Properties

Label 1170.2.w.h.307.3
Level $1170$
Weight $2$
Character 1170.307
Analytic conductor $9.342$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(307,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} + 2 x^{12} + 4 x^{11} + 112 x^{10} - 208 x^{9} + 200 x^{8} + 392 x^{7} + 1708 x^{6} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.3
Root \(-0.202596 - 0.202596i\) of defining polynomial
Character \(\chi\) \(=\) 1170.307
Dual form 1170.2.w.h.343.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-0.202596 - 2.22687i) q^{5} -0.902312 q^{7} +1.00000i q^{8} +(-2.22687 + 0.202596i) q^{10} +(2.50645 - 2.50645i) q^{11} +(3.59129 - 0.320354i) q^{13} +0.902312i q^{14} +1.00000 q^{16} +(2.87250 - 2.87250i) q^{17} +(-0.280927 + 0.280927i) q^{19} +(0.202596 + 2.22687i) q^{20} +(-2.50645 - 2.50645i) q^{22} +(0.298938 + 0.298938i) q^{23} +(-4.91791 + 0.902312i) q^{25} +(-0.320354 - 3.59129i) q^{26} +0.902312 q^{28} -2.15343i q^{29} +(-2.62842 - 2.62842i) q^{31} -1.00000i q^{32} +(-2.87250 - 2.87250i) q^{34} +(0.182805 + 2.00933i) q^{35} -7.91467 q^{37} +(0.280927 + 0.280927i) q^{38} +(2.22687 - 0.202596i) q^{40} +(1.01801 + 1.01801i) q^{41} +(-5.17770 - 5.17770i) q^{43} +(-2.50645 + 2.50645i) q^{44} +(0.298938 - 0.298938i) q^{46} -10.2383 q^{47} -6.18583 q^{49} +(0.902312 + 4.91791i) q^{50} +(-3.59129 + 0.320354i) q^{52} +(7.95152 - 7.95152i) q^{53} +(-6.08935 - 5.07375i) q^{55} -0.902312i q^{56} -2.15343 q^{58} +(-1.49031 - 1.49031i) q^{59} +7.45681 q^{61} +(-2.62842 + 2.62842i) q^{62} -1.00000 q^{64} +(-1.44097 - 7.93244i) q^{65} +3.72577i q^{67} +(-2.87250 + 2.87250i) q^{68} +(2.00933 - 0.182805i) q^{70} +(8.48521 + 8.48521i) q^{71} +3.28746i q^{73} +7.91467i q^{74} +(0.280927 - 0.280927i) q^{76} +(-2.26160 + 2.26160i) q^{77} -4.97419i q^{79} +(-0.202596 - 2.22687i) q^{80} +(1.01801 - 1.01801i) q^{82} -1.83873 q^{83} +(-6.97864 - 5.81472i) q^{85} +(-5.17770 + 5.17770i) q^{86} +(2.50645 + 2.50645i) q^{88} +(3.05788 + 3.05788i) q^{89} +(-3.24047 + 0.289060i) q^{91} +(-0.298938 - 0.298938i) q^{92} +10.2383i q^{94} +(0.682504 + 0.568674i) q^{95} +2.01625i q^{97} +6.18583i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} + 2 q^{5} + 4 q^{13} + 14 q^{16} - 14 q^{17} - 12 q^{19} - 2 q^{20} - 10 q^{25} - 6 q^{26} + 12 q^{31} + 14 q^{34} - 12 q^{35} + 20 q^{37} + 12 q^{38} + 2 q^{41} + 8 q^{47} + 14 q^{49} - 4 q^{52}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −0.202596 2.22687i −0.0906039 0.995887i
\(6\) 0 0
\(7\) −0.902312 −0.341042 −0.170521 0.985354i \(-0.554545\pi\)
−0.170521 + 0.985354i \(0.554545\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.22687 + 0.202596i −0.704198 + 0.0640666i
\(11\) 2.50645 2.50645i 0.755724 0.755724i −0.219817 0.975541i \(-0.570546\pi\)
0.975541 + 0.219817i \(0.0705461\pi\)
\(12\) 0 0
\(13\) 3.59129 0.320354i 0.996045 0.0888503i
\(14\) 0.902312i 0.241153i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.87250 2.87250i 0.696683 0.696683i −0.267011 0.963694i \(-0.586036\pi\)
0.963694 + 0.267011i \(0.0860359\pi\)
\(18\) 0 0
\(19\) −0.280927 + 0.280927i −0.0644492 + 0.0644492i −0.738597 0.674148i \(-0.764511\pi\)
0.674148 + 0.738597i \(0.264511\pi\)
\(20\) 0.202596 + 2.22687i 0.0453019 + 0.497944i
\(21\) 0 0
\(22\) −2.50645 2.50645i −0.534378 0.534378i
\(23\) 0.298938 + 0.298938i 0.0623330 + 0.0623330i 0.737586 0.675253i \(-0.235966\pi\)
−0.675253 + 0.737586i \(0.735966\pi\)
\(24\) 0 0
\(25\) −4.91791 + 0.902312i −0.983582 + 0.180462i
\(26\) −0.320354 3.59129i −0.0628267 0.704310i
\(27\) 0 0
\(28\) 0.902312 0.170521
\(29\) 2.15343i 0.399881i −0.979808 0.199941i \(-0.935925\pi\)
0.979808 0.199941i \(-0.0640749\pi\)
\(30\) 0 0
\(31\) −2.62842 2.62842i −0.472077 0.472077i 0.430509 0.902586i \(-0.358334\pi\)
