Properties

Label 119.4.a
Level $119$
Weight $4$
Character orbit 119.a
Rep. character $\chi_{119}(1,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $5$
Sturm bound $48$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(48\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(119))\).

Total New Old
Modular forms 38 24 14
Cusp forms 34 24 10
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(13\)\(8\)\(5\)\(12\)\(8\)\(4\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(6\)\(3\)\(3\)\(5\)\(3\)\(2\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(8\)\(4\)\(4\)\(7\)\(4\)\(3\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(11\)\(9\)\(2\)\(10\)\(9\)\(1\)\(1\)\(0\)\(1\)
Plus space\(+\)\(24\)\(17\)\(7\)\(22\)\(17\)\(5\)\(2\)\(0\)\(2\)
Minus space\(-\)\(14\)\(7\)\(7\)\(12\)\(7\)\(5\)\(2\)\(0\)\(2\)

Trace form

\( 24 q + 2 q^{2} + 8 q^{3} + 86 q^{4} - 16 q^{5} + 60 q^{6} + 14 q^{7} - 30 q^{8} + 152 q^{9} + 144 q^{10} + 68 q^{11} + 20 q^{12} + 48 q^{13} - 14 q^{14} - 40 q^{15} + 310 q^{16} + 210 q^{18} - 24 q^{19}+ \cdots + 6212 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(119))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 17
119.4.a.a 119.a 1.a $1$ $7.021$ \(\Q\) None 119.4.a.a \(-1\) \(-6\) \(-20\) \(-7\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-6q^{3}-7q^{4}-20q^{5}+6q^{6}+\cdots\)
119.4.a.b 119.a 1.a $3$ $7.021$ 3.3.2429.1 None 119.4.a.b \(-1\) \(5\) \(-19\) \(-21\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{1}-\beta _{2})q^{3}+(2+\beta _{1}+\cdots)q^{4}+\cdots\)
119.4.a.c 119.a 1.a $4$ $7.021$ 4.4.68557.1 None 119.4.a.c \(-2\) \(-7\) \(-9\) \(28\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+(-2-\beta _{1}-\beta _{3})q^{3}+\cdots\)
119.4.a.d 119.a 1.a $7$ $7.021$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 119.4.a.d \(4\) \(5\) \(35\) \(-49\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(1-\beta _{2}-\beta _{3})q^{3}+(7+\cdots)q^{4}+\cdots\)
119.4.a.e 119.a 1.a $9$ $7.021$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 119.4.a.e \(2\) \(11\) \(-3\) \(63\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{5})q^{3}+(4+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(119))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(119)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)