Newspace parameters
Level: | \( N \) | \(=\) | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 168.q (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.34148675396\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/168\mathbb{Z}\right)^\times\).
\(n\) | \(73\) | \(85\) | \(113\) | \(127\) |
\(\chi(n)\) | \(-1 + \zeta_{6}\) | \(1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
0 | −0.500000 | + | 0.866025i | 0 | 0.500000 | + | 0.866025i | 0 | 0.500000 | + | 2.59808i | 0 | −0.500000 | − | 0.866025i | 0 | ||||||||||||||||
121.1 | 0 | −0.500000 | − | 0.866025i | 0 | 0.500000 | − | 0.866025i | 0 | 0.500000 | − | 2.59808i | 0 | −0.500000 | + | 0.866025i | 0 | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 168.2.q.a | ✓ | 2 |
3.b | odd | 2 | 1 | 504.2.s.d | 2 | ||
4.b | odd | 2 | 1 | 336.2.q.e | 2 | ||
7.b | odd | 2 | 1 | 1176.2.q.g | 2 | ||
7.c | even | 3 | 1 | inner | 168.2.q.a | ✓ | 2 |
7.c | even | 3 | 1 | 1176.2.a.g | 1 | ||
7.d | odd | 6 | 1 | 1176.2.a.c | 1 | ||
7.d | odd | 6 | 1 | 1176.2.q.g | 2 | ||
8.b | even | 2 | 1 | 1344.2.q.o | 2 | ||
8.d | odd | 2 | 1 | 1344.2.q.d | 2 | ||
12.b | even | 2 | 1 | 1008.2.s.f | 2 | ||
21.c | even | 2 | 1 | 3528.2.s.p | 2 | ||
21.g | even | 6 | 1 | 3528.2.a.i | 1 | ||
21.g | even | 6 | 1 | 3528.2.s.p | 2 | ||
21.h | odd | 6 | 1 | 504.2.s.d | 2 | ||
21.h | odd | 6 | 1 | 3528.2.a.q | 1 | ||
28.d | even | 2 | 1 | 2352.2.q.f | 2 | ||
28.f | even | 6 | 1 | 2352.2.a.u | 1 | ||
28.f | even | 6 | 1 | 2352.2.q.f | 2 | ||
28.g | odd | 6 | 1 | 336.2.q.e | 2 | ||
28.g | odd | 6 | 1 | 2352.2.a.g | 1 | ||
56.j | odd | 6 | 1 | 9408.2.a.cf | 1 | ||
56.k | odd | 6 | 1 | 1344.2.q.d | 2 | ||
56.k | odd | 6 | 1 | 9408.2.a.cq | 1 | ||
56.m | even | 6 | 1 | 9408.2.a.p | 1 | ||
56.p | even | 6 | 1 | 1344.2.q.o | 2 | ||
56.p | even | 6 | 1 | 9408.2.a.ba | 1 | ||
84.j | odd | 6 | 1 | 7056.2.a.t | 1 | ||
84.n | even | 6 | 1 | 1008.2.s.f | 2 | ||
84.n | even | 6 | 1 | 7056.2.a.bk | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.2.q.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
168.2.q.a | ✓ | 2 | 7.c | even | 3 | 1 | inner |
336.2.q.e | 2 | 4.b | odd | 2 | 1 | ||
336.2.q.e | 2 | 28.g | odd | 6 | 1 | ||
504.2.s.d | 2 | 3.b | odd | 2 | 1 | ||
504.2.s.d | 2 | 21.h | odd | 6 | 1 | ||
1008.2.s.f | 2 | 12.b | even | 2 | 1 | ||
1008.2.s.f | 2 | 84.n | even | 6 | 1 | ||
1176.2.a.c | 1 | 7.d | odd | 6 | 1 | ||
1176.2.a.g | 1 | 7.c | even | 3 | 1 | ||
1176.2.q.g | 2 | 7.b | odd | 2 | 1 | ||
1176.2.q.g | 2 | 7.d | odd | 6 | 1 | ||
1344.2.q.d | 2 | 8.d | odd | 2 | 1 | ||
1344.2.q.d | 2 | 56.k | odd | 6 | 1 | ||
1344.2.q.o | 2 | 8.b | even | 2 | 1 | ||
1344.2.q.o | 2 | 56.p | even | 6 | 1 | ||
2352.2.a.g | 1 | 28.g | odd | 6 | 1 | ||
2352.2.a.u | 1 | 28.f | even | 6 | 1 | ||
2352.2.q.f | 2 | 28.d | even | 2 | 1 | ||
2352.2.q.f | 2 | 28.f | even | 6 | 1 | ||
3528.2.a.i | 1 | 21.g | even | 6 | 1 | ||
3528.2.a.q | 1 | 21.h | odd | 6 | 1 | ||
3528.2.s.p | 2 | 21.c | even | 2 | 1 | ||
3528.2.s.p | 2 | 21.g | even | 6 | 1 | ||
7056.2.a.t | 1 | 84.j | odd | 6 | 1 | ||
7056.2.a.bk | 1 | 84.n | even | 6 | 1 | ||
9408.2.a.p | 1 | 56.m | even | 6 | 1 | ||
9408.2.a.ba | 1 | 56.p | even | 6 | 1 | ||
9408.2.a.cf | 1 | 56.j | odd | 6 | 1 | ||
9408.2.a.cq | 1 | 56.k | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - T_{5} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(168, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + T + 1 \)
$5$
\( T^{2} - T + 1 \)
$7$
\( T^{2} - T + 7 \)
$11$
\( T^{2} + 3T + 9 \)
$13$
\( (T - 4)^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} - 4T + 16 \)
$23$
\( T^{2} + 8T + 64 \)
$29$
\( (T + 3)^{2} \)
$31$
\( T^{2} - 5T + 25 \)
$37$
\( T^{2} + 8T + 64 \)
$41$
\( (T - 8)^{2} \)
$43$
\( (T - 6)^{2} \)
$47$
\( T^{2} + 10T + 100 \)
$53$
\( T^{2} + 9T + 81 \)
$59$
\( T^{2} - 5T + 25 \)
$61$
\( T^{2} - 10T + 100 \)
$67$
\( T^{2} + 6T + 36 \)
$71$
\( (T - 10)^{2} \)
$73$
\( T^{2} + 2T + 4 \)
$79$
\( T^{2} + 11T + 121 \)
$83$
\( (T - 7)^{2} \)
$89$
\( T^{2} - 18T + 324 \)
$97$
\( (T + 17)^{2} \)
show more
show less