Properties

Label 119.4.a.e.1.3
Level $119$
Weight $4$
Character 119.1
Self dual yes
Analytic conductor $7.021$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [119,4,Mod(1,119)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("119.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(119, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 119 = 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 119.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.02122729068\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 53x^{7} + 90x^{6} + 880x^{5} - 1087x^{4} - 4674x^{3} + 2515x^{2} + 1814x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.64062\) of defining polynomial
Character \(\chi\) \(=\) 119.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64062 q^{2} +8.72657 q^{3} -1.02714 q^{4} -19.5792 q^{5} -23.0435 q^{6} +7.00000 q^{7} +23.8372 q^{8} +49.1531 q^{9} +51.7011 q^{10} +41.9498 q^{11} -8.96337 q^{12} +72.2591 q^{13} -18.4843 q^{14} -170.859 q^{15} -54.7279 q^{16} +17.0000 q^{17} -129.794 q^{18} +30.1510 q^{19} +20.1105 q^{20} +61.0860 q^{21} -110.773 q^{22} +27.6705 q^{23} +208.017 q^{24} +258.344 q^{25} -190.809 q^{26} +193.320 q^{27} -7.18995 q^{28} -213.732 q^{29} +451.173 q^{30} +144.223 q^{31} -46.1822 q^{32} +366.078 q^{33} -44.8905 q^{34} -137.054 q^{35} -50.4869 q^{36} +7.12836 q^{37} -79.6172 q^{38} +630.574 q^{39} -466.713 q^{40} -328.205 q^{41} -161.305 q^{42} +256.119 q^{43} -43.0882 q^{44} -962.376 q^{45} -73.0673 q^{46} +285.932 q^{47} -477.587 q^{48} +49.0000 q^{49} -682.187 q^{50} +148.352 q^{51} -74.2199 q^{52} -21.6411 q^{53} -510.485 q^{54} -821.342 q^{55} +166.861 q^{56} +263.115 q^{57} +564.386 q^{58} +533.837 q^{59} +175.495 q^{60} -598.521 q^{61} -380.839 q^{62} +344.072 q^{63} +559.773 q^{64} -1414.77 q^{65} -966.673 q^{66} +32.5622 q^{67} -17.4613 q^{68} +241.469 q^{69} +361.908 q^{70} -891.162 q^{71} +1171.67 q^{72} +103.142 q^{73} -18.8233 q^{74} +2254.45 q^{75} -30.9692 q^{76} +293.649 q^{77} -1665.11 q^{78} +380.784 q^{79} +1071.53 q^{80} +359.892 q^{81} +866.664 q^{82} +931.499 q^{83} -62.7436 q^{84} -332.846 q^{85} -676.313 q^{86} -1865.15 q^{87} +999.967 q^{88} -1283.26 q^{89} +2541.27 q^{90} +505.814 q^{91} -28.4214 q^{92} +1258.58 q^{93} -755.037 q^{94} -590.331 q^{95} -403.013 q^{96} +980.656 q^{97} -129.390 q^{98} +2061.96 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 2 q^{2} + 11 q^{3} + 38 q^{4} - 3 q^{5} + 9 q^{6} + 63 q^{7} + 24 q^{8} + 74 q^{9} + 134 q^{10} - 8 q^{11} + 56 q^{12} + 164 q^{13} + 14 q^{14} + 34 q^{15} + 178 q^{16} + 153 q^{17} + 98 q^{18} + 244 q^{19}+ \cdots - 2396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.64062 −0.933600 −0.466800 0.884363i \(-0.654593\pi\)
−0.466800 + 0.884363i \(0.654593\pi\)
\(3\) 8.72657 1.67943 0.839715 0.543028i \(-0.182722\pi\)
0.839715 + 0.543028i \(0.182722\pi\)
\(4\) −1.02714 −0.128392
\(5\) −19.5792 −1.75121 −0.875607 0.483025i \(-0.839538\pi\)
−0.875607 + 0.483025i \(0.839538\pi\)
\(6\) −23.0435 −1.56791
\(7\) 7.00000 0.377964
\(8\) 23.8372 1.05347
\(9\) 49.1531 1.82048
\(10\) 51.7011 1.63493
\(11\) 41.9498 1.14985 0.574925 0.818206i \(-0.305031\pi\)
0.574925 + 0.818206i \(0.305031\pi\)
\(12\) −8.96337 −0.215625
\(13\) 72.2591 1.54162 0.770810 0.637065i \(-0.219852\pi\)
0.770810 + 0.637065i \(0.219852\pi\)
\(14\) −18.4843 −0.352867
\(15\) −170.859 −2.94104
\(16\) −54.7279 −0.855124
\(17\) 17.0000 0.242536
\(18\) −129.794 −1.69960
\(19\) 30.1510 0.364058 0.182029 0.983293i \(-0.441733\pi\)
0.182029 + 0.983293i \(0.441733\pi\)
\(20\) 20.1105 0.224842
\(21\) 61.0860 0.634765
\(22\) −110.773 −1.07350
\(23\) 27.6705 0.250857 0.125428 0.992103i \(-0.459970\pi\)
0.125428 + 0.992103i \(0.459970\pi\)
\(24\) 208.017 1.76922
\(25\) 258.344 2.06675
\(26\) −190.809 −1.43926
\(27\) 193.320 1.37795
\(28\) −7.18995 −0.0485276
\(29\) −213.732 −1.36859 −0.684295 0.729205i \(-0.739890\pi\)
−0.684295 + 0.729205i \(0.739890\pi\)
\(30\) 451.173 2.74575
\(31\) 144.223 0.835590 0.417795 0.908541i \(-0.362803\pi\)
0.417795 + 0.908541i \(0.362803\pi\)
\(32\) −46.1822 −0.255123
\(33\) 366.078 1.93109
\(34\) −44.8905 −0.226431
\(35\) −137.054 −0.661896
\(36\) −50.4869 −0.233736
\(37\) 7.12836 0.0316728 0.0158364 0.999875i \(-0.494959\pi\)
0.0158364 + 0.999875i \(0.494959\pi\)
\(38\) −79.6172 −0.339885
\(39\) 630.574 2.58904
\(40\) −466.713 −1.84484
\(41\) −328.205 −1.25017 −0.625086 0.780556i \(-0.714936\pi\)
−0.625086 + 0.780556i \(0.714936\pi\)
\(42\) −161.305 −0.592616
\(43\) 256.119 0.908321 0.454161 0.890920i \(-0.349939\pi\)
0.454161 + 0.890920i \(0.349939\pi\)
\(44\) −43.0882 −0.147631
\(45\) −962.376 −3.18806
\(46\) −73.0673 −0.234200
\(47\) 285.932 0.887393 0.443696 0.896177i \(-0.353667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(48\) −477.587 −1.43612
\(49\) 49.0000 0.142857
\(50\) −682.187 −1.92951
\(51\) 148.352 0.407322
\(52\) −74.2199 −0.197932
\(53\) −21.6411 −0.0560875 −0.0280438 0.999607i \(-0.508928\pi\)
−0.0280438 + 0.999607i \(0.508928\pi\)
\(54\) −510.485 −1.28645
\(55\) −821.342 −2.01363
\(56\) 166.861 0.398173
\(57\) 263.115 0.611411
\(58\) 564.386 1.27771
\(59\) 533.837 1.17796 0.588980 0.808147i \(-0.299530\pi\)