−0.902586 + 0.430509i \(0.858334\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −2.87250 2.87250i −0.492629 0.492629i
\(35\) 0.182805 + 2.00933i 0.0308997 + 0.339639i
\(36\) 0 0
\(37\) −7.91467 −1.30116 −0.650582 0.759436i \(-0.725475\pi\)
−0.650582 + 0.759436i \(0.725475\pi\)
\(38\) 0.280927 + 0.280927i 0.0455724 + 0.0455724i
\(39\) 0 0
\(40\) 2.22687 0.202596i 0.352099 0.0320333i
\(41\) 1.01801 + 1.01801i 0.158987 + 0.158987i 0.782118 0.623131i \(-0.214140\pi\)
−0.623131 + 0.782118i \(0.714140\pi\)
\(42\) 0 0
\(43\) −5.17770 5.17770i −0.789592 0.789592i 0.191835 0.981427i \(-0.438556\pi\)
−0.981427 + 0.191835i \(0.938556\pi\)
\(44\) −2.50645 + 2.50645i −0.377862 + 0.377862i
\(45\) 0 0
\(46\) 0.298938 0.298938i 0.0440761 0.0440761i
\(47\) −10.2383 −1.49341 −0.746706 0.665154i \(-0.768366\pi\)
−0.746706 + 0.665154i \(0.768366\pi\)
\(48\) 0 0
\(49\) −6.18583 −0.883690
\(50\) 0.902312 + 4.91791i 0.127606 + 0.695497i
\(51\) 0 0
\(52\) −3.59129 + 0.320354i −0.498022 + 0.0444252i
\(53\) 7.95152 7.95152i 1.09222 1.09222i 0.0969341 0.995291i \(-0.469096\pi\)
0.995291 0.0969341i \(-0.0309036\pi\)
\(54\) 0 0
\(55\) −6.08935 5.07375i −0.821087 0.684144i
\(56\) 0.902312i 0.120577i
\(57\) 0 0
\(58\) −2.15343 −0.282759
\(59\) −1.49031 1.49031i −0.194022 0.194022i 0.603410 0.797431i \(-0.293808\pi\)
−0.797431 + 0.603410i \(0.793808\pi\)
\(60\) 0 0
\(61\) 7.45681 0.954747 0.477373 0.878701i \(-0.341589\pi\)
0.477373 + 0.878701i \(0.341589\pi\)
\(62\) −2.62842 + 2.62842i −0.333809 + 0.333809i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.44097 7.93244i −0.178730 0.983898i
\(66\) 0 0
\(67\) 3.72577i 0.455175i 0.973758 + 0.227588i \(0.0730838\pi\)
−0.973758 + 0.227588i \(0.926916\pi\)
\(68\) −2.87250 + 2.87250i −0.348342 + 0.348342i
\(69\) 0 0
\(70\) 2.00933 0.182805i 0.240161 0.0218494i
\(71\) 8.48521 + 8.48521i 1.00701 + 1.00701i 0.999975 + 0.00703333i \(0.00223880\pi\)
0.00703333 + 0.999975i \(0.497761\pi\)
\(72\) 0 0
\(73\) 3.28746i 0.384768i 0.981320 + 0.192384i \(0.0616219\pi\)
−0.981320 + 0.192384i \(0.938378\pi\)
\(74\) 7.91467i 0.920062i
\(75\) 0 0
\(76\) 0.280927 0.280927i 0.0322246 0.0322246i
\(77\) −2.26160 + 2.26160i −0.257734 + 0.257734i
\(78\) 0 0
\(79\) 4.97419i 0.559640i −0.960052 0.279820i \(-0.909725\pi\)
0.960052 0.279820i \(-0.0902748\pi\)
\(80\) −0.202596 2.22687i −0.0226510 0.248972i
\(81\) 0 0
\(82\) 1.01801 1.01801i 0.112421 0.112421i
\(83\) −1.83873 −0.201827 −0.100913 0.994895i \(-0.532177\pi\)
−0.100913 + 0.994895i \(0.532177\pi\)
\(84\) 0 0
\(85\) −6.97864 5.81472i −0.756940 0.630695i
\(86\) −5.17770 + 5.17770i −0.558326 + 0.558326i
\(87\) 0 0
\(88\) 2.50645 + 2.50645i 0.267189 + 0.267189i
\(89\) 3.05788 + 3.05788i 0.324135 + 0.324135i 0.850351 0.526216i \(-0.176390\pi\)
−0.526216 + 0.850351i \(0.676390\pi\)
\(90\) 0 0
\(91\) −3.24047 + 0.289060i −0.339693 + 0.0303017i
\(92\) −0.298938 0.298938i −0.0311665 0.0311665i
\(93\) 0 0
\(94\) 10.2383i 1.05600i
\(95\) 0.682504 + 0.568674i 0.0700234 + 0.0583447i
\(96\) 0 0
\(97\) 2.01625i 0.204719i 0.994747 + 0.102360i \(0.0326393\pi\)
−0.994747 + 0.102360i \(0.967361\pi\)
\(98\) 6.18583i 0.624863i
\(99\) 0 0
\(100\) 4.91791 0.902312i 0.491791 0.0902312i
\(101\) 12.9392i 1.28750i −0.765236 0.643750i \(-0.777377\pi\)
0.765236 0.643750i \(-0.222623\pi\)
\(102\) 0 0
\(103\) −4.17144 4.17144i −0.411024 0.411024i 0.471071 0.882095i \(-0.343867\pi\)
−0.882095 + 0.471071i \(0.843867\pi\)
\(104\) 0.320354 + 3.59129i 0.0314133 + 0.352155i
\(105\) 0 0
\(106\) −7.95152 7.95152i −0.772320 0.772320i
\(107\) −3.66987 3.66987i −0.354779 0.354779i 0.507105 0.861884i \(-0.330716\pi\)
−0.861884 + 0.507105i \(0.830716\pi\)
\(108\) 0 0
