Properties

Label 168.2.q.a
Level $168$
Weight $2$
Character orbit 168.q
Analytic conductor $1.341$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 168 = 2^{3} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 168.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.34148675396\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{3} + ( - \zeta_{6} + 1) q^{5} + ( - 3 \zeta_{6} + 2) q^{7} + (\zeta_{6} - 1) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{6} q^{3} + ( - \zeta_{6} + 1) q^{5} + ( - 3 \zeta_{6} + 2) q^{7} + (\zeta_{6} - 1) q^{9} - 3 \zeta_{6} q^{11} + 4 q^{13} - q^{15} + ( - 4 \zeta_{6} + 4) q^{19} + (\zeta_{6} - 3) q^{21} + (8 \zeta_{6} - 8) q^{23} + 4 \zeta_{6} q^{25} + q^{27} - 3 q^{29} + 5 \zeta_{6} q^{31} + (3 \zeta_{6} - 3) q^{33} + ( - 2 \zeta_{6} - 1) q^{35} + (8 \zeta_{6} - 8) q^{37} - 4 \zeta_{6} q^{39} + 8 q^{41} + 6 q^{43} + \zeta_{6} q^{45} + (10 \zeta_{6} - 10) q^{47} + ( - 3 \zeta_{6} - 5) q^{49} - 9 \zeta_{6} q^{53} - 3 q^{55} - 4 q^{57} + 5 \zeta_{6} q^{59} + ( - 10 \zeta_{6} + 10) q^{61} + (2 \zeta_{6} + 1) q^{63} + ( - 4 \zeta_{6} + 4) q^{65} - 6 \zeta_{6} q^{67} + 8 q^{69} + 10 q^{71} - 2 \zeta_{6} q^{73} + ( - 4 \zeta_{6} + 4) q^{75} + (3 \zeta_{6} - 9) q^{77} + (11 \zeta_{6} - 11) q^{79} - \zeta_{6} q^{81} + 7 q^{83} + 3 \zeta_{6} q^{87} + ( - 18 \zeta_{6} + 18) q^{89} + ( - 12 \zeta_{6} + 8) q^{91} + ( - 5 \zeta_{6} + 5) q^{93} - 4 \zeta_{6} q^{95} - 17 q^{97} + 3 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{5} + q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} + q^{5} + q^{7} - q^{9} - 3 q^{11} + 8 q^{13} - 2 q^{15} + 4 q^{19} - 5 q^{21} - 8 q^{23} + 4 q^{25} + 2 q^{27} - 6 q^{29} + 5 q^{31} - 3 q^{33} - 4 q^{35} - 8 q^{37} - 4 q^{39} + 16 q^{41} + 12 q^{43} + q^{45} - 10 q^{47} - 13 q^{49} - 9 q^{53} - 6 q^{55} - 8 q^{57} + 5 q^{59} + 10 q^{61} + 4 q^{63} + 4 q^{65} - 6 q^{67} + 16 q^{69} + 20 q^{71} - 2 q^{73} + 4 q^{75} - 15 q^{77} - 11 q^{79} - q^{81} + 14 q^{83} + 3 q^{87} + 18 q^{89} + 4 q^{91} + 5 q^{93} - 4 q^{95} - 34 q^{97} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(85\) \(113\) \(127\)
\(\chi(n)\) \(-1 + \zeta_{6}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 0.500000 + 2.59808i 0 −0.500000 0.866025i 0
121.1 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 0.500000 2.59808i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 168.2.q.a 2
3.b odd 2 1 504.2.s.d 2
4.b odd 2 1 336.2.q.e 2
7.b odd 2 1 1176.2.q.g 2
7.c even 3 1 inner 168.2.q.a 2
7.c even 3 1 1176.2.a.g 1
7.d odd 6 1 1176.2.a.c 1
7.d odd 6 1 1176.2.q.g 2
8.b even 2 1 1344.2.q.o 2
8.d odd 2 1 1344.2.q.d 2
12.b even 2 1 1008.2.s.f 2
21.c even 2 1 3528.2.s.p 2
21.g even 6 1 3528.2.a.i 1
21.g even 6 1 3528.2.s.p 2
21.h odd 6 1 504.2.s.d 2
21.h odd 6 1 3528.2.a.q 1
28.d even 2 1 2352.2.q.f 2
28.f even 6 1 2352.2.a.u 1
28.f even 6 1 2352.2.q.f 2
28.g odd 6 1 336.2.q.e 2
28.g odd 6 1 2352.2.a.g 1
56.j odd 6 1 9408.2.a.cf 1
56.k odd 6 1 1344.2.q.d 2
56.k odd 6 1 9408.2.a.cq 1
56.m even 6 1 9408.2.a.p 1
56.p even 6 1 1344.2.q.o 2
56.p even 6 1 9408.2.a.ba 1
84.j odd 6 1 7056.2.a.t 1
84.n even 6 1 1008.2.s.f 2
84.n even 6 1 7056.2.a.bk 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.q.a 2 1.a even 1 1 trivial
168.2.q.a 2 7.c even 3 1 inner
336.2.q.e 2 4.b odd 2 1
336.2.q.e 2 28.g odd 6 1
504.2.s.d 2 3.b odd 2 1
504.2.s.d 2 21.h odd 6 1
1008.2.s.f 2 12.b even 2 1
1008.2.s.f 2 84.n even 6 1
1176.2.a.c 1 7.d odd 6 1
1176.2.a.g 1 7.c even 3 1
1176.2.q.g 2 7.b odd 2 1
1176.2.q.g 2 7.d odd 6 1
1344.2.q.d 2 8.d odd 2 1
1344.2.q.d 2 56.k odd 6 1
1344.2.q.o 2 8.b even 2 1
1344.2.q.o 2 56.p even 6 1
2352.2.a.g 1 28.g odd 6 1
2352.2.a.u 1 28.f even 6 1
2352.2.q.f 2 28.d even 2 1
2352.2.q.f 2 28.f even 6 1
3528.2.a.i 1 21.g even 6 1
3528.2.a.q 1 21.h odd 6 1
3528.2.s.p 2 21.c even 2 1
3528.2.s.p 2 21.g even 6 1
7056.2.a.t 1 84.j odd 6 1
7056.2.a.bk 1 84.n even 6 1
9408.2.a.p 1 56.m even 6 1
9408.2.a.ba 1 56.p even 6 1
9408.2.a.cf 1 56.j odd 6 1
9408.2.a.cq 1 56.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(168, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( (T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$29$ \( (T + 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$41$ \( (T - 8)^{2} \) Copy content Toggle raw display
$43$ \( (T - 6)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$53$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$59$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$67$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$71$ \( (T - 10)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$83$ \( (T - 7)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 18T + 324 \) Copy content Toggle raw display
$97$ \( (T + 17)^{2} \) Copy content Toggle raw display
show more
show less