0.588980 + 0.808147i \(0.299530\pi\)
\(60\) 175.495 0.377606
\(61\) −598.521 −1.25627 −0.628137 0.778102i \(-0.716182\pi\)
−0.628137 + 0.778102i \(0.716182\pi\)
\(62\) −380.839 −0.780106
\(63\) 344.072 0.688078
\(64\) 559.773 1.09331
\(65\) −1414.77 −2.69971
\(66\) −966.673 −1.80287
\(67\) 32.5622 0.0593748 0.0296874 0.999559i \(-0.490549\pi\)
0.0296874 + 0.999559i \(0.490549\pi\)
\(68\) −17.4613 −0.0311396
\(69\) 241.469 0.421296
\(70\) 361.908 0.617946
\(71\) −891.162 −1.48960 −0.744799 0.667289i \(-0.767455\pi\)
−0.744799 + 0.667289i \(0.767455\pi\)
\(72\) 1171.67 1.91782
\(73\) 103.142 0.165368 0.0826840 0.996576i \(-0.473651\pi\)
0.0826840 + 0.996576i \(0.473651\pi\)
\(74\) −18.8233 −0.0295697
\(75\) 2254.45 3.47096
\(76\) −30.9692 −0.0467422
\(77\) 293.649 0.434602
\(78\) −1665.11 −2.41713
\(79\) 380.784 0.542298 0.271149 0.962537i \(-0.412596\pi\)
0.271149 + 0.962537i \(0.412596\pi\)
\(80\) 1071.53 1.49750
\(81\) 359.892 0.493678
\(82\) 866.664 1.16716
\(83\) 931.499 1.23187 0.615936 0.787796i \(-0.288778\pi\)
0.615936 + 0.787796i \(0.288778\pi\)
\(84\) −62.7436 −0.0814987
\(85\) −332.846 −0.424732
\(86\) −676.313 −0.848008
\(87\) −1865.15 −2.29845
\(88\) 999.967 1.21133
\(89\) −1283.26 −1.52837 −0.764184 0.644998i \(-0.776858\pi\)
−0.764184 + 0.644998i \(0.776858\pi\)
\(90\) 2541.27 2.97637
\(91\) 505.814 0.582678
\(92\) −28.4214 −0.0322080
\(93\) 1258.58 1.40331
\(94\) −755.037 −0.828469
\(95\) −590.331 −0.637544
\(96\) −403.013 −0.428462
\(97\) 980.656 1.02650 0.513250 0.858239i \(-0.328441\pi\)
0.513250 + 0.858239i \(0.328441\pi\)
\(98\) −129.390 −0.133371
\(99\) 2061.96 2.09328
\(100\) −265.354 −0.265354
\(101\) −1673.35 −1.64856 −0.824278 0.566185i \(-0.808419\pi\)
−0.824278 + 0.566185i \(0.808419\pi\)
\(102\) −391.740 −0.380275
\(103\) 408.737 0.391010 0.195505 0.980703i \(-0.437365\pi\)
0.195505 + 0.980703i \(0.437365\pi\)
\(104\) 1722.46 1.62405
\(105\) −1196.01 −1.11161
\(106\) 57.1460 0.0523633
\(107\) −220.099 −0.198857 −0.0994287 0.995045i \(-0.531702\pi\)
−0.0994287 + 0.995045i \(0.531702\pi\)
\(108\) −198.566 −0.176917
\(109\) −1239.63 −1.08931 −0.544655 0.838660i \(-0.683339\pi\)
−0.544655 + 0.838660i \(0.683339\pi\)
\(110\) 2168.85 1.87993
\(111\) 62.2061 0.0531923
\(112\) −383.095 −0.323206
\(113\) 1213.86 1.01054 0.505268 0.862963i \(-0.331394\pi\)
0.505268 + 0.862963i \(0.331394\pi\)
\(114\) −694.786 −0.570813
\(115\) −541.765 −0.439303
\(116\) 219.532 0.175716
\(117\) 3551.76 2.80650
\(118\) −1409.66 −1.09974
\(119\) 119.000 0.0916698
\(120\) −4072.80 −3.09829
\(121\) 428.787 0.322154
\(122\) 1580.47 1.17286
\(123\) −2864.11 −2.09957
\(124\) −148.137 −0.107283
\(125\) −2610.75 −1.86810
\(126\) −908.561 −0.642390
\(127\) −2307.15 −1.61202 −0.806010 0.591902i \(-0.798377\pi\)
−0.806010 + 0.591902i \(0.798377\pi\)
\(128\) −1108.69 −0.765587
\(129\) 2235.04 1.52546
\(130\) 3735.87 2.52045
\(131\) 34.6301 0.0230965 0.0115483 0.999933i \(-0.496324\pi\)
0.0115483 + 0.999933i \(0.496324\pi\)
\(132\) −376.012 −0.247937
\(133\) 211.057 0.137601
\(134\) −85.9844 −0.0554323
\(135\) −3785.05 −2.41308
\(136\) 405.233 0.255503
\(137\) −1937.12 −1.20803 −0.604013 0.796974i \(-0.706433\pi\)
−0.604013 + 0.796974i \(0.706433\pi\)
\(138\) −637.627 −0.393322
\(139\) 1681.10 1.02582 0.512910 0.858442i \(-0.328567\pi\)
0.512910 + 0.858442i \(0.328567\pi\)
\(140\) 140.773 0.0849822
\(141\) 2495.21 1.49031
\(142\) 2353.22 1.39069
\(143\) 3031.26 1.77263
\(144\) −2690.04 −1.55674
\(145\) 4184.70 2.39669
\(146\) −272.359 −0.154387
\(147\) 427.602 0.239919
\(148\) −7.32179 −0.00406654
\(149\) 1835.05 1.00895 0.504473 0.863427i \(-0.331687\pi\)
0.504473 + 0.863427i \(0.331687\pi\)
\(150\) −5953.15 −3.24048
\(151\) 3463.37 1.86652 0.933261 0.359199i \(-0.116950\pi\)
0.933261 + 0.359199i \(0.116950\pi\)
\(152\) 718.716 0.383523
\(153\) 835.602 0.441532
\(154\) −775.414 −0.405745
\(155\) −2823.77 −1.46330
\(156\) −647.685 −0.332412
\(157\) −798.838 −0.406078 −0.203039 0.979171i \(-0.565082\pi\)
−0.203039 + 0.979171i \(0.565082\pi\)
\(158\) −1005.51 −0.506289
\(159\) −188.853 −0.0941951
\(160\) 904.210 0.446775
\(161\) 193.694 0.0948149
\(162\) −950.336 −0.460898
\(163\) −408.551 −0.196320 −0.0981602 0.995171i \(-0.531296\pi\)
−0.0981602 + 0.995171i \(0.531296\pi\)
\(164\) 337.111 0.160512
\(165\) −7167.50 −3.38175
\(166\) −2459.73 −1.15007
\(167\) 3331.83 1.54386 0.771930 0.635708i \(-0.219292\pi\)
0.771930 + 0.635708i \(0.219292\pi\)
\(168\) 1456.12 0.668703
\(169\) 3024.38 1.37659
\(170\) 878.918 0.396529
\(171\) 1482.01 0.662763
\(172\) −263.069 −0.116621
\(173\) −2925.48 −1.28566 −0.642832 0.766007i \(-0.722241\pi\)
−0.642832 + 0.766007i \(0.722241\pi\)
\(174\) 4925.15 2.14583
\(175\) 1808.40 0.781157
\(176\) −2295.83 −0.983263
\(177\) 4658.57 1.97830
\(178\) 3388.59 1.42688
\(179\) −755.972 −0.315665 −0.157832 0.987466i \(-0.550451\pi\)
−0.157832 + 0.987466i \(0.550451\pi\)
\(180\) 988.491 0.409321
\(181\) −2746.60 −1.12792 −0.563960 0.825802i \(-0.690723\pi\)
−0.563960 + 0.825802i \(0.690723\pi\)
\(182\) −1335.66 −0.543988
\(183\) −5223.04 −2.10983
\(184\) 659.588 0.264269
\(185\) −139.567 −0.0554659