\(109\) 6.82467 6.82467i 0.653685 0.653685i −0.300194 0.953878i \(-0.597051\pi\)
0.953878 + 0.300194i \(0.0970513\pi\)
\(110\) −5.07375 + 6.08935i −0.483763 + 0.580596i
\(111\) 0 0
\(112\) −0.902312 −0.0852605
\(113\) 11.0880 11.0880i 1.04307 1.04307i 0.0440448 0.999030i \(-0.485976\pi\)
0.999030 0.0440448i \(-0.0140244\pi\)
\(114\) 0 0
\(115\) 0.605133 0.726261i 0.0564290 0.0677242i
\(116\) 2.15343i 0.199941i
\(117\) 0 0
\(118\) −1.49031 + 1.49031i −0.137194 + 0.137194i
\(119\) −2.59189 + 2.59189i −0.237598 + 0.237598i
\(120\) 0 0
\(121\) 1.56461i 0.142237i
\(122\) 7.45681i 0.675108i
\(123\) 0 0
\(124\) 2.62842 + 2.62842i 0.236039 + 0.236039i
\(125\) 3.00568 + 10.7687i 0.268837 + 0.963186i
\(126\) 0 0
\(127\) −12.1766 + 12.1766i −1.08050 + 1.08050i −0.0840366 + 0.996463i \(0.526781\pi\)
−0.996463 + 0.0840366i \(0.973219\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −7.93244 + 1.44097i −0.695721 + 0.126382i
\(131\) 12.8593 1.12352 0.561759 0.827301i \(-0.310125\pi\)
0.561759 + 0.827301i \(0.310125\pi\)
\(132\) 0 0
\(133\) 0.253484 0.253484i 0.0219799 0.0219799i
\(134\) 3.72577 0.321858
\(135\) 0 0
\(136\) 2.87250 + 2.87250i 0.246315 + 0.246315i
\(137\) −16.8216 −1.43717 −0.718583 0.695441i \(-0.755209\pi\)
−0.718583 + 0.695441i \(0.755209\pi\)
\(138\) 0 0
\(139\) 2.71858i 0.230587i −0.993331 0.115294i \(-0.963219\pi\)
0.993331 0.115294i \(-0.0367809\pi\)
\(140\) −0.182805 2.00933i −0.0154499 0.169820i
\(141\) 0 0
\(142\) 8.48521 8.48521i 0.712063 0.712063i
\(143\) 8.19845 9.80436i 0.685589 0.819881i
\(144\) 0 0
\(145\) −4.79540 + 0.436276i −0.398236 + 0.0362308i
\(146\) 3.28746 0.272072
\(147\) 0 0
\(148\) 7.91467 0.650582
\(149\) 0.219650 0.219650i 0.0179944 0.0179944i −0.698052 0.716047i \(-0.745950\pi\)
0.716047 + 0.698052i \(0.245950\pi\)
\(150\) 0 0
\(151\) 14.8047 14.8047i 1.20479 1.20479i 0.232096 0.972693i \(-0.425442\pi\)
0.972693 0.232096i \(-0.0745583\pi\)
\(152\) −0.280927 0.280927i −0.0227862 0.0227862i
\(153\) 0 0
\(154\) 2.26160 + 2.26160i 0.182245 + 0.182245i
\(155\) −5.32063 + 6.38565i −0.427364 + 0.512908i
\(156\) 0 0
\(157\) 12.3405 + 12.3405i 0.984881 + 0.984881i 0.999887 0.0150064i \(-0.00477685\pi\)
−0.0150064 + 0.999887i \(0.504777\pi\)
\(158\) −4.97419 −0.395725
\(159\) 0 0
\(160\) −2.22687 + 0.202596i −0.176050 + 0.0160167i
\(161\) −0.269736 0.269736i −0.0212582 0.0212582i
\(162\) 0 0
\(163\) 22.5682i 1.76768i 0.467788 + 0.883841i \(0.345051\pi\)
−0.467788 + 0.883841i \(0.654949\pi\)
\(164\) −1.01801 1.01801i −0.0794933 0.0794933i
\(165\) 0 0
\(166\) 1.83873i 0.142713i
\(167\) −16.0230 −1.23989 −0.619947 0.784644i \(-0.712846\pi\)
−0.619947 + 0.784644i \(0.712846\pi\)
\(168\) 0 0
\(169\) 12.7947 2.30097i 0.984211 0.176998i
\(170\) −5.81472 + 6.97864i −0.445969 + 0.535237i
\(171\) 0 0
\(172\) 5.17770 + 5.17770i 0.394796 + 0.394796i
\(173\) −1.71083 1.71083i −0.130072 0.130072i 0.639074 0.769146i \(-0.279318\pi\)
−0.769146 + 0.639074i \(0.779318\pi\)
\(174\) 0 0
\(175\) 4.43749 0.814168i 0.335443 0.0615453i
\(176\) 2.50645 2.50645i 0.188931 0.188931i
\(177\) 0 0
\(178\) 3.05788 3.05788i 0.229198 0.229198i
\(179\) −2.08774 −0.156045 −0.0780226 0.996952i \(-0.524861\pi\)
−0.0780226 + 0.996952i \(0.524861\pi\)
\(180\) 0 0
\(181\) 5.08144i 0.377700i 0.982006 + 0.188850i \(0.0604760\pi\)
−0.982006 + 0.188850i \(0.939524\pi\)
\(182\) 0.289060 + 3.24047i 0.0214265 + 0.240199i
\(183\) 0 0
\(184\) −0.298938 + 0.298938i −0.0220380 + 0.0220380i
\(185\) 1.60348 + 17.6250i 0.117891 + 1.29581i
\(186\) 0 0
\(187\) 14.3996i 1.05300i
\(188\) 10.2383 0.746706
\(189\) 0 0
\(190\) 0.568674 0.682504i 0.0412560 0.0495140i
\(191\) 12.0401 0.871190 0.435595 0.900143i \(-0.356538\pi\)
0.435595 + 0.900143i \(0.356538\pi\)
\(192\) 0 0
