.14 −0.168664
\(536\) −18.4850 −0.00148961
\(537\) 32413.2 2.60472
\(538\) 68.6845 0.00550409
\(539\) −3392.66 −0.271117
\(540\) −12462.1 −0.993114
\(541\) 7127.43 0.566418 0.283209 0.959058i \(-0.408601\pi\)
0.283209 + 0.959058i \(0.408601\pi\)
\(542\) −158.292 −0.0125447
\(543\) 6305.65 0.498345
\(544\) −66.7351 −0.00525964
\(545\) −20352.6 −1.59965
\(546\) 89.9682 0.00705180
\(547\) 8358.71 0.653369 0.326684 0.945134i \(-0.394069\pi\)
0.326684 + 0.945134i \(0.394069\pi\)
\(548\) −2988.19 −0.232937
\(549\) 14466.3 1.12460
\(550\) 25.8015 0.00200033
\(551\) 3496.18 0.270312
\(552\) 140.173 0.0108083
\(553\) 8702.99 0.669238
\(554\) −98.1456 −0.00752673
\(555\) −28266.9 −2.16191
\(556\) 9409.40 0.717711
\(557\) −21226.6 −1.61472 −0.807362 0.590057i \(-0.799105\pi\)
−0.807362 + 0.590057i \(0.799105\pi\)
\(558\) −166.771 −0.0126523
\(559\) 8580.99 0.649262
\(560\) −5360.67 −0.404517
\(561\) 9819.88 0.739030
\(562\) −96.3863 −0.00723454
\(563\) −2736.05 −0.204815 −0.102407 0.994743i \(-0.532655\pi\)
−0.102407 + 0.994743i \(0.532655\pi\)
\(564\) 12365.1 0.923167
\(565\) 18965.6 1.41219
\(566\) −36.0293 −0.00267566
\(567\) −449.973 −0.0333282
\(568\) 52.6719 0.00389096
\(569\) −2731.50 −0.201249 −0.100624 0.994924i \(-0.532084\pi\)
−0.100624 + 0.994924i \(0.532084\pi\)
\(570\) 90.9044 0.00667994
\(571\) −679.490 −0.0497999 −0.0249000 0.999690i \(-0.507927\pi\)
−0.0249000 + 0.999690i \(0.507927\pi\)
\(572\) 41730.7 3.05043
\(573\) 7637.84 0.556851
\(574\) −27.7874 −0.00202060
\(575\) −935.999 −0.0678850
\(576\) −21805.8 −1.57738
\(577\) 6896.56 0.497586 0.248793 0.968557i \(-0.419966\pi\)
0.248793 + 0.968557i \(0.419966\pi\)
\(578\) −5.90925 −0.000425246 0
\(579\) −23033.4 −1.65326
\(580\) −7516.95 −0.538146
\(581\) −3115.77 −0.222485
\(582\) −25.3367 −0.00180454
\(583\) −47993.2 −3.40939
\(584\) 73.4411 0.00520380
\(585\) −38414.1 −2.71492
\(586\) −116.797 −0.00823351
\(587\) −6876.39 −0.483507 −0.241754 0.970338i \(-0.577723\pi\)
−0.241754 + 0.970338i \(0.577723\pi\)
\(588\) 3270.22 0.229356
\(589\) −8524.64 −0.596353
\(590\) −149.567 −0.0104366
\(591\) −1756.03 −0.122222
\(592\) −18116.2 −1.25772
\(593\) −13903.3 −0.962802 −0.481401 0.876500i \(-0.659872\pi\)
−0.481401 + 0.876500i \(0.659872\pi\)
\(594\) −184.286 −0.0127295
\(595\) −1424.15 −0.0981253
\(596\) 9392.09 0.645495
\(597\) 13598.6 0.932248
\(598\) 79.1201 0.00541047
\(599\) 57.5719 0.00392709 0.00196354 0.999998i \(-0.499375\pi\)
0.00196354 + 0.999998i \(0.499375\pi\)
\(600\) −49.7419 −0.00338451
\(601\) −13428.9 −0.911439 −0.455719 0.890123i \(-0.650618\pi\)