\(186\) −3323.42 −1.31013
\(187\) 713.147 0.278879
\(188\) −293.691 −0.113934
\(189\) 1353.24 0.520814
\(190\) 1558.84 0.595211
\(191\) −2634.45 −0.998023 −0.499012 0.866595i \(-0.666304\pi\)
−0.499012 + 0.866595i \(0.666304\pi\)
\(192\) 4884.90 1.83613
\(193\) −3066.96 −1.14386 −0.571929 0.820303i \(-0.693805\pi\)
−0.571929 + 0.820303i \(0.693805\pi\)
\(194\) −2589.54 −0.958341
\(195\) −12346.1 −4.53397
\(196\) −50.3296 −0.0183417
\(197\) 114.780 0.0415112 0.0207556 0.999785i \(-0.493393\pi\)
0.0207556 + 0.999785i \(0.493393\pi\)
\(198\) −5444.86 −1.95429
\(199\) −2987.11 −1.06407 −0.532037 0.846721i \(-0.678573\pi\)
−0.532037 + 0.846721i \(0.678573\pi\)
\(200\) 6158.19 2.17725
\(201\) 284.157 0.0997158
\(202\) 4418.67 1.53909
\(203\) −1496.13 −0.517278
\(204\) −152.377 −0.0522968
\(205\) 6425.98 2.18932
\(206\) −1079.32 −0.365047
\(207\) 1360.09 0.456680
\(208\) −3954.59 −1.31828
\(209\) 1264.83 0.418613
\(210\) 3158.21 1.03780
\(211\) −479.732 −0.156522 −0.0782609 0.996933i \(-0.524937\pi\)
−0.0782609 + 0.996933i \(0.524937\pi\)
\(212\) 22.2284 0.00720119
\(213\) −7776.79 −2.50168
\(214\) 581.197 0.185653
\(215\) −5014.60 −1.59066
\(216\) 4608.22 1.45162
\(217\) 1009.56 0.315823
\(218\) 3273.38 1.01698
\(219\) 900.076 0.277724
\(220\) 843.630 0.258534
\(221\) 1228.40 0.373898
\(222\) −164.263 −0.0496603
\(223\) −2067.78 −0.620937 −0.310469 0.950584i \(-0.600486\pi\)
−0.310469 + 0.950584i \(0.600486\pi\)
\(224\) −323.276 −0.0964275
\(225\) 12698.4 3.76248
\(226\) −3205.34 −0.943435
\(227\) 5488.28 1.60471 0.802357 0.596845i \(-0.203579\pi\)
0.802357 + 0.596845i \(0.203579\pi\)
\(228\) −270.255 −0.0785002
\(229\) 314.178 0.0906614 0.0453307 0.998972i \(-0.485566\pi\)
0.0453307 + 0.998972i \(0.485566\pi\)
\(230\) 1430.60 0.410133
\(231\) 2562.55 0.729884
\(232\) −5094.78 −1.44176
\(233\) −5880.46 −1.65340 −0.826699 0.562644i \(-0.809784\pi\)
−0.826699 + 0.562644i \(0.809784\pi\)
\(234\) −9378.83 −2.62014
\(235\) −5598.31 −1.55401
\(236\) −548.323 −0.151241
\(237\) 3322.94 0.910751
\(238\) −314.234 −0.0855829
\(239\) −4859.82 −1.31530 −0.657648 0.753326i \(-0.728448\pi\)
−0.657648 + 0.753326i \(0.728448\pi\)
\(240\) 9350.75 2.51495
\(241\) 4791.46 1.28069 0.640343 0.768089i \(-0.278792\pi\)
0.640343 + 0.768089i \(0.278792\pi\)
\(242\) −1132.26 −0.300763
\(243\) −2079.03 −0.548847
\(244\) 614.762 0.161296
\(245\) −959.379 −0.250173
\(246\) 7563.01 1.96016
\(247\) 2178.68 0.561240
\(248\) 3437.88 0.880265
\(249\) 8128.80 2.06884
\(250\) 6894.00 1.74406
\(251\) 1159.03 0.291464 0.145732 0.989324i \(-0.453446\pi\)
0.145732 + 0.989324i \(0.453446\pi\)
\(252\) −353.408 −0.0883437
\(253\) 1160.77 0.288447
\(254\) 6092.30 1.50498
\(255\) −2904.60 −0.713307
\(256\) −1550.56 −0.378555
\(257\) −4490.45 −1.08991 −0.544955 0.838466i \(-0.683453\pi\)
−0.544955 + 0.838466i \(0.683453\pi\)
\(258\) −5901.90 −1.42417
\(259\) 49.8985 0.0119712
\(260\) 1453.16 0.346621
\(261\) −10505.6 −2.49150
\(262\) −91.4448 −0.0215629
\(263\) 6133.75 1.43811 0.719055 0.694953i \(-0.244575\pi\)
0.719055 + 0.694953i \(0.244575\pi\)
\(264\) 8726.28 2.03434
\(265\) 423.715 0.0982213
\(266\) −557.321 −0.128464
\(267\) −11198.4 −2.56679
\(268\) −33.4458 −0.00762324
\(269\) 4927.18 1.11679 0.558393 0.829577i \(-0.311418\pi\)
0.558393 + 0.829577i \(0.311418\pi\)
\(270\) 9994.87 2.25285
\(271\) −205.364 −0.0460331 −0.0230166 0.999735i \(-0.507327\pi\)
−0.0230166 + 0.999735i \(0.507327\pi\)
\(272\) −930.374 −0.207398
\(273\) 4414.02 0.978567
\(274\) 5115.20 1.12781
\(275\) 10837.5 2.37645
\(276\) −248.021 −0.0540910
\(277\) −6869.88 −1.49015 −0.745074 0.666982i \(-0.767586\pi\)
−0.745074 + 0.666982i \(0.767586\pi\)
\(278\) −4439.14 −0.957705
\(279\) 7089.02 1.52118
\(280\) −3266.99 −0.697285
\(281\) 2396.97 0.508866 0.254433 0.967090i \(-0.418111\pi\)
0.254433 + 0.967090i \(0.418111\pi\)
\(282\) −6588.89 −1.39136
\(283\) −3548.07 −0.745268 −0.372634 0.927978i \(-0.621545\pi\)
−0.372634 + 0.927978i \(0.621545\pi\)
\(284\) 915.344 0.191252
\(285\) −5151.57 −1.07071
\(286\) −8004.39 −1.65493
\(287\) −2297.44 −0.472520
\(288\) −2270.00 −0.464448
\(289\) 289.000 0.0588235
\(290\) −11050.2 −2.23755
\(291\) 8557.77 1.72394
\(292\) −105.941 −0.0212319
\(293\) 2328.13 0.464200 0.232100 0.972692i \(-0.425440\pi\)
0.232100 + 0.972692i \(0.425440\pi\)
\(294\) −1129.13 −0.223988
\(295\) −10452.1 −2.06286
\(296\) 169.920 0.0333663
\(297\) 8109.76 1.58443
\(298\) −4845.66 −0.941952
\(299\) 1999.45 0.386726
\(300\) −2315.63 −0.445643
\(301\) 1792.83 0.343313
\(302\) −9145.43 −1.74258
\(303\) −14602.6 −2.76863
\(304\) −1650.10 −0.311315
\(305\) 11718.5 2.20001
\(306\) −2206.51 −0.412214
\(307\) 265.106 0.0492846 0.0246423 0.999696i \(-0.492155\pi\)
0.0246423 + 0.999696i \(0.492155\pi\)
\(308\) −301.617 −0.0557994
\(309\) 3566.87 0.656674
\(310\) 7456.50 1.36613
\(311\) 8763.04 1.59777 0.798885 0.601484i \(-0.205424\pi\)
0.798885 + 0.601484i \(0.205424\pi\)
\(312\) 15031.1 2.72747
\(313\) −3465.27 −0.625779 −0.312889 0.949790i \(-0.601297\pi\)
−0.312889 + 0.949790i \(0.601297\pi\)
\(314\) 2109.43 0.379114
\(315\) −6736.63 −1.20497
\(316\) −391.117 −0.0696267
\(317\) −2756.68 −0.488424 −0.244212 0.969722i \(-0.578529\pi\)