\(193\) 15.7987i 1.13722i 0.822608 + 0.568608i \(0.192518\pi\)
−0.822608 + 0.568608i \(0.807482\pi\)
\(194\) 2.01625 0.144758
\(195\) 0 0
\(196\) 6.18583 0.441845
\(197\) 12.7102i 0.905566i −0.891621 0.452783i \(-0.850431\pi\)
0.891621 0.452783i \(-0.149569\pi\)
\(198\) 0 0
\(199\) 15.5881 1.10501 0.552506 0.833509i \(-0.313672\pi\)
0.552506 + 0.833509i \(0.313672\pi\)
\(200\) −0.902312 4.91791i −0.0638031 0.347749i
\(201\) 0 0
\(202\) −12.9392 −0.910401
\(203\) 1.94306i 0.136376i
\(204\) 0 0
\(205\) 2.06073 2.47322i 0.143928 0.172738i
\(206\) −4.17144 + 4.17144i −0.290638 + 0.290638i
\(207\) 0 0
\(208\) 3.59129 0.320354i 0.249011 0.0222126i
\(209\) 1.40826i 0.0974116i
\(210\) 0 0
\(211\) 4.32936 0.298046 0.149023 0.988834i \(-0.452387\pi\)
0.149023 + 0.988834i \(0.452387\pi\)
\(212\) −7.95152 + 7.95152i −0.546112 + 0.546112i
\(213\) 0 0
\(214\) −3.66987 + 3.66987i −0.250867 + 0.250867i
\(215\) −10.4811 + 12.5791i −0.714804 + 0.857884i
\(216\) 0 0
\(217\) 2.37165 + 2.37165i 0.160998 + 0.160998i
\(218\) −6.82467 6.82467i −0.462225 0.462225i
\(219\) 0 0
\(220\) 6.08935 + 5.07375i 0.410544 + 0.342072i
\(221\) 9.39576 11.2362i 0.632027 0.755828i
\(222\) 0 0
\(223\) −8.55297 −0.572749 −0.286375 0.958118i \(-0.592450\pi\)
−0.286375 + 0.958118i \(0.592450\pi\)
\(224\) 0.902312i 0.0602883i
\(225\) 0 0
\(226\) −11.0880 11.0880i −0.737565 0.737565i
\(227\) 1.30008i 0.0862896i −0.999069 0.0431448i \(-0.986262\pi\)
0.999069 0.0431448i \(-0.0137377\pi\)
\(228\) 0 0
\(229\) 19.3801 + 19.3801i 1.28067 + 1.28067i 0.940287 + 0.340383i \(0.110557\pi\)
0.340383 + 0.940287i \(0.389443\pi\)
\(230\) −0.726261 0.605133i −0.0478882 0.0399013i
\(231\) 0 0
\(232\) 2.15343 0.141379
\(233\) −3.75807 3.75807i −0.246199 0.246199i 0.573210 0.819409i \(-0.305698\pi\)
−0.819409 + 0.573210i \(0.805698\pi\)
\(234\) 0 0
\(235\) 2.07425 + 22.7994i 0.135309 + 1.48727i
\(236\) 1.49031 + 1.49031i 0.0970110 + 0.0970110i
\(237\) 0 0
\(238\) 2.59189 + 2.59189i 0.168007 + 0.168007i
\(239\) −9.12433 + 9.12433i −0.590204 + 0.590204i −0.937686 0.347482i \(-0.887037\pi\)
0.347482 + 0.937686i \(0.387037\pi\)
\(240\) 0 0
\(241\) 17.5200 17.5200i 1.12856 1.12856i 0.138153 0.990411i \(-0.455884\pi\)
0.990411 0.138153i \(-0.0441164\pi\)
\(242\) −1.56461 −0.100577
\(243\) 0 0
\(244\) −7.45681 −0.477373
\(245\) 1.25323 + 13.7751i 0.0800658 + 0.880056i
\(246\) 0 0
\(247\) −0.918896 + 1.09889i −0.0584679 + 0.0699206i
\(248\) 2.62842 2.62842i 0.166905 0.166905i
\(249\) 0 0
\(250\) 10.7687 3.00568i 0.681075 0.190096i
\(251\) 15.7805i 0.996055i 0.867161 + 0.498027i \(0.165942\pi\)
−0.867161 + 0.498027i \(0.834058\pi\)
\(252\) 0 0
\(253\) 1.49855 0.0942130
\(254\) 12.1766 + 12.1766i 0.764028 + 0.764028i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.8660 16.8660i 1.05207 1.05207i 0.0535062 0.998568i \(-0.482960\pi\)
0.998568 0.0535062i \(-0.0170397\pi\)
\(258\) 0 0
\(259\) 7.14151 0.443752
\(260\) 1.44097 + 7.93244i 0.0893652 + 0.491949i
\(261\) 0 0
\(262\) 12.8593i 0.794448i
\(263\) 9.75987 9.75987i 0.601819 0.601819i −0.338976 0.940795i \(-0.610080\pi\)
0.940795 + 0.338976i \(0.110080\pi\)
\(264\) 0 0
\(265\) −19.3180 16.0961i −1.18669 0.988773i
\(266\) −0.253484 0.253484i −0.0155421 0.0155421i
\(267\) 0 0
\(268\) 3.72577i 0.227588i
\(269\) 5.96510i 0.363699i −0.983326 0.181849i \(-0.941792\pi\)
0.983326 0.181849i \(-0.0582083\pi\)
\(270\) 0 0
\(271\) −17.0001 + 17.0001i −1.03268 + 1.03268i −0.0332329 + 0.999448i \(0.510580\pi\)
−0.999448 + 0.0332329i \(0.989420\pi\)
\(272\) 2.87250 2.87250i 0.174171 0.174171i
\(273\) 0 0
\(274\) 16.8216i 1.01623i
\(275\) −10.0649 + 14.5881i −0.606937 + 0.879696i
\(276\) 0 0
\(277\) 21.0124 21.0124i 1.26251 1.26251i 0.312644 0.949870i \(-0.398785\pi\)