−0.455719 + 0.890123i \(0.650618\pi\)
\(602\) −16.3014 −0.00110365
\(603\) −2407.20 −0.162569
\(604\) −14173.7 −0.954836
\(605\) −41442.8 −2.78494
\(606\) 303.237 0.0203270
\(607\) −13233.3 −0.884879 −0.442440 0.896798i \(-0.645887\pi\)
−0.442440 + 0.896798i \(0.645887\pi\)
\(608\) 174.797 0.0116595
\(609\) 4585.39 0.305106
\(610\) 83.0928 0.00551530
\(611\) 13959.3 0.924273
\(612\) −5793.67 −0.382672
\(613\) 5047.07 0.332544 0.166272 0.986080i \(-0.446827\pi\)
0.166272 + 0.986080i \(0.446827\pi\)
\(614\) 159.305 0.0104707
\(615\) 19383.7 1.27094
\(616\) −158.557 −0.0103708
\(617\) −8218.89 −0.536272 −0.268136 0.963381i \(-0.586408\pi\)
−0.268136 + 0.963381i \(0.586408\pi\)
\(618\) −11.5279 −0.000750354 0
\(619\) −2840.18 −0.184421 −0.0922104 0.995740i \(-0.529393\pi\)
−0.0922104 + 0.995740i \(0.529393\pi\)
\(620\) 18328.4 1.18724
\(621\) 6685.32 0.432001
\(622\) −91.8528 −0.00592116
\(623\) 1545.48 0.0993875
\(624\) −40222.5 −2.58043
\(625\) −17571.0 −1.12454
\(626\) −135.571 −0.00865576
\(627\) −25720.9 −1.63827
\(628\) −16363.0 −1.03974
\(629\) −4812.87 −0.305090
\(630\) 72.9758 0.00461496
\(631\) −12817.6 −0.808652 −0.404326 0.914615i \(-0.632494\pi\)
−0.404326 + 0.914615i \(0.632494\pi\)
\(632\) 406.737 0.0255999
\(633\) −13079.8 −0.821288
\(634\) −144.337 −0.00904158
\(635\) 31360.3 1.95983
\(636\) 46261.1 2.88423
\(637\) 3691.81 0.229631
\(638\) −111.159 −0.00689783
\(639\) 6859.20 0.424641
\(640\) −501.091 −0.0309490
\(641\) 31419.6 1.93604 0.968019 0.250876i \(-0.0807185\pi\)
0.968019 + 0.250876i \(0.0807185\pi\)
\(642\) 29.7502 0.00182889
\(643\) 9523.47 0.584089 0.292044 0.956405i \(-0.405665\pi\)
0.292044 + 0.956405i \(0.405665\pi\)
\(644\) 2875.90 0.175973
\(645\) 11371.5 0.694187
\(646\) 15.4779 0.000942676 0
\(647\) −4184.16 −0.254245 −0.127122 0.991887i \(-0.540574\pi\)
−0.127122 + 0.991887i \(0.540574\pi\)
\(648\) −21.0296 −0.00127488
\(649\) 42319.1 2.55959
\(650\) −28.0766 −0.00169424
\(651\) −11180.4 −0.673113
\(652\) 26943.0 1.61836
\(653\) 17737.5 1.06297 0.531486 0.847067i \(-0.321634\pi\)
0.531486 + 0.847067i \(0.321634\pi\)
\(654\) 290.107 0.0173457
\(655\) 3817.34 0.227719
\(656\) 12423.0 0.739386
\(657\) 9563.87 0.567918
\(658\) −26.5186 −0.00157113
\(659\) −13168.9 −0.778434 −0.389217 0.921146i \(-0.627254\pi\)
−0.389217 + 0.921146i \(0.627254\pi\)
\(660\) 55301.1 3.26151
\(661\) 27406.7 1.61270 0.806352 0.591435i \(-0.201438\pi\)
0.806352 + 0.591435i \(0.201438\pi\)
\(662\) −139.786 −0.00820687
\(663\) −10685.8 −0.625944
\(664\) −145.616 −0.00851055