−0.244212 + 0.969722i \(0.578529\pi\)
\(318\) 498.689 0.0879405
\(319\) −8966.03 −1.57367
\(320\) −10959.9 −1.91461
\(321\) −1920.71 −0.333967
\(322\) −511.471 −0.0885191
\(323\) 512.567 0.0882972
\(324\) −369.657 −0.0633843
\(325\) 18667.7 3.18614
\(326\) 1078.83 0.183285
\(327\) −10817.7 −1.82942
\(328\) −7823.50 −1.31701
\(329\) 2001.52 0.335403
\(330\) 18926.6 3.15720
\(331\) −968.107 −0.160761 −0.0803807 0.996764i \(-0.525614\pi\)
−0.0803807 + 0.996764i \(0.525614\pi\)
\(332\) −956.776 −0.158162
\(333\) 350.381 0.0576599
\(334\) −8798.08 −1.44135
\(335\) −637.541 −0.103978
\(336\) −3343.11 −0.542802
\(337\) −1193.83 −0.192974 −0.0964871 0.995334i \(-0.530761\pi\)
−0.0964871 + 0.995334i \(0.530761\pi\)
\(338\) −7986.23 −1.28519
\(339\) 10592.8 1.69712
\(340\) 341.878 0.0545321
\(341\) 6050.14 0.960802
\(342\) −3913.43 −0.618755
\(343\) 343.000 0.0539949
\(344\) 6105.17 0.956886
\(345\) −4727.76 −0.737779
\(346\) 7725.07 1.20030
\(347\) −6030.71 −0.932984 −0.466492 0.884526i \(-0.654482\pi\)
−0.466492 + 0.884526i \(0.654482\pi\)
\(348\) 1915.76 0.295103
\(349\) −7489.05 −1.14865 −0.574326 0.818627i \(-0.694736\pi\)
−0.574326 + 0.818627i \(0.694736\pi\)
\(350\) −4775.31 −0.729288
\(351\) 13969.2 2.12427
\(352\) −1937.34 −0.293353
\(353\) 5367.84 0.809352 0.404676 0.914460i \(-0.367384\pi\)
0.404676 + 0.914460i \(0.367384\pi\)
\(354\) −12301.5 −1.84694
\(355\) 17448.2 2.60860
\(356\) 1318.08 0.196230
\(357\) 1038.46 0.153953
\(358\) 1996.23 0.294705
\(359\) 1533.95 0.225512 0.112756 0.993623i \(-0.464032\pi\)
0.112756 + 0.993623i \(0.464032\pi\)
\(360\) −22940.4 −3.35851
\(361\) −5949.92 −0.867461
\(362\) 7252.73 1.05302
\(363\) 3741.84 0.541035
\(364\) −519.539 −0.0748112
\(365\) −2019.43 −0.289594
\(366\) 13792.0 1.96973
\(367\) −916.137 −0.130305 −0.0651525 0.997875i \(-0.520753\pi\)
−0.0651525 + 0.997875i \(0.520753\pi\)
\(368\) −1514.35 −0.214513
\(369\) −16132.3 −2.27592
\(370\) 368.544 0.0517829
\(371\) −151.488 −0.0211991
\(372\) −1292.73 −0.180174
\(373\) −5872.02 −0.815125 −0.407563 0.913177i \(-0.633621\pi\)
−0.407563 + 0.913177i \(0.633621\pi\)
\(374\) −1883.15 −0.260362
\(375\) −22782.9 −3.13735
\(376\) 6815.82 0.934838
\(377\) −15444.1 −2.10985
\(378\) −3573.40 −0.486232
\(379\) −6661.89 −0.902899 −0.451449 0.892297i \(-0.649093\pi\)
−0.451449 + 0.892297i \(0.649093\pi\)
\(380\) 606.350 0.0818555
\(381\) −20133.5 −2.70727
\(382\) 6956.59 0.931754
\(383\) 7607.86 1.01500 0.507498 0.861653i \(-0.330570\pi\)
0.507498 + 0.861653i \(0.330570\pi\)
\(384\) −9675.05 −1.28575
\(385\) −5749.40 −0.761081
\(386\) 8098.67 1.06791
\(387\) 12589.0 1.65358
\(388\) −1007.27 −0.131794
\(389\) −5344.30 −0.696573 −0.348286 0.937388i \(-0.613236\pi\)
−0.348286 + 0.937388i \(0.613236\pi\)
\(390\) 32601.4 4.23291
\(391\) 470.399 0.0608417
\(392\) 1168.02 0.150495
\(393\) 302.202 0.0387890
\(394\) −303.089 −0.0387548
\(395\) −7455.43 −0.949680
\(396\) −2117.92 −0.268761
\(397\) 8153.05 1.03070 0.515352 0.856979i \(-0.327661\pi\)
0.515352 + 0.856979i \(0.327661\pi\)
\(398\) 7887.82 0.993419
\(399\) 1841.80 0.231091
\(400\) −14138.6 −1.76732
\(401\) −2060.49 −0.256599 −0.128299 0.991735i \(-0.540952\pi\)
−0.128299 + 0.991735i \(0.540952\pi\)
\(402\) −750.349 −0.0930946
\(403\) 10421.5 1.28816
\(404\) 1718.75 0.211661
\(405\) −7046.37 −0.864536
\(406\) 3950.70 0.482931
\(407\) 299.033 0.0364190
\(408\) 3536.29 0.429099
\(409\) −2965.19 −0.358482 −0.179241 0.983805i \(-0.557364\pi\)
−0.179241 + 0.983805i \(0.557364\pi\)
\(410\) −16968.6 −2.04394
\(411\) −16904.4 −2.02880
\(412\) −419.828 −0.0502026
\(413\) 3736.86 0.445227
\(414\) −3591.48 −0.426357
\(415\) −18238.0 −2.15727
\(416\) −3337.09 −0.393303
\(417\) 14670.2 1.72279
\(418\) −3339.93 −0.390816
\(419\) −2430.26 −0.283356 −0.141678 0.989913i \(-0.545250\pi\)
−0.141678 + 0.989913i \(0.545250\pi\)
\(420\) 1228.47 0.142722
\(421\) −2080.44 −0.240841 −0.120421 0.992723i \(-0.538424\pi\)
−0.120421 + 0.992723i \(0.538424\pi\)
\(422\) 1266.79 0.146129
\(423\) 14054.4 1.61548
\(424\) −515.865 −0.0590863
\(425\) 4391.84 0.501260
\(426\) 20535.5 2.33556
\(427\) −4189.65 −0.474827
\(428\) 226.071 0.0255317
\(429\) 26452.5 2.97701
\(430\) 13241.6 1.48504
\(431\) 3973.72 0.444101 0.222050 0.975035i \(-0.428725\pi\)
0.222050 + 0.975035i \(0.428725\pi\)
\(432\) −10580.0 −1.17831
\(433\) 1071.48 0.118919 0.0594596 0.998231i \(-0.481062\pi\)
0.0594596 + 0.998231i \(0.481062\pi\)
\(434\) −2665.87 −0.294852
\(435\) 36518.1 4.02508
\(436\) 1273.27 0.139859
\(437\) 834.293 0.0913265
\(438\) −2376.76 −0.259283
\(439\) 10684.3 1.16158 0.580789 0.814054i \(-0.302744\pi\)
0.580789 + 0.814054i \(0.302744\pi\)
\(440\) −19578.5 −2.12129
\(441\) 2408.50 0.260069
\(442\) −3243.75 −0.349071
\(443\) −3351.08 −0.359401 −0.179700 0.983721i \(-0.557513\pi\)
−0.179700 + 0.983721i \(0.557513\pi\)
\(444\) −63.8942 −0.00682946
\(445\) 25125.1 2.67650
\(446\) 5460.23 0.579707
\(447\) 16013.7 1.69445
\(448\) 3918.41 0.413231
\(449\) 13818.1 1.45237 0.726185 0.687499i \(-0.241291\pi\)
0.726185 + 0.687499i \(0.241291\pi\)
\(450\) −33531.6 −3.51265
\(451\) −13768.1 −1.43751
\(452\) −1246.80 −0.129745