0.949870 0.312644i \(-0.101215\pi\)
\(278\) −2.71858 −0.163050
\(279\) 0 0
\(280\) −2.00933 + 0.182805i −0.120081 + 0.0109247i
\(281\) 5.01648 5.01648i 0.299258 0.299258i −0.541465 0.840723i \(-0.682130\pi\)
0.840723 + 0.541465i \(0.182130\pi\)
\(282\) 0 0
\(283\) 5.59976 + 5.59976i 0.332871 + 0.332871i 0.853676 0.520805i \(-0.174368\pi\)
−0.520805 + 0.853676i \(0.674368\pi\)
\(284\) −8.48521 8.48521i −0.503504 0.503504i
\(285\) 0 0
\(286\) −9.80436 8.19845i −0.579744 0.484784i
\(287\) −0.918564 0.918564i −0.0542211 0.0542211i
\(288\) 0 0
\(289\) 0.497511i 0.0292654i
\(290\) 0.436276 + 4.79540i 0.0256190 + 0.281596i
\(291\) 0 0
\(292\) 3.28746i 0.192384i
\(293\) 4.94053i 0.288629i −0.989532 0.144314i \(-0.953902\pi\)
0.989532 0.144314i \(-0.0460977\pi\)
\(294\) 0 0
\(295\) −3.01680 + 3.62066i −0.175645 + 0.210803i
\(296\) 7.91467i 0.460031i
\(297\) 0 0
\(298\) −0.219650 0.219650i −0.0127240 0.0127240i
\(299\) 1.16934 + 0.977809i 0.0676247 + 0.0565481i
\(300\) 0 0
\(301\) 4.67190 + 4.67190i 0.269284 + 0.269284i
\(302\) −14.8047 14.8047i −0.851914 0.851914i
\(303\) 0 0
\(304\) −0.280927 + 0.280927i −0.0161123 + 0.0161123i
\(305\) −1.51072 16.6054i −0.0865038 0.950820i
\(306\) 0 0
\(307\) 20.6482 1.17846 0.589228 0.807967i \(-0.299432\pi\)
0.589228 + 0.807967i \(0.299432\pi\)
\(308\) 2.26160 2.26160i 0.128867 0.128867i
\(309\) 0 0
\(310\) 6.38565 + 5.32063i 0.362680 + 0.302192i
\(311\) 27.3897i 1.55313i −0.630038 0.776565i \(-0.716961\pi\)
0.630038 0.776565i \(-0.283039\pi\)
\(312\) 0 0
\(313\) −1.07203 + 1.07203i −0.0605949 + 0.0605949i −0.736755 0.676160i \(-0.763643\pi\)
0.676160 + 0.736755i \(0.263643\pi\)
\(314\) 12.3405 12.3405i 0.696416 0.696416i
\(315\) 0 0
\(316\) 4.97419i 0.279820i
\(317\) 27.2403i 1.52997i −0.644049 0.764984i \(-0.722747\pi\)
0.644049 0.764984i \(-0.277253\pi\)
\(318\) 0 0
\(319\) −5.39746 5.39746i −0.302200 0.302200i
\(320\) 0.202596 + 2.22687i 0.0113255 + 0.124486i
\(321\) 0 0
\(322\) −0.269736 + 0.269736i −0.0150318 + 0.0150318i
\(323\) 1.61393i 0.0898013i
\(324\) 0 0
\(325\) −17.3726 + 4.81594i −0.963658 + 0.267140i
\(326\) 22.5682 1.24994
\(327\) 0 0
\(328\) −1.01801 + 1.01801i −0.0562103 + 0.0562103i
\(329\) 9.23816 0.509316
\(330\) 0 0
\(331\) 19.6653 + 19.6653i 1.08090 + 1.08090i 0.996426 + 0.0844757i \(0.0269215\pi\)
0.0844757 + 0.996426i \(0.473078\pi\)
\(332\) 1.83873 0.100913
\(333\) 0 0
\(334\) 16.0230i 0.876738i
\(335\) 8.29681 0.754828i 0.453303 0.0412407i
\(336\) 0 0
\(337\) −2.03426 + 2.03426i −0.110813 + 0.110813i −0.760339 0.649526i \(-0.774967\pi\)
0.649526 + 0.760339i \(0.274967\pi\)
\(338\) −2.30097 12.7947i −0.125156 0.695942i
\(339\) 0 0
\(340\) 6.97864 + 5.81472i 0.378470 + 0.315348i
\(341\) −13.1760 −0.713520
\(342\) 0 0
\(343\) 11.8977 0.642418
\(344\) 5.17770 5.17770i 0.279163 0.279163i
\(345\) 0 0
\(346\) −1.71083 + 1.71083i −0.0919748 + 0.0919748i
\(347\) −7.08390 7.08390i −0.380284 0.380284i 0.490921 0.871204i \(-0.336661\pi\)
−0.871204 + 0.490921i \(0.836661\pi\)
\(348\) 0 0
\(349\) −8.93472 8.93472i −0.478264 0.478264i 0.426312 0.904576i \(-0.359813\pi\)
−0.904576 + 0.426312i \(0.859813\pi\)
\(350\) −0.814168 4.43749i −0.0435191 0.237194i
\(351\) 0 0
\(352\) −2.50645 2.50645i −0.133594 0.133594i
\(353\) 3.69337 0.196578 0.0982892 0.995158i \(-0.468663\pi\)
0.0982892 + 0.995158i \(0.468663\pi\)
\(354\) 0 0
\(355\) 17.1764 20.6145i 0.911628 1.09411i
\(356\) −3.05788 3.05788i −0.162067 0.162067i
\(357\) 0 0
\(358\) 2.08774i 0.110341i
\(359\) 15.6735 + 15.6735i 0.827216 + 0.827216i 0.987131 0.159915i \(-0.0511220\pi\)
−0.159915 + 0.987131i \(0.551122\pi\)
\(360\) 0 0
\(361\) 18.8422i 0.991693i
\(362\) 5.08144 0.267074
\(363\) 0 0
\(364\) 3.24047 0.289060i 0.169847 0.0151509i