\(665\) 3730.23 0.217522
\(666\) 246.619 0.0143488
\(667\) 4032.50 0.234091
\(668\) −26452.3 −1.53214
\(669\) −28218.5 −1.63078
\(670\) −13.8267 −0.000797273 0
\(671\) −23510.6 −1.35263
\(672\) 229.254 0.0131602
\(673\) −28992.2 −1.66057 −0.830287 0.557337i \(-0.811823\pi\)
−0.830287 + 0.557337i \(0.811823\pi\)
\(674\) 105.050 0.00600352
\(675\) −2372.36 −0.135277
\(676\) −27835.2 −1.58371
\(677\) −12159.5 −0.690292 −0.345146 0.938549i \(-0.612171\pi\)
−0.345146 + 0.938549i \(0.612171\pi\)
\(678\) −270.336 −0.0153130
\(679\) −1039.68 −0.0587620
\(680\) −66.5581 −0.00375351
\(681\) −20607.7 −1.15960
\(682\) 271.036 0.0152177
\(683\) −8523.47 −0.477513 −0.238757 0.971079i \(-0.576740\pi\)
−0.238757 + 0.971079i \(0.576740\pi\)
\(684\) 15175.1 0.848298
\(685\) −4470.44 −0.249353
\(686\) −7.01340 −0.000390339 0
\(687\) −43250.3 −2.40189
\(688\) 7287.96 0.403853
\(689\) 52225.1 2.88769
\(690\) 104.849 0.00578485
\(691\) 16880.0 0.929299 0.464650 0.885495i \(-0.346180\pi\)
0.464650 + 0.885495i \(0.346180\pi\)
\(692\) 17075.1 0.938000
\(693\) −20648.1 −1.13183
\(694\) −0.345777 −1.89128e−5 0
\(695\) 14076.8 0.768293
\(696\) 214.299 0.0116710
\(697\) 3300.38 0.179356
\(698\) −11.5532 −0.000626498 0
\(699\) 8658.98 0.468545
\(700\) −1020.54 −0.0551042
\(701\) −17669.7 −0.952031 −0.476015 0.879437i \(-0.657919\pi\)
−0.476015 + 0.879437i \(0.657919\pi\)
\(702\) 200.535 0.0107817
\(703\) 12606.2 0.676317
\(704\) 35438.7 1.89723
\(705\) 18498.7 0.988229
\(706\) −39.0173 −0.00207993
\(707\) 12443.2 0.661917
\(708\) −40791.8 −2.16532
\(709\) −2054.13 −0.108807 −0.0544037 0.998519i \(-0.517326\pi\)
−0.0544037 + 0.998519i \(0.517326\pi\)
\(710\) 39.3985 0.00208253
\(711\) 52967.3 2.79385
\(712\) 72.2285 0.00380180
\(713\) −9832.34 −0.516443
\(714\) 20.2999 0.00106401
\(715\) 62430.6 3.26541
\(716\) 31079.7 1.62221
\(717\) −38413.5 −2.00080
\(718\) 53.5482 0.00278329
\(719\) −409.281 −0.0212289 −0.0106145 0.999944i \(-0.503379\pi\)
−0.0106145 + 0.999944i \(0.503379\pi\)
\(720\) −32625.6 −1.68873
\(721\) −473.042 −0.0244341
\(722\) 99.7068 0.00513948
\(723\) 43898.6 2.25810
\(724\) 6046.23 0.310368
\(725\) −1430.97 −0.0733035
\(726\) 590.727 0.0301983
\(727\) 10961.5 0.559200 0.279600 0.960117i \(-0.409798\pi\)
0.279600 + 0.960117i \(0.409798\pi\)
\(728\) 172.538 0.00878390
\(729\) −32060.4 −1.62883
\(730\) 54.9339 0.00278520
\(731\) 1936.17 0.0979640
\(732\) 22662.1 1.14428
\(733\) 8325.43 0.419518 0.209759 0.977753i \(-0.432732\pi\)
0.209759 + 0.977753i \(0.432732\pi\)
\(734\) −32.9547 −0.00165719
\(735\) 4892.36 0.245520
