Properties

Label 1176.2.a.c
Level $1176$
Weight $2$
Character orbit 1176.a
Self dual yes
Analytic conductor $9.390$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1176.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.39040727770\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} + q^{5} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{3} + q^{5} + q^{9} + 3 q^{11} - 4 q^{13} - q^{15} + 4 q^{19} + 8 q^{23} - 4 q^{25} - q^{27} - 3 q^{29} + 5 q^{31} - 3 q^{33} + 8 q^{37} + 4 q^{39} - 8 q^{41} + 6 q^{43} + q^{45} - 10 q^{47} + 9 q^{53} + 3 q^{55} - 4 q^{57} + 5 q^{59} + 10 q^{61} - 4 q^{65} + 6 q^{67} - 8 q^{69} + 10 q^{71} - 2 q^{73} + 4 q^{75} + 11 q^{79} + q^{81} - 7 q^{83} + 3 q^{87} + 18 q^{89} - 5 q^{93} + 4 q^{95} + 17 q^{97} + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 1.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1176.2.a.c 1
3.b odd 2 1 3528.2.a.i 1
4.b odd 2 1 2352.2.a.u 1
7.b odd 2 1 1176.2.a.g 1
7.c even 3 2 1176.2.q.g 2
7.d odd 6 2 168.2.q.a 2
8.b even 2 1 9408.2.a.cf 1
8.d odd 2 1 9408.2.a.p 1
12.b even 2 1 7056.2.a.t 1
21.c even 2 1 3528.2.a.q 1
21.g even 6 2 504.2.s.d 2
21.h odd 6 2 3528.2.s.p 2
28.d even 2 1 2352.2.a.g 1
28.f even 6 2 336.2.q.e 2
28.g odd 6 2 2352.2.q.f 2
56.e even 2 1 9408.2.a.cq 1
56.h odd 2 1 9408.2.a.ba 1
56.j odd 6 2 1344.2.q.o 2
56.m even 6 2 1344.2.q.d 2
84.h odd 2 1 7056.2.a.bk 1
84.j odd 6 2 1008.2.s.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.q.a 2 7.d odd 6 2
336.2.q.e 2 28.f even 6 2
504.2.s.d 2 21.g even 6 2
1008.2.s.f 2 84.j odd 6 2
1176.2.a.c 1 1.a even 1 1 trivial
1176.2.a.g 1 7.b odd 2 1
1176.2.q.g 2 7.c even 3 2
1344.2.q.d 2 56.m even 6 2
1344.2.q.o 2 56.j odd 6 2
2352.2.a.g 1 28.d even 2 1
2352.2.a.u 1 4.b odd 2 1
2352.2.q.f 2 28.g odd 6 2
3528.2.a.i 1 3.b odd 2 1
3528.2.a.q 1 21.c even 2 1
3528.2.s.p 2 21.h odd 6 2
7056.2.a.t 1 12.b even 2 1
7056.2.a.bk 1 84.h odd 2 1
9408.2.a.p 1 8.d odd 2 1
9408.2.a.ba 1 56.h odd 2 1
9408.2.a.cf 1 8.b even 2 1
9408.2.a.cq 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1176))\):

\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{11} - 3 \) Copy content Toggle raw display
\( T_{13} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 3 \) Copy content Toggle raw display
$13$ \( T + 4 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 8 \) Copy content Toggle raw display
$29$ \( T + 3 \) Copy content Toggle raw display
$31$ \( T - 5 \) Copy content Toggle raw display
$37$ \( T - 8 \) Copy content Toggle raw display
$41$ \( T + 8 \) Copy content Toggle raw display
$43$ \( T - 6 \) Copy content Toggle raw display
$47$ \( T + 10 \) Copy content Toggle raw display
$53$ \( T - 9 \) Copy content Toggle raw display
$59$ \( T - 5 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T - 6 \) Copy content Toggle raw display
$71$ \( T - 10 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T - 11 \) Copy content Toggle raw display
$83$ \( T + 7 \) Copy content Toggle raw display
$89$ \( T - 18 \) Copy content Toggle raw display
$97$ \( T - 17 \) Copy content Toggle raw display
show more
show less