\(365\) 7.32075 0.666028i 0.383185 0.0348615i
\(366\) 0 0
\(367\) 9.00704 + 9.00704i 0.470164 + 0.470164i 0.901968 0.431804i \(-0.142123\pi\)
−0.431804 + 0.901968i \(0.642123\pi\)
\(368\) 0.298938 + 0.298938i 0.0155832 + 0.0155832i
\(369\) 0 0
\(370\) 17.6250 1.60348i 0.916278 0.0833612i
\(371\) −7.17475 + 7.17475i −0.372495 + 0.372495i
\(372\) 0 0
\(373\) −1.94492 + 1.94492i −0.100704 + 0.100704i −0.755664 0.654960i \(-0.772686\pi\)
0.654960 + 0.755664i \(0.272686\pi\)
\(374\) −14.3996 −0.744584
\(375\) 0 0
\(376\) 10.2383i 0.528001i
\(377\) −0.689859 7.73358i −0.0355296 0.398300i
\(378\) 0 0
\(379\) 11.2556 11.2556i 0.578162 0.578162i −0.356235 0.934396i \(-0.615940\pi\)
0.934396 + 0.356235i \(0.115940\pi\)
\(380\) −0.682504 0.568674i −0.0350117 0.0291724i
\(381\) 0 0
\(382\) 12.0401i 0.616025i
\(383\) −16.4651 −0.841328 −0.420664 0.907217i \(-0.638203\pi\)
−0.420664 + 0.907217i \(0.638203\pi\)
\(384\) 0 0
\(385\) 5.49449 + 4.57811i 0.280025 + 0.233322i
\(386\) 15.7987 0.804134
\(387\) 0 0
\(388\) 2.01625i 0.102360i
\(389\) 26.7942 1.35852 0.679261 0.733897i \(-0.262300\pi\)
0.679261 + 0.733897i \(0.262300\pi\)
\(390\) 0 0
\(391\) 1.71740 0.0868526
\(392\) 6.18583i 0.312432i
\(393\) 0 0
\(394\) −12.7102 −0.640332
\(395\) −11.0769 + 1.00775i −0.557339 + 0.0507056i
\(396\) 0 0
\(397\) −17.9325 −0.900005 −0.450002 0.893027i \(-0.648577\pi\)
−0.450002 + 0.893027i \(0.648577\pi\)
\(398\) 15.5881i 0.781361i
\(399\) 0 0
\(400\) −4.91791 + 0.902312i −0.245895 + 0.0451156i
\(401\) 1.68244 1.68244i 0.0840170 0.0840170i −0.663849 0.747866i \(-0.731078\pi\)
0.747866 + 0.663849i \(0.231078\pi\)
\(402\) 0 0
\(403\) −10.2814 8.59738i −0.512154 0.428266i
\(404\) 12.9392i 0.643750i
\(405\) 0 0
\(406\) 1.94306 0.0964326
\(407\) −19.8378 + 19.8378i −0.983321 + 0.983321i
\(408\) 0 0
\(409\) −2.71561 + 2.71561i −0.134278 + 0.134278i −0.771051 0.636773i \(-0.780269\pi\)
0.636773 + 0.771051i \(0.280269\pi\)
\(410\) −2.47322 2.06073i −0.122144 0.101772i
\(411\) 0 0
\(412\) 4.17144 + 4.17144i 0.205512 + 0.205512i
\(413\) 1.34473 + 1.34473i 0.0661696 + 0.0661696i
\(414\) 0 0
\(415\) 0.372520 + 4.09462i 0.0182863 + 0.200997i
\(416\) −0.320354 3.59129i −0.0157067 0.176078i
\(417\) 0 0
\(418\) 1.40826 0.0688804
\(419\) 36.7263i 1.79420i 0.441831 + 0.897098i \(0.354329\pi\)
−0.441831 + 0.897098i \(0.645671\pi\)
\(420\) 0 0
\(421\) −19.6978 19.6978i −0.960012 0.960012i 0.0392186 0.999231i \(-0.487513\pi\)
−0.999231 + 0.0392186i \(0.987513\pi\)
\(422\) 4.32936i 0.210750i
\(423\) 0 0
\(424\) 7.95152 + 7.95152i 0.386160 + 0.386160i
\(425\) −11.5348 + 16.7186i −0.559520 + 0.810970i
\(426\) 0 0
\(427\) −6.72837 −0.325609
\(428\) 3.66987 + 3.66987i 0.177390 + 0.177390i
\(429\) 0 0
\(430\) 12.5791 + 10.4811i 0.606616 + 0.505443i
\(431\) 27.9045 + 27.9045i 1.34411 + 1.34411i 0.891919 + 0.452194i \(0.149359\pi\)
0.452194 + 0.891919i \(0.350641\pi\)
\(432\) 0 0
\(433\) −6.60618 6.60618i −0.317473 0.317473i 0.530323 0.847796i \(-0.322071\pi\)
−0.847796 + 0.530323i \(0.822071\pi\)
\(434\) 2.37165 2.37165i 0.113843 0.113843i
\(435\) 0 0
\(436\) −6.82467 + 6.82467i −0.326842 + 0.326842i
\(437\) −0.167960 −0.00803462
\(438\) 0 0
\(439\) −32.3810 −1.54546 −0.772730 0.634735i \(-0.781109\pi\)
−0.772730 + 0.634735i \(0.781109\pi\)
\(440\) 5.07375 6.08935i 0.241881 0.290298i
\(441\) 0 0
\(442\) −11.2362 9.39576i −0.534451 0.446911i
\(443\) −25.0288 + 25.0288i −1.18915 + 1.18915i −0.211852 + 0.977302i \(0.567950\pi\)
−0.977302 + 0.211852i \(0.932050\pi\)
\(444\) 0 0
\(445\) 6.18999 7.42903i 0.293434 0.352170i
\(446\) 8.55297i 0.404995i
\(447\) 0 0
\(448\) 0.902312 0.0426303
\(449\) 5.77218 + 5.77218i 0.272406 + 0.272406i 0.830068 0.557662i \(-0.188302\pi\)
−0.557662 + 0.830068i \(0.688302\pi\)