\(736\) 201.611 0.0100971
\(737\) 3912.19 0.195532
\(738\) −169.117 −0.00843533
\(739\) 181.394 0.00902934 0.00451467 0.999990i \(-0.498563\pi\)
0.00451467 + 0.999990i \(0.498563\pi\)
\(740\) −27103.9 −1.34643
\(741\) 27988.8 1.38758
\(742\) −99.2128 −0.00490865
\(743\) 12938.2 0.638839 0.319420 0.947613i \(-0.396512\pi\)
0.319420 + 0.947613i \(0.396512\pi\)
\(744\) −522.521 −0.0257481
\(745\) 14050.9 0.690987
\(746\) 242.200 0.0118868
\(747\) −18962.9 −0.928802
\(748\) 9415.87 0.460265
\(749\) 1220.79 0.0595550
\(750\) 217.985 0.0106129
\(751\) −21345.4 −1.03715 −0.518577 0.855031i \(-0.673538\pi\)
−0.518577 + 0.855031i \(0.673538\pi\)
\(752\) 11855.8 0.574915
\(753\) −16269.5 −0.787376
\(754\) 120.960 0.00584233
\(755\) −21204.4 −1.02213
\(756\) 7289.18 0.350668
\(757\) −16229.7 −0.779231 −0.389616 0.920978i \(-0.627392\pi\)
−0.389616 + 0.920978i \(0.627392\pi\)
\(758\) −64.5739 −0.00309423
\(759\) −29666.5 −1.41874
\(760\) 174.333 0.00832070
\(761\) 4693.56 0.223576 0.111788 0.993732i \(-0.464342\pi\)
0.111788 + 0.993732i \(0.464342\pi\)
\(762\) −447.011 −0.0212513
\(763\) 11904.4 0.564836
\(764\) 7323.60 0.346804
\(765\) −8667.53 −0.409641
\(766\) 137.372 0.00647968
\(767\) −46050.7 −2.16792
\(768\) −34154.4 −1.60474
\(769\) 34006.6 1.59468 0.797340 0.603531i \(-0.206240\pi\)
0.797340 + 0.603531i \(0.206240\pi\)
\(770\) −118.600 −0.00555073
\(771\) 50074.5 2.33903
\(772\) −22085.8 −1.02964
\(773\) −22113.6 −1.02894 −0.514470 0.857509i \(-0.672011\pi\)
−0.514470 + 0.857509i \(0.672011\pi\)
\(774\) −99.2123 −0.00460738
\(775\) 3489.11 0.161719
\(776\) −48.5899 −0.00224778
\(777\) 16533.5 0.763369
\(778\) −24.9806 −0.00115115
\(779\) −8644.57 −0.397592
\(780\) −60177.4 −2.76243
\(781\) −11147.6 −0.510745
\(782\) 17.8522 0.000816360 0
\(783\) 10220.6 0.466483
\(784\) 3135.51 0.142835
\(785\) −24479.6 −1.11301
\(786\) −54.4125 −0.00246925
\(787\) 26230.0 1.18806 0.594028 0.804445i \(-0.297537\pi\)
0.594028 + 0.804445i \(0.297537\pi\)
\(788\) −1683.78 −0.0761195
\(789\) −21813.0 −0.984238
\(790\) 304.238 0.0137017
\(791\) −11093.1 −0.498643
\(792\) −964.994 −0.0432949
\(793\) 25583.7 1.14565
\(794\) 110.036 0.00491816
\(795\) 69208.3 3.08750
\(796\) 13039.1 0.580601
\(797\) −29226.6 −1.29894 −0.649472 0.760386i \(-0.725010\pi\)
−0.649472 + 0.760386i \(0.725010\pi\)
\(798\) −53.1709 −0.00235868
\(799\) 3149.69 0.139459
\(800\) −71.5438 −0.00316182
\(801\) 9405.96 0.414911
\(802\) −253.497 −0.0111612
\(803\) −15543.2 −0.683074
\(804\) −3771.00 −0.165414
\(805\) 4302.45 0.188375
\(806\) −294.935 −0.0128891