\(453\) 30223.3 3.13469
\(454\) −14492.4 −1.49816
\(455\) −9903.41 −1.02039
\(456\) 6271.92 0.644100
\(457\) −4162.65 −0.426084 −0.213042 0.977043i \(-0.568337\pi\)
−0.213042 + 0.977043i \(0.568337\pi\)
\(458\) −829.624 −0.0846415
\(459\) 3286.45 0.334201
\(460\) 556.467 0.0564030
\(461\) 15252.6 1.54096 0.770480 0.637464i \(-0.220017\pi\)
0.770480 + 0.637464i \(0.220017\pi\)
\(462\) −6766.71 −0.681419
\(463\) −4408.08 −0.442464 −0.221232 0.975221i \(-0.571008\pi\)
−0.221232 + 0.975221i \(0.571008\pi\)
\(464\) 11697.1 1.17031
\(465\) −24641.9 −2.45750
\(466\) 15528.1 1.54361
\(467\) −4160.91 −0.412300 −0.206150 0.978520i \(-0.566093\pi\)
−0.206150 + 0.978520i \(0.566093\pi\)
\(468\) −3648.14 −0.360332
\(469\) 227.936 0.0224416
\(470\) 14783.0 1.45083
\(471\) −6971.11 −0.681979
\(472\) 12725.2 1.24094
\(473\) 10744.2 1.04443
\(474\) −8774.61 −0.850277
\(475\) 7789.31 0.752417
\(476\) −122.229 −0.0117697
\(477\) −1063.73 −0.102106
\(478\) 12832.9 1.22796
\(479\) 877.914 0.0837430 0.0418715 0.999123i \(-0.486668\pi\)
0.0418715 + 0.999123i \(0.486668\pi\)
\(480\) 7890.65 0.750328
\(481\) 515.089 0.0488275
\(482\) −12652.4 −1.19565
\(483\) 1690.28 0.159235
\(484\) −440.423 −0.0413620
\(485\) −19200.4 −1.79762
\(486\) 5489.93 0.512404
\(487\) −13389.2 −1.24583 −0.622917 0.782288i \(-0.714053\pi\)
−0.622917 + 0.782288i \(0.714053\pi\)
\(488\) −14267.1 −1.32344
\(489\) −3565.25 −0.329706
\(490\) 2533.35 0.233562
\(491\) 7277.08 0.668860 0.334430 0.942421i \(-0.391456\pi\)
0.334430 + 0.942421i \(0.391456\pi\)
\(492\) 2941.82 0.269568
\(493\) −3633.45 −0.331932
\(494\) −5753.07 −0.523974
\(495\) −40371.5 −3.66579
\(496\) −7893.04 −0.714532
\(497\) −6238.14 −0.563015
\(498\) −21465.0 −1.93147
\(499\) −5495.10 −0.492975 −0.246487 0.969146i \(-0.579276\pi\)
−0.246487 + 0.969146i \(0.579276\pi\)
\(500\) 2681.60 0.239849
\(501\) 29075.4 2.59280
\(502\) −3060.56 −0.272111
\(503\) −10238.0 −0.907530 −0.453765 0.891121i \(-0.649919\pi\)
−0.453765 + 0.891121i \(0.649919\pi\)
\(504\) 8201.71 0.724867
\(505\) 32762.7 2.88697
\(506\) −3065.16 −0.269294
\(507\) 26392.5 2.31189
\(508\) 2369.76 0.206970
\(509\) −12601.6 −1.09736 −0.548678 0.836034i \(-0.684869\pi\)
−0.548678 + 0.836034i \(0.684869\pi\)
\(510\) 7669.95 0.665943
\(511\) 721.994 0.0625032
\(512\) 12963.9 1.11901
\(513\) 5828.80 0.501653
\(514\) 11857.6 1.01754
\(515\) −8002.73 −0.684742
\(516\) −2295.69 −0.195857
\(517\) 11994.8 1.02037
\(518\) −131.763 −0.0111763
\(519\) −25529.4 −2.15918
\(520\) −33724.2 −2.84405
\(521\) 4259.75 0.358201 0.179101 0.983831i \(-0.442681\pi\)
0.179101 + 0.983831i \(0.442681\pi\)
\(522\) 27741.3 2.32606
\(523\) 1112.98 0.0930542 0.0465271 0.998917i \(-0.485185\pi\)
0.0465271 + 0.998917i \(0.485185\pi\)
\(524\) −35.5698 −0.00296541
\(525\) 15781.2 1.31190
\(526\) −16196.9 −1.34262
\(527\) 2451.80 0.202660
\(528\) −20034.7 −1.65132
\(529\) −11401.3 −0.937071
\(530\) −1118.87 −0.0916993
\(531\) 26239.7 2.14446
\(532\) −216.784 −0.0176669
\(533\) −23715.8 −1.92729
\(534\) 29570.8 2.39635
\(535\) 4309.35 0.348242
\(536\) 776.193 0.0625493
\(537\) −6597.05 −0.530137
\(538\) −13010.8 −1.04263
\(539\) 2055.54 0.164264
\(540\) 3887.76 0.309820
\(541\) −8653.47 −0.687692 −0.343846 0.939026i \(-0.611730\pi\)
−0.343846 + 0.939026i \(0.611730\pi\)
\(542\) 542.288 0.0429765
\(543\) −23968.4 −1.89426
\(544\) −785.098 −0.0618765
\(545\) 24270.9 1.90761
\(546\) −11655.7 −0.913589
\(547\) −9978.05 −0.779946 −0.389973 0.920826i \(-0.627516\pi\)
−0.389973 + 0.920826i \(0.627516\pi\)
\(548\) 1989.69 0.155101
\(549\) −29419.1 −2.28703
\(550\) −28617.6 −2.21865
\(551\) −6444.24 −0.498247
\(552\) 5755.94 0.443821
\(553\) 2665.49 0.204969
\(554\) 18140.7 1.39120
\(555\) −1217.94 −0.0931511
\(556\) −1726.72 −0.131707
\(557\) −14884.6 −1.13228 −0.566141 0.824308i \(-0.691564\pi\)
−0.566141 + 0.824308i \(0.691564\pi\)
\(558\) −18719.4 −1.42017
\(559\) 18506.9 1.40029
\(560\) 7500.69 0.566003
\(561\) 6223.33 0.468359
\(562\) −6329.49 −0.475077
\(563\) 23544.1 1.76246 0.881230 0.472688i \(-0.156716\pi\)
0.881230 + 0.472688i \(0.156716\pi\)
\(564\) −2562.91 −0.191344
\(565\) −23766.4 −1.76966
\(566\) 9369.10 0.695782
\(567\) 2519.24 0.186593
\(568\) −21242.8 −1.56924
\(569\) 15326.6 1.12922 0.564610 0.825358i \(-0.309027\pi\)
0.564610 + 0.825358i \(0.309027\pi\)
\(570\) 13603.3 0.999615
\(571\) 528.927 0.0387651 0.0193826 0.999812i \(-0.493830\pi\)
0.0193826 + 0.999812i \(0.493830\pi\)
\(572\) −3113.51 −0.227592
\(573\) −22989.8 −1.67611
\(574\) 6066.65 0.441145
\(575\) 7148.50 0.518457
\(576\) 27514.6 1.99035
\(577\) −5913.14 −0.426633 −0.213317 0.976983i \(-0.568427\pi\)
−0.213317 + 0.976983i \(0.568427\pi\)
\(578\) −763.139 −0.0549176
\(579\) −26764.1 −1.92103
\(580\) −4298.25 −0.307716
\(581\) 6520.49 0.465604
\(582\) −22597.8 −1.60947
\(583\) −907.842 −0.0644922
\(584\) 2458.62 0.174210
\(585\) −69540.4 −4.91477
\(586\) −6147.69 −0.433377
\(587\) 7875.31 0.553746 0.276873 0.960907i \(-0.410702\pi\)
0.276873 + 0.960907i \(0.410702\pi\)
\(588\) −439.205 −0.0308036
\(589\) 4348.48 0.304203
\(590\) 27600.0 1.92589
\(591\) 1001.63 0.0697152
\(592\) −390.120 −0.0270842