\(450\) 0 0
\(451\) 5.10319 0.240300
\(452\) −11.0880 + 11.0880i −0.521537 + 0.521537i
\(453\) 0 0
\(454\) −1.30008 −0.0610160
\(455\) 1.30021 + 7.15754i 0.0609546 + 0.335551i
\(456\) 0 0
\(457\) 21.2810i 0.995483i 0.867326 + 0.497741i \(0.165837\pi\)
−0.867326 + 0.497741i \(0.834163\pi\)
\(458\) 19.3801 19.3801i 0.905570 0.905570i
\(459\) 0 0
\(460\) −0.605133 + 0.726261i −0.0282145 + 0.0338621i
\(461\) −0.427100 0.427100i −0.0198920 0.0198920i 0.697091 0.716983i \(-0.254477\pi\)
−0.716983 + 0.697091i \(0.754477\pi\)
\(462\) 0 0
\(463\) 37.4058i 1.73839i −0.494467 0.869197i \(-0.664637\pi\)
0.494467 0.869197i \(-0.335363\pi\)
\(464\) 2.15343i 0.0999703i
\(465\) 0 0
\(466\) −3.75807 + 3.75807i −0.174089 + 0.174089i
\(467\) −15.1590 + 15.1590i −0.701476 + 0.701476i −0.964727 0.263251i \(-0.915205\pi\)
0.263251 + 0.964727i \(0.415205\pi\)
\(468\) 0 0
\(469\) 3.36181i 0.155234i
\(470\) 22.7994 2.07425i 1.05166 0.0956779i
\(471\) 0 0
\(472\) 1.49031 1.49031i 0.0685971 0.0685971i
\(473\) −25.9553 −1.19343
\(474\) 0 0
\(475\) 1.12809 1.63506i 0.0517604 0.0750217i
\(476\) 2.59189 2.59189i 0.118799 0.118799i
\(477\) 0 0
\(478\) 9.12433 + 9.12433i 0.417337 + 0.417337i
\(479\) −21.9120 21.9120i −1.00118 1.00118i −0.999999 0.00118469i \(-0.999623\pi\)
−0.00118469 0.999999i \(-0.500377\pi\)
\(480\) 0 0
\(481\) −28.4239 + 2.53550i −1.29602 + 0.115609i
\(482\) −17.5200 17.5200i −0.798015 0.798015i
\(483\) 0 0
\(484\) 1.56461i 0.0711187i
\(485\) 4.48993 0.408485i 0.203877 0.0185484i
\(486\) 0 0
\(487\) 25.8968i 1.17349i 0.809770 + 0.586747i \(0.199592\pi\)
−0.809770 + 0.586747i \(0.800408\pi\)
\(488\) 7.45681i 0.337554i
\(489\) 0 0
\(490\) 13.7751 1.25323i 0.622293 0.0566151i
\(491\) 24.8773i 1.12270i 0.827580 + 0.561348i \(0.189717\pi\)
−0.827580 + 0.561348i \(0.810283\pi\)
\(492\) 0 0
\(493\) −6.18571 6.18571i −0.278590 0.278590i
\(494\) 1.09889 + 0.918896i 0.0494413 + 0.0413431i
\(495\) 0 0
\(496\) −2.62842 2.62842i −0.118019 0.118019i
\(497\) −7.65631 7.65631i −0.343432 0.343432i
\(498\) 0 0
\(499\) 24.5043 24.5043i 1.09696 1.09696i 0.102200 0.994764i \(-0.467412\pi\)
0.994764 0.102200i \(-0.0325881\pi\)
\(500\) −3.00568 10.7687i −0.134418 0.481593i
\(501\) 0 0
\(502\) 15.7805 0.704317
\(503\) 28.3021 28.3021i 1.26193 1.26193i 0.311774 0.950156i \(-0.399077\pi\)
0.950156 0.311774i \(-0.100923\pi\)
\(504\) 0 0
\(505\) −28.8140 + 2.62144i −1.28221 + 0.116653i
\(506\) 1.49855i 0.0666187i
\(507\) 0 0
\(508\) 12.1766 12.1766i 0.540250 0.540250i
\(509\) −16.9258 + 16.9258i −0.750224 + 0.750224i −0.974521 0.224297i \(-0.927992\pi\)
0.224297 + 0.974521i \(0.427992\pi\)
\(510\) 0 0
\(511\) 2.96631i 0.131222i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −16.8660 16.8660i −0.743928 0.743928i
\(515\) −8.44413 + 10.1344i −0.372093 + 0.446574i
\(516\) 0 0
\(517\) −25.6619 + 25.6619i −1.12861 + 1.12861i
\(518\) 7.14151i 0.313780i
\(519\) 0 0
\(520\) 7.93244 1.44097i 0.347861 0.0631908i
\(521\) −1.65021 −0.0722972 −0.0361486 0.999346i \(-0.511509\pi\)
−0.0361486 + 0.999346i \(0.511509\pi\)
\(522\) 0 0
\(523\) −13.7318 + 13.7318i −0.600451 + 0.600451i −0.940432 0.339981i \(-0.889579\pi\)
0.339981 + 0.940432i \(0.389579\pi\)
\(524\) −12.8593 −0.561759
\(525\) 0 0
\(526\) −9.75987 9.75987i −0.425551 0.425551i
\(527\) −15.1002 −0.657776
\(528\) 0 0
\(529\) 22.8213i 0.992229i
\(530\) −16.0961 + 19.3180i −0.699168 + 0.839118i
\(531\) 0 0
\(532\) −0.253484 + 0.253484i −0.0109899 + 0.0109899i
\(533\) 3.98210 + 3.32985i 0.172484 + 0.144232i
\(534\) 0 0
\(535\) −7.42882 + 8.91582i −0.321176 + 0.385465i
\(536\) −3.72577 −0.160929
\(537\) 0 0
\(538\) −5.96510 −0.257174
\(539\) −15.5045 + 15.5045i −0.667826 + 0.667826i
\(540\) 0 0