\(807\) 28024.5 1.22244
\(808\) 581.537 0.0253198
\(809\) −34364.6 −1.49344 −0.746722 0.665136i \(-0.768374\pi\)
−0.746722 + 0.665136i \(0.768374\pi\)
\(810\) −15.7301 −0.000682346 0
\(811\) 10275.8 0.444923 0.222462 0.974941i \(-0.428591\pi\)
0.222462 + 0.974941i \(0.428591\pi\)
\(812\) 4396.74 0.190019
\(813\) −64586.0 −2.78614
\(814\) −400.805 −0.0172583
\(815\) 40307.7 1.73242
\(816\) −9075.57 −0.389349
\(817\) −5071.33 −0.217165
\(818\) 115.830 0.00495100
\(819\) 22468.8 0.958635
\(820\) 18586.3 0.791537
\(821\) 7440.09 0.316274 0.158137 0.987417i \(-0.449451\pi\)
0.158137 + 0.987417i \(0.449451\pi\)
\(822\) 63.7219 0.00270384
\(823\) 22397.6 0.948640 0.474320 0.880352i \(-0.342694\pi\)
0.474320 + 0.880352i \(0.342694\pi\)
\(824\) −22.1077 −0.000934660 0
\(825\) 10527.5 0.444266
\(826\) 87.4832 0.00368515
\(827\) 12458.0 0.523831 0.261915 0.965091i \(-0.415646\pi\)
0.261915 + 0.965091i \(0.415646\pi\)
\(828\) 17503.0 0.734629
\(829\) 39954.6 1.67392 0.836960 0.547264i \(-0.184331\pi\)
0.836960 + 0.547264i \(0.184331\pi\)
\(830\) −108.921 −0.00455505
\(831\) −40045.1 −1.67166
\(832\) −38563.6 −1.60691
\(833\) 833.000 0.0346479
\(834\) −200.651 −0.00833092
\(835\) −39573.7 −1.64012
\(836\) −24662.7 −1.02031
\(837\) −24920.8 −1.02914
\(838\) −286.833 −0.0118240
\(839\) 24065.9 0.990283 0.495142 0.868812i \(-0.335116\pi\)
0.495142 + 0.868812i \(0.335116\pi\)
\(840\) 228.646 0.00939171
\(841\) −18224.0 −0.747224
\(842\) −288.242 −0.0117975
\(843\) −39327.3 −1.60677
\(844\) −12541.7 −0.511495
\(845\) −41642.5 −1.69532
\(846\) −161.395 −0.00655895
\(847\) 24240.3 0.983360
\(848\) 44355.5 1.79620
\(849\) −14700.6 −0.594255
\(850\) −6.33505 −0.000255636 0
\(851\) 14540.0 0.585692
\(852\) 10745.2 0.432073
\(853\) 12546.3 0.503607 0.251804 0.967778i \(-0.418976\pi\)
0.251804 + 0.967778i \(0.418976\pi\)
\(854\) −48.6018 −0.00194745
\(855\) 22702.6 0.908083
\(856\) 57.0540 0.00227811
\(857\) −28426.3 −1.13305 −0.566525 0.824045i \(-0.691712\pi\)
−0.566525 + 0.824045i \(0.691712\pi\)
\(858\) −889.888 −0.0354082
\(859\) −14817.1 −0.588538 −0.294269 0.955723i \(-0.595076\pi\)
−0.294269 + 0.955723i \(0.595076\pi\)
\(860\) 10903.6 0.432337
\(861\) −11337.7 −0.448768
\(862\) −86.8716 −0.00343255
\(863\) 24385.9 0.961883 0.480942 0.876753i \(-0.340295\pi\)
0.480942 + 0.876753i \(0.340295\pi\)
\(864\) 510.997 0.0201209
\(865\) 25544.9 1.00411
\(866\) −19.1632 −0.000751952 0
\(867\) −2411.08 −0.0944457
\(868\) −10720.5 −0.419212
\(869\) −86082.5 −3.36035
\(870\) 160.296 0.00624659
\(871\) −4257.15 −0.165612