\(593\) −13993.1 −0.969019 −0.484510 0.874786i \(-0.661002\pi\)
−0.484510 + 0.874786i \(0.661002\pi\)
\(594\) −21414.8 −1.47922
\(595\) −2329.92 −0.160533
\(596\) −1884.84 −0.129541
\(597\) −26067.3 −1.78704
\(598\) −5279.78 −0.361047
\(599\) −15156.8 −1.03387 −0.516937 0.856024i \(-0.672928\pi\)
−0.516937 + 0.856024i \(0.672928\pi\)
\(600\) 53739.9 3.65654
\(601\) −7509.86 −0.509707 −0.254853 0.966980i \(-0.582027\pi\)
−0.254853 + 0.966980i \(0.582027\pi\)
\(602\) −4734.19 −0.320517
\(603\) 1600.53 0.108091
\(604\) −3557.35 −0.239646
\(605\) −8395.29 −0.564161
\(606\) 38559.8 2.58480
\(607\) 20812.3 1.39167 0.695837 0.718200i \(-0.255034\pi\)
0.695837 + 0.718200i \(0.255034\pi\)
\(608\) −1392.44 −0.0928798
\(609\) −13056.1 −0.868732
\(610\) −30944.2 −2.05392
\(611\) 20661.2 1.36802
\(612\) −858.277 −0.0566892
\(613\) 25261.4 1.66444 0.832218 0.554449i \(-0.187071\pi\)
0.832218 + 0.554449i \(0.187071\pi\)
\(614\) −700.043 −0.0460121
\(615\) 56076.8 3.67680
\(616\) 6999.77 0.457839
\(617\) 3947.07 0.257542 0.128771 0.991674i \(-0.458897\pi\)
0.128771 + 0.991674i \(0.458897\pi\)
\(618\) −9418.75 −0.613071
\(619\) −800.441 −0.0519749 −0.0259874 0.999662i \(-0.508273\pi\)
−0.0259874 + 0.999662i \(0.508273\pi\)
\(620\) 2900.40 0.187875
\(621\) 5349.27 0.345667
\(622\) −23139.8 −1.49168
\(623\) −8982.79 −0.577669
\(624\) −34510.0 −2.21395
\(625\) 18823.4 1.20470
\(626\) 9150.46 0.584227
\(627\) 11037.6 0.703030
\(628\) 820.515 0.0521371
\(629\) 121.182 0.00768179
\(630\) 17788.9 1.12496
\(631\) 20505.4 1.29367 0.646837 0.762628i \(-0.276091\pi\)
0.646837 + 0.762628i \(0.276091\pi\)
\(632\) 9076.83 0.571293
\(633\) −4186.41 −0.262867
\(634\) 7279.33 0.455993
\(635\) 45172.1 2.82299
\(636\) 193.978 0.0120939
\(637\) 3540.70 0.220232
\(638\) 23675.9 1.46918
\(639\) −43803.4 −2.71179
\(640\) 21707.2 1.34071
\(641\) −15289.2 −0.942101 −0.471050 0.882106i \(-0.656125\pi\)
−0.471050 + 0.882106i \(0.656125\pi\)
\(642\) 5071.86 0.311792
\(643\) 9845.41 0.603834 0.301917 0.953334i \(-0.402374\pi\)
0.301917 + 0.953334i \(0.402374\pi\)
\(644\) −198.950 −0.0121735
\(645\) −43760.3 −2.67141
\(646\) −1353.49 −0.0824342
\(647\) 30137.3 1.83125 0.915625 0.402034i \(-0.131696\pi\)
0.915625 + 0.402034i \(0.131696\pi\)
\(648\) 8578.81 0.520073
\(649\) 22394.4 1.35448
\(650\) −49294.2 −2.97458
\(651\) 8810.03 0.530403
\(652\) 419.638 0.0252060
\(653\) 17680.2 1.05954 0.529769 0.848142i \(-0.322279\pi\)
0.529769 + 0.848142i \(0.322279\pi\)
\(654\) 28565.4 1.70794
\(655\) −678.028 −0.0404469
\(656\) 17962.0 1.06905
\(657\) 5069.75 0.301050
\(658\) −5285.26 −0.313132
\(659\) −9959.15 −0.588700 −0.294350 0.955698i \(-0.595103\pi\)
−0.294350 + 0.955698i \(0.595103\pi\)
\(660\) 7362.00 0.434190
\(661\) −5660.03 −0.333056 −0.166528 0.986037i \(-0.553256\pi\)
−0.166528 + 0.986037i \(0.553256\pi\)
\(662\) 2556.40 0.150087
\(663\) 10719.8 0.627935
\(664\) 22204.3 1.29773
\(665\) −4132.32 −0.240969
\(666\) −925.222 −0.0538313
\(667\) −5914.08 −0.343320
\(668\) −3422.24 −0.198219
\(669\) −18044.7 −1.04282
\(670\) 1683.50 0.0970737
\(671\) −25107.8 −1.44453
\(672\) −2821.09 −0.161943
\(673\) 8237.78 0.471832 0.235916 0.971773i \(-0.424191\pi\)
0.235916 + 0.971773i \(0.424191\pi\)
\(674\) 3152.46 0.180161
\(675\) 49943.1 2.84787
\(676\) −3106.45 −0.176744
\(677\) −31531.4 −1.79003 −0.895015 0.446035i \(-0.852836\pi\)
−0.895015 + 0.446035i \(0.852836\pi\)
\(678\) −27971.7 −1.58443
\(679\) 6864.59 0.387981
\(680\) −7934.12 −0.447440
\(681\) 47893.9 2.69500
\(682\) −15976.1 −0.897005
\(683\) −23706.5 −1.32812 −0.664059 0.747681i \(-0.731167\pi\)
−0.664059 + 0.747681i \(0.731167\pi\)
\(684\) −1522.23 −0.0850934
\(685\) 37927.3 2.11551
\(686\) −905.732 −0.0504096
\(687\) 2741.70 0.152259
\(688\) −14016.9 −0.776727
\(689\) −1563.77 −0.0864657
\(690\) 12484.2 0.688790
\(691\) −23330.9 −1.28444 −0.642221 0.766519i \(-0.721987\pi\)
−0.642221 + 0.766519i \(0.721987\pi\)
\(692\) 3004.86 0.165069
\(693\) 14433.7 0.791187
\(694\) 15924.8 0.871033
\(695\) −32914.5 −1.79643
\(696\) −44460.0 −2.42134
\(697\) −5579.49 −0.303211
\(698\) 19775.7 1.07238
\(699\) −51316.3 −2.77677
\(700\) −1857.48 −0.100294
\(701\) 10586.4 0.570387 0.285193 0.958470i \(-0.407942\pi\)
0.285193 + 0.958470i \(0.407942\pi\)
\(702\) −36887.2 −1.98322
\(703\) 214.927 0.0115308
\(704\) 23482.4 1.25714
\(705\) −48854.0 −2.60986
\(706\) −14174.4 −0.755611
\(707\) −11713.4 −0.623096
\(708\) −4784.98 −0.253998
\(709\) 15057.2 0.797581 0.398791 0.917042i \(-0.369430\pi\)
0.398791 + 0.917042i \(0.369430\pi\)
\(710\) −46074.1 −2.43539
\(711\) 18716.7 0.987245
\(712\) −30589.2 −1.61008
\(713\) 3990.73 0.209613
\(714\) −2742.18 −0.143731
\(715\) −59349.5 −3.10426
\(716\) 776.486 0.0405288
\(717\) −42409.6 −2.20895
\(718\) −4050.58 −0.210538
\(719\) 6018.52 0.312174 0.156087 0.987743i \(-0.450112\pi\)
0.156087 + 0.987743i \(0.450112\pi\)
\(720\) 52668.8 2.72618
\(721\) 2861.16 0.147788
\(722\) 15711.5 0.809862
\(723\) 41813.1 2.15082
\(724\) 2821.13 0.144816
\(725\) −55216.4 −2.82853
\(726\) −9880.78 −0.505110
\(727\) 22036.3 1.12418 0.562090 0.827076i \(-0.309997\pi\)
0.562090 + 0.827076i \(0.309997\pi\)
\(728\) 12057.2 0.613831
