Defining parameters
Level: | \( N \) | \(=\) | \( 119 = 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 119.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(119))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 38 | 24 | 14 |
Cusp forms | 34 | 24 | 10 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(13\) | \(8\) | \(5\) | \(12\) | \(8\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(-\) | \(-\) | \(6\) | \(3\) | \(3\) | \(5\) | \(3\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(+\) | \(-\) | \(8\) | \(4\) | \(4\) | \(7\) | \(4\) | \(3\) | \(1\) | \(0\) | \(1\) | |||
\(-\) | \(-\) | \(+\) | \(11\) | \(9\) | \(2\) | \(10\) | \(9\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
Plus space | \(+\) | \(24\) | \(17\) | \(7\) | \(22\) | \(17\) | \(5\) | \(2\) | \(0\) | \(2\) | ||||
Minus space | \(-\) | \(14\) | \(7\) | \(7\) | \(12\) | \(7\) | \(5\) | \(2\) | \(0\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(119))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | 17 | |||||||
119.4.a.a | $1$ | $7.021$ | \(\Q\) | None | \(-1\) | \(-6\) | \(-20\) | \(-7\) | $+$ | $+$ | \(q-q^{2}-6q^{3}-7q^{4}-20q^{5}+6q^{6}+\cdots\) | |
119.4.a.b | $3$ | $7.021$ | 3.3.2429.1 | None | \(-1\) | \(5\) | \(-19\) | \(-21\) | $+$ | $-$ | \(q-\beta _{1}q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\) | |
119.4.a.c | $4$ | $7.021$ | 4.4.68557.1 | None | \(-2\) | \(-7\) | \(-9\) | \(28\) | $-$ | $+$ | \(q+(-1-\beta _{2})q^{2}+(-2-\beta _{1}-\beta _{3})q^{3}+\cdots\) | |
119.4.a.d | $7$ | $7.021$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(4\) | \(5\) | \(35\) | \(-49\) | $+$ | $+$ | \(q+(1-\beta _{1})q^{2}+(1-\beta _{2}-\beta _{3})q^{3}+(7+\cdots)q^{4}+\cdots\) | |
119.4.a.e | $9$ | $7.021$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(2\) | \(11\) | \(-3\) | \(63\) | $-$ | $-$ | \(q+\beta _{1}q^{2}+(1+\beta _{5})q^{3}+(4+\beta _{2})q^{4}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(119))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(119)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)