\(872\) 556.357 0.0216062
\(873\) −6327.62 −0.245312
\(874\) −46.7597 −0.00180969
\(875\) 8944.93 0.345593
\(876\) 14982.2 0.577858
\(877\) 21344.7 0.821847 0.410924 0.911670i \(-0.365206\pi\)
0.410924 + 0.911670i \(0.365206\pi\)
\(878\) 93.4389 0.00359158
\(879\) −47655.2 −1.82864
\(880\) 53023.2 2.03115
\(881\) 10102.1 0.386322 0.193161 0.981167i \(-0.438126\pi\)
0.193161 + 0.981167i \(0.438126\pi\)
\(882\) −42.6842 −0.00162954
\(883\) −44942.3 −1.71283 −0.856415 0.516288i \(-0.827314\pi\)
−0.856415 + 0.516288i \(0.827314\pi\)
\(884\) −10246.1 −0.389836
\(885\) −61026.0 −2.31793
\(886\) 102.746 0.00389597
\(887\) −18492.5 −0.700018 −0.350009 0.936746i \(-0.613821\pi\)
−0.350009 + 0.936746i \(0.613821\pi\)
\(888\) 772.700 0.0292006
\(889\) −18342.9 −0.692016
\(890\) 54.0268 0.00203481
\(891\) 4450.75 0.167346
\(892\) −27057.5 −1.01564
\(893\) −8249.87 −0.309150
\(894\) −200.282 −0.00749266
\(895\) 46496.3 1.73654
\(896\) 293.093 0.0109281
\(897\) 32282.4 1.20165
\(898\) 93.8766 0.00348853
\(899\) −15031.9 −0.557665
\(900\) −6211.14 −0.230042
\(901\) 11783.8 0.435710
\(902\) 274.849 0.0101457
\(903\) −6651.28 −0.245117
\(904\) −518.441 −0.0190742
\(905\) 9045.37 0.332241
\(906\) 302.249 0.0110834
\(907\) 19894.2 0.728307 0.364154 0.931339i \(-0.381358\pi\)
0.364154 + 0.931339i \(0.381358\pi\)
\(908\) −19759.8 −0.722195
\(909\) 75730.7 2.76329
\(910\) 129.058 0.00470136
\(911\) −10997.6 −0.399962 −0.199981 0.979800i \(-0.564088\pi\)
−0.199981 + 0.979800i \(0.564088\pi\)
\(912\) 23771.3 0.863100
\(913\) 30818.5 1.11713
\(914\) −62.5889 −0.00226505
\(915\) 33903.3 1.22493
\(916\) −41470.9 −1.49589
\(917\) −2232.80 −0.0804072
\(918\) 45.2477 0.00162679
\(919\) −11458.0 −0.411277 −0.205639 0.978628i \(-0.565927\pi\)
−0.205639 + 0.978628i \(0.565927\pi\)
\(920\) 201.076 0.00720575
\(921\) 64999.3 2.32552
\(922\) −29.4051 −0.00105033
\(923\) 12130.5 0.432591
\(924\) −32346.2 −1.15163
\(925\) −5159.67 −0.183404
\(926\) −105.360 −0.00373903
\(927\) −2878.98 −0.102004
\(928\) 308.227 0.0109031
\(929\) −966.228 −0.0341237 −0.0170619 0.999854i \(-0.505431\pi\)
−0.0170619 + 0.999854i \(0.505431\pi\)
\(930\) −390.845 −0.0137810
\(931\) −2181.85 −0.0768068
\(932\) 8302.73 0.291808
\(933\) −37477.6 −1.31507
\(934\) −364.594 −0.0127729
\(935\) 14086.5 0.492703
\(936\) 1050.08 0.0366699
\(937\) −2117.39 −0.0738231 −0.0369116 0.999319i \(-0.511752\pi\)
−0.0369116 + 0.999319i \(0.511752\pi\)
\(938\) 8.08738 0.000281516 0
\(939\) −55315.3 −1.92241
\(940\) 17737.6 0.615465
\(941\) −3067.14 −0.106255 −0.0531274 0.998588i \(-0.516919\pi\)