\(729\) −27859.9 −1.41543
\(730\) 5332.55 0.270365
\(731\) 4354.03 0.220300
\(732\) 5364.77 0.270885
\(733\) 15512.8 0.781688 0.390844 0.920457i \(-0.372183\pi\)
0.390844 + 0.920457i \(0.372183\pi\)
\(734\) 2419.17 0.121653
\(735\) −8372.09 −0.420149
\(736\) −1277.89 −0.0639993
\(737\) 1365.98 0.0682721
\(738\) 42599.2 2.12479
\(739\) 13157.0 0.654921 0.327461 0.944865i \(-0.393807\pi\)
0.327461 + 0.944865i \(0.393807\pi\)
\(740\) 143.355 0.00712138
\(741\) 19012.4 0.942563
\(742\) 400.022 0.0197915
\(743\) 22042.4 1.08837 0.544184 0.838966i \(-0.316839\pi\)
0.544184 + 0.838966i \(0.316839\pi\)
\(744\) 30000.9 1.47834
\(745\) −35928.7 −1.76688
\(746\) 15505.8 0.761000
\(747\) 45786.0 2.24260
\(748\) −732.499 −0.0358059
\(749\) −1540.69 −0.0751610
\(750\) 60161.0 2.92903
\(751\) 22833.3 1.10945 0.554726 0.832033i \(-0.312823\pi\)
0.554726 + 0.832033i \(0.312823\pi\)
\(752\) −15648.5 −0.758830
\(753\) 10114.4 0.489493
\(754\) 40782.0 1.96975
\(755\) −67809.8 −3.26868
\(756\) −1389.96 −0.0668684
\(757\) −15095.8 −0.724792 −0.362396 0.932024i \(-0.618041\pi\)
−0.362396 + 0.932024i \(0.618041\pi\)
\(758\) 17591.5 0.842946
\(759\) 10129.6 0.484427
\(760\) −14071.8 −0.671631
\(761\) 19033.7 0.906662 0.453331 0.891342i \(-0.350236\pi\)
0.453331 + 0.891342i \(0.350236\pi\)
\(762\) 53164.9 2.52751
\(763\) −8677.39 −0.411720
\(764\) 2705.94 0.128138
\(765\) −16360.4 −0.773217
\(766\) −20089.5 −0.947600
\(767\) 38574.6 1.81597
\(768\) −13531.1 −0.635756
\(769\) 16419.8 0.769980 0.384990 0.922921i \(-0.374205\pi\)
0.384990 + 0.922921i \(0.374205\pi\)
\(770\) 15182.0 0.710545
\(771\) −39186.2 −1.83043
\(772\) 3150.18 0.146862
\(773\) 17271.0 0.803614 0.401807 0.915724i \(-0.368382\pi\)
0.401807 + 0.915724i \(0.368382\pi\)
\(774\) −33242.9 −1.54379
\(775\) 37259.2 1.72695
\(776\) 23376.1 1.08138
\(777\) 435.443 0.0201048
\(778\) 14112.3 0.650320
\(779\) −9895.71 −0.455135
\(780\) 12681.1 0.582125
\(781\) −37384.1 −1.71281
\(782\) −1242.14 −0.0568017
\(783\) −41318.8 −1.88584
\(784\) −2681.67 −0.122161
\(785\) 15640.6 0.711128
\(786\) −798.000 −0.0362134
\(787\) −28856.3 −1.30701 −0.653504 0.756923i \(-0.726702\pi\)
−0.653504 + 0.756923i \(0.726702\pi\)
\(788\) −117.894 −0.00532971
\(789\) 53526.6 2.41521
\(790\) 19686.9 0.886620
\(791\) 8497.03 0.381946
\(792\) 49151.4 2.20520
\(793\) −43248.6 −1.93670
\(794\) −21529.1 −0.962265
\(795\) 3697.58 0.164956
\(796\) 3068.17 0.136619
\(797\) 19199.7 0.853309 0.426654 0.904415i \(-0.359692\pi\)
0.426654 + 0.904415i \(0.359692\pi\)
\(798\) −4863.50 −0.215747
\(799\) 4860.84 0.215224
\(800\) −11930.9 −0.527275
\(801\) −63075.9 −2.78237
\(802\) 5440.98 0.239561
\(803\) 4326.79 0.190148
\(804\) −291.868 −0.0128027
\(805\) −3792.36 −0.166041
\(806\) −27519.1 −1.20263
\(807\) 42997.4 1.87556
\(808\) −39887.9 −1.73670
\(809\) −15459.9 −0.671867 −0.335933 0.941886i \(-0.609052\pi\)
−0.335933 + 0.941886i \(0.609052\pi\)
\(810\) 18606.8 0.807130
\(811\) −26525.2 −1.14849 −0.574245 0.818684i \(-0.694704\pi\)
−0.574245 + 0.818684i \(0.694704\pi\)
\(812\) 1536.72 0.0664144
\(813\) −1792.12 −0.0773094
\(814\) −789.633 −0.0340008
\(815\) 7999.09 0.343799
\(816\) −8118.98 −0.348310
\(817\) 7722.25 0.330682
\(818\) 7829.94 0.334679
\(819\) 24862.3 1.06076
\(820\) −6600.35 −0.281091
\(821\) −14151.2 −0.601560 −0.300780 0.953694i \(-0.597247\pi\)
−0.300780 + 0.953694i \(0.597247\pi\)
\(822\) 44638.2 1.89408
\(823\) −1706.12 −0.0722619 −0.0361309 0.999347i \(-0.511503\pi\)
−0.0361309 + 0.999347i \(0.511503\pi\)
\(824\) 9743.15 0.411916
\(825\) 94573.9 3.99108
\(826\) −9867.62 −0.415664
\(827\) −7176.88 −0.301771 −0.150886 0.988551i \(-0.548212\pi\)
−0.150886 + 0.988551i \(0.548212\pi\)
\(828\) −1397.00 −0.0586341
\(829\) 43183.4 1.80919 0.904596 0.426270i \(-0.140173\pi\)
0.904596 + 0.426270i \(0.140173\pi\)
\(830\) 48159.5 2.01403
\(831\) −59950.5 −2.50260
\(832\) 40448.7 1.68546
\(833\) 833.000 0.0346479
\(834\) −38738.5 −1.60840
\(835\) −65234.4 −2.70363
\(836\) −1299.15 −0.0537465
\(837\) 27881.3 1.15140
\(838\) 6417.39 0.264541
\(839\) 5362.69 0.220668 0.110334 0.993895i \(-0.464808\pi\)
0.110334 + 0.993895i \(0.464808\pi\)
\(840\) −28509.6 −1.17104
\(841\) 21292.5 0.873038
\(842\) 5493.63 0.224849
\(843\) 20917.4 0.854605
\(844\) 492.750 0.0200961
\(845\) −59214.8 −2.41071
\(846\) −37112.4 −1.50822
\(847\) 3001.51 0.121763
\(848\) 1184.37 0.0479618
\(849\) −30962.5 −1.25163
\(850\) −11597.2 −0.467976
\(851\) 197.245 0.00794534
\(852\) 7987.82 0.321195
\(853\) −15094.3 −0.605884 −0.302942 0.953009i \(-0.597969\pi\)
−0.302942 + 0.953009i \(0.597969\pi\)
\(854\) 11063.3 0.443299
\(855\) −29016.6 −1.16064
\(856\) −5246.54 −0.209490
\(857\) 20220.7 0.805983 0.402991 0.915204i \(-0.367970\pi\)
0.402991 + 0.915204i \(0.367970\pi\)
\(858\) −69850.9 −2.77934
\(859\) 5596.92 0.222310 0.111155 0.993803i \(-0.464545\pi\)
0.111155 + 0.993803i \(0.464545\pi\)
\(860\) 5150.67 0.204229
\(861\) −20048.7 −0.793565
\(862\) −10493.1 −0.414612
\(863\) −21623.0 −0.852901 −0.426451 0.904511i \(-0.640236\pi\)
−0.426451 + 0.904511i \(0.640236\pi\)
\(864\) −8927.97 −0.351546
\(865\) 57278.4 2.25147
\(866\) −2829.37 −0.111023
\(867\) 2521.98 0.0987900