−0.0531274 + 0.998588i \(0.516919\pi\)
\(942\) 348.933 0.0120689
\(943\) −9970.66 −0.344315
\(944\) −39111.5 −1.34849
\(945\) 10904.9 0.375382
\(946\) 161.240 0.00554161
\(947\) 20989.5 0.720240 0.360120 0.932906i \(-0.382736\pi\)
0.360120 + 0.932906i \(0.382736\pi\)
\(948\) 82975.7 2.84275
\(949\) 16913.8 0.578550
\(950\) 16.5932 0.000566688 0
\(951\) −58892.1 −2.00810
\(952\) 38.9305 0.00132536
\(953\) 40255.6 1.36832 0.684158 0.729334i \(-0.260170\pi\)
0.684158 + 0.729334i \(0.260170\pi\)
\(954\) −603.819 −0.0204920
\(955\) 10956.4 0.371246
\(956\) −36833.0 −1.24609
\(957\) −45354.7 −1.53199
\(958\) 120.684 0.00407007
\(959\) 2614.81 0.0880464
\(960\) −51104.2 −1.71810
\(961\) 6860.87 0.230300
\(962\) 436.147 0.0146174
\(963\) 7429.86 0.248623
\(964\) 42092.6 1.40634
\(965\) −33041.1 −1.10221
\(966\) −61.3273 −0.00204262
\(967\) −27866.3 −0.926702 −0.463351 0.886175i \(-0.653353\pi\)
−0.463351 + 0.886175i \(0.653353\pi\)
\(968\) 1132.88 0.0376157
\(969\) 6315.25 0.209365
\(970\) −36.3452 −0.00120307
\(971\) 30301.7 1.00147 0.500735 0.865601i \(-0.333063\pi\)
0.500735 + 0.865601i \(0.333063\pi\)
\(972\) −32405.5 −1.06935
\(973\) −8233.66 −0.271284
\(974\) 3.99115 0.000131299 0
\(975\) −11455.7 −0.376285
\(976\) 21728.6 0.712618
\(977\) −5422.77 −0.177574 −0.0887869 0.996051i \(-0.528299\pi\)
−0.0887869 + 0.996051i \(0.528299\pi\)
\(978\) −574.548 −0.0187853
\(979\) −15286.6 −0.499041
\(980\) 4691.08 0.152909
\(981\) 72451.7 2.35801
\(982\) −24.0463 −0.000781414 0
\(983\) 51694.2 1.67730 0.838652 0.544668i \(-0.183344\pi\)
0.838652 + 0.544668i \(0.183344\pi\)
\(984\) −529.872 −0.0171664
\(985\) −2519.00 −0.0814842
\(986\) 27.2928 0.000881522 0
\(987\) −10820.1 −0.348943
\(988\) 26837.3 0.864179
\(989\) −5849.28 −0.188065
\(990\) −721.814 −0.0231725
\(991\) −16723.3 −0.536057 −0.268028 0.963411i \(-0.586372\pi\)
−0.268028 + 0.963411i \(0.586372\pi\)
\(992\) −751.542 −0.0240539
\(993\) −57035.3 −1.82272
\(994\) −23.0446 −0.000735341 0
\(995\) 19507.0 0.621520
\(996\) −29706.2 −0.945058
\(997\) −9223.60 −0.292993 −0.146497 0.989211i \(-0.546800\pi\)
−0.146497 + 0.989211i \(0.546800\pi\)
\(998\) 191.781 0.00608290
\(999\) 36852.6 1.16713
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.4.a.e.1.5 9
3.2 odd 2 1071.4.a.r.1.5 9
4.3 odd 2 1904.4.a.s.1.9 9
7.6 odd 2 833.4.a.g.1.5 9
17.16 even 2 2023.4.a.h.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.a.e.1.5 9 1.1 even 1 trivial
833.4.a.g.1.5 9 7.6 odd 2
1071.4.a.r.1.5 9 3.2 odd 2
1904.4.a.s.1.9 9 4.3 odd 2
2023.4.a.h.1.5 9 17.16 even 2