\(868\) −1036.96 −0.0405492
\(869\) 15973.8 0.623561
\(870\) −96430.3 −3.75781
\(871\) 2352.92 0.0915334
\(872\) −29549.3 −1.14755
\(873\) 48202.3 1.86873
\(874\) −2203.05 −0.0852623
\(875\) −18275.3 −0.706077
\(876\) −924.500 −0.0356575
\(877\) 6883.48 0.265039 0.132519 0.991180i \(-0.457693\pi\)
0.132519 + 0.991180i \(0.457693\pi\)
\(878\) −28213.1 −1.08445
\(879\) 20316.6 0.779591
\(880\) 44950.3 1.72190
\(881\) −17892.1 −0.684222 −0.342111 0.939660i \(-0.611142\pi\)
−0.342111 + 0.939660i \(0.611142\pi\)
\(882\) −6359.93 −0.242800
\(883\) 40546.5 1.54530 0.772649 0.634833i \(-0.218931\pi\)
0.772649 + 0.634833i \(0.218931\pi\)
\(884\) −1261.74 −0.0480055
\(885\) −91210.9 −3.46443
\(886\) 8848.92 0.335537
\(887\) −36470.9 −1.38058 −0.690289 0.723534i \(-0.742516\pi\)
−0.690289 + 0.723534i \(0.742516\pi\)
\(888\) 1482.82 0.0560363
\(889\) −16150.1 −0.609286
\(890\) −66345.7 −2.49878
\(891\) 15097.4 0.567656
\(892\) 2123.89 0.0797233
\(893\) 8621.13 0.323063
\(894\) −42286.0 −1.58194
\(895\) 14801.3 0.552797
\(896\) −7760.82 −0.289365
\(897\) 17448.3 0.649479
\(898\) −36488.2 −1.35593
\(899\) −30825.2 −1.14358
\(900\) −13043.0 −0.483072
\(901\) −367.899 −0.0136032
\(902\) 36356.4 1.34206
\(903\) 15645.3 0.576570
\(904\) 28935.1 1.06456
\(905\) 53776.2 1.97523
\(906\) −79808.3 −2.92655
\(907\) 16.6105 0.000608095 0 0.000304047 1.00000i \(-0.499903\pi\)
0.000304047 1.00000i \(0.499903\pi\)
\(908\) −5637.21 −0.206032
\(909\) −82250.1 −3.00117
\(910\) 26151.1 0.952639
\(911\) 19566.1 0.711586 0.355793 0.934565i \(-0.384211\pi\)
0.355793 + 0.934565i \(0.384211\pi\)
\(912\) −14399.7 −0.522832
\(913\) 39076.2 1.41647
\(914\) 10992.0 0.397792
\(915\) 102263. 3.69475
\(916\) −322.703 −0.0116402
\(917\) 242.411 0.00872966
\(918\) −8678.25 −0.312010
\(919\) 7912.68 0.284021 0.142010 0.989865i \(-0.454643\pi\)
0.142010 + 0.989865i \(0.454643\pi\)
\(920\) −12914.2 −0.462791
\(921\) 2313.46 0.0827700
\(922\) −40276.2 −1.43864
\(923\) −64394.6 −2.29640
\(924\) −2632.08 −0.0937112
\(925\) 1841.57 0.0654598
\(926\) 11640.1 0.413084
\(927\) 20090.7 0.711828
\(928\) 9870.64 0.349159
\(929\) 9268.53 0.327331 0.163665 0.986516i \(-0.447668\pi\)
0.163665 + 0.986516i \(0.447668\pi\)
\(930\) 65069.7 2.29432
\(931\) 1477.40 0.0520084
\(932\) 6040.03 0.212283
\(933\) 76471.3 2.68334
\(934\) 10987.4 0.384923
\(935\) −13962.8 −0.488377
\(936\) 84664.0 2.95655
\(937\) −13796.6 −0.481019 −0.240510 0.970647i \(-0.577315\pi\)
−0.240510 + 0.970647i \(0.577315\pi\)
\(938\) −601.891 −0.0209514
\(939\) −30239.9 −1.05095
\(940\) 5750.22 0.199523
\(941\) 18812.8 0.651732 0.325866 0.945416i \(-0.394344\pi\)
0.325866 + 0.945416i \(0.394344\pi\)
\(942\) 18408.1 0.636695
\(943\) −9081.60 −0.313614
\(944\) −29215.8 −1.00730
\(945\) −26495.4 −0.912057
\(946\) −28371.2 −0.975082
\(947\) −1398.42 −0.0479857 −0.0239928 0.999712i \(-0.507638\pi\)
−0.0239928 + 0.999712i \(0.507638\pi\)
\(948\) −3413.11 −0.116933
\(949\) 7452.95 0.254935
\(950\) −20568.6 −0.702456
\(951\) −24056.3 −0.820274
\(952\) 2836.63 0.0965711
\(953\) −5165.69 −0.175586 −0.0877928 0.996139i \(-0.527981\pi\)
−0.0877928 + 0.996139i \(0.527981\pi\)
\(954\) 2808.90 0.0953266
\(955\) 51580.4 1.74775
\(956\) 4991.69 0.168873
\(957\) −78242.7 −2.64287
\(958\) −2318.24 −0.0781825
\(959\) −13559.9 −0.456591
\(960\) −95642.2 −3.21546
\(961\) −8990.63 −0.301790
\(962\) −1360.15 −0.0455853
\(963\) −10818.5 −0.362017
\(964\) −4921.48 −0.164430
\(965\) 60048.5 2.00314
\(966\) −4463.39 −0.148662
\(967\) −8767.85 −0.291577 −0.145789 0.989316i \(-0.546572\pi\)
−0.145789 + 0.989316i \(0.546572\pi\)
\(968\) 10221.1 0.339379
\(969\) 4472.95 0.148289
\(970\) 50701.0 1.67826
\(971\) −22934.1 −0.757973 −0.378986 0.925402i \(-0.623727\pi\)
−0.378986 + 0.925402i \(0.623727\pi\)
\(972\) 2135.45 0.0704676
\(973\) 11767.7 0.387724
\(974\) 35355.7 1.16311
\(975\) 162905. 5.35090
\(976\) 32755.8 1.07427
\(977\) 8730.94 0.285903 0.142952 0.989730i \(-0.454341\pi\)
0.142952 + 0.989730i \(0.454341\pi\)
\(978\) 9414.47 0.307814
\(979\) −53832.3 −1.75739
\(980\) 985.412 0.0321202
\(981\) −60931.5 −1.98307
\(982\) −19216.0 −0.624447
\(983\) −28904.7 −0.937860 −0.468930 0.883235i \(-0.655360\pi\)
−0.468930 + 0.883235i \(0.655360\pi\)
\(984\) −68272.3 −2.21183
\(985\) −2247.29 −0.0726950
\(986\) 9594.55 0.309891
\(987\) 17466.4 0.563286
\(988\) −2237.80 −0.0720587
\(989\) 7086.95 0.227858
\(990\) 106606. 3.42238
\(991\) 19912.8 0.638295 0.319147 0.947705i \(-0.396603\pi\)
0.319147 + 0.947705i \(0.396603\pi\)
\(992\) −6660.56 −0.213178
\(993\) −8448.26 −0.269987
\(994\) 16472.5 0.525631
\(995\) 58485.1 1.86342
\(996\) −8349.38 −0.265623
\(997\) 9279.98 0.294784 0.147392 0.989078i \(-0.452912\pi\)
0.147392 + 0.989078i \(0.452912\pi\)
\(998\) 14510.5 0.460241
\(999\) 1378.06 0.0436434
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 119.4.a.e.1.3 9
3.2 odd 2 1071.4.a.r.1.7 9
4.3 odd 2 1904.4.a.s.1.1 9
7.6 odd 2 833.4.a.g.1.3 9
17.16 even 2 2023.4.a.h.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.a.e.1.3 9 1.1 even 1 trivial
833.4.a.g.1.3 9 7.6 odd 2
1071.4.a.r.1.7 9 3.2 odd 2
1904.4.a.s.1.1 9 4.3 odd 2
2023.4.a.h.1.3 9 17.16 even 2