\(541\) 9.44639 9.44639i 0.406132 0.406132i −0.474255 0.880387i \(-0.657283\pi\)
0.880387 + 0.474255i \(0.157283\pi\)
\(542\) 17.0001 + 17.0001i 0.730215 + 0.730215i
\(543\) 0 0
\(544\) −2.87250 2.87250i −0.123157 0.123157i
\(545\) −16.5803 13.8150i −0.710223 0.591770i
\(546\) 0 0
\(547\) 25.0273 + 25.0273i 1.07009 + 1.07009i 0.997351 + 0.0727389i \(0.0231740\pi\)
0.0727389 + 0.997351i \(0.476826\pi\)
\(548\) 16.8216 0.718583
\(549\) 0 0
\(550\) 14.5881 + 10.0649i 0.622039 + 0.429169i
\(551\) 0.604956 + 0.604956i 0.0257720 + 0.0257720i
\(552\) 0 0
\(553\) 4.48828i 0.190861i
\(554\) −21.0124 21.0124i −0.892732 0.892732i
\(555\) 0 0
\(556\) 2.71858i 0.115294i
\(557\) 19.2964 0.817615 0.408808 0.912621i \(-0.365945\pi\)
0.408808 + 0.912621i \(0.365945\pi\)
\(558\) 0 0
\(559\) −20.2533 16.9359i −0.856625 0.716313i
\(560\) 0.182805 + 2.00933i 0.00772493 + 0.0849098i
\(561\) 0 0
\(562\) −5.01648 5.01648i −0.211607 0.211607i
\(563\) 16.9672 + 16.9672i 0.715081 + 0.715081i 0.967594 0.252512i \(-0.0812568\pi\)
−0.252512 + 0.967594i \(0.581257\pi\)
\(564\) 0 0
\(565\) −26.9380 22.4452i −1.13329 0.944278i
\(566\) 5.59976 5.59976i 0.235375 0.235375i
\(567\) 0 0
\(568\) −8.48521 + 8.48521i −0.356031 + 0.356031i
\(569\) 23.3312 0.978094 0.489047 0.872257i \(-0.337345\pi\)
0.489047 + 0.872257i \(0.337345\pi\)
\(570\) 0 0
\(571\) 36.0154i 1.50720i 0.657335 + 0.753598i \(0.271684\pi\)
−0.657335 + 0.753598i \(0.728316\pi\)
\(572\) −8.19845 + 9.80436i −0.342794 + 0.409941i
\(573\) 0 0
\(574\) −0.918564 + 0.918564i −0.0383401 + 0.0383401i
\(575\) −1.73989 1.20042i −0.0725583 0.0500608i
\(576\) 0 0
\(577\) 26.8550i 1.11799i −0.829171 0.558994i \(-0.811187\pi\)
0.829171 0.558994i \(-0.188813\pi\)
\(578\) 0.497511 0.0206937
\(579\) 0 0
\(580\) 4.79540 0.436276i 0.199118 0.0181154i
\(581\) 1.65911 0.0688315
\(582\) 0 0
\(583\) 39.8602i 1.65084i
\(584\) −3.28746 −0.136036
\(585\) 0 0
\(586\) −4.94053 −0.204091
\(587\) 30.6103i 1.26342i 0.775204 + 0.631711i \(0.217647\pi\)
−0.775204 + 0.631711i \(0.782353\pi\)
\(588\) 0 0
\(589\) 1.47679 0.0608500
\(590\) 3.62066 + 3.01680i 0.149060 + 0.124200i
\(591\) 0 0
\(592\) −7.91467 −0.325291
\(593\) 9.97399i 0.409583i 0.978806 + 0.204791i \(0.0656516\pi\)
−0.978806 + 0.204791i \(0.934348\pi\)
\(594\) 0 0
\(595\) 6.29691 + 5.24670i 0.258148 + 0.215094i
\(596\) −0.219650 + 0.219650i −0.00899721 + 0.00899721i
\(597\) 0 0
\(598\) 0.977809 1.16934i 0.0399856 0.0478179i
\(599\) 23.1025i 0.943944i −0.881614 0.471972i \(-0.843542\pi\)
0.881614 0.471972i \(-0.156458\pi\)
\(600\) 0 0
\(601\) 33.4887 1.36603 0.683017 0.730402i \(-0.260667\pi\)
0.683017 + 0.730402i \(0.260667\pi\)
\(602\) 4.67190 4.67190i 0.190413 0.190413i
\(603\) 0 0
\(604\) −14.8047 + 14.8047i −0.602394 + 0.602394i
\(605\) −3.48419 + 0.316985i −0.141652 + 0.0128873i
\(606\) 0 0
\(607\) −11.5600 11.5600i −0.469206 0.469206i 0.432451 0.901657i \(-0.357649\pi\)
−0.901657 + 0.432451i \(0.857649\pi\)
\(608\) 0.280927 + 0.280927i 0.0113931 + 0.0113931i
\(609\) 0 0
\(610\) −16.6054 + 1.51072i −0.672331 + 0.0611674i
\(611\) −36.7688 + 3.27989i −1.48751 + 0.132690i
\(612\) 0 0
\(613\) −4.05711 −0.163865 −0.0819326 0.996638i \(-0.526109\pi\)
−0.0819326 + 0.996638i \(0.526109\pi\)
\(614\) 20.6482i 0.833294i
\(615\) 0 0
\(616\) −2.26160 2.26160i −0.0911226 0.0911226i
\(617\) 23.0322i 0.927243i 0.886033 + 0.463622i \(0.153450\pi\)
−0.886033 + 0.463622i \(0.846550\pi\)
\(618\) 0 0
\(619\) −11.2579 11.2579i −0.452494 0.452494i 0.443687 0.896182i \(-0.353670\pi\)
−0.896182 + 0.443687i \(0.853670\pi\)
\(620\) 5.32063 6.38565i 0.213682 0.256454i
\(621\) 0 0
\(622\) −27.3897 −1.09823
\(623\) −2.75917 2.75917i −0.110544 0.110544i
\(624\) 0 0
\(625\) 23.3717 8.87498i 0.934867 0.354999i
\(626\) 1.07203 + 1.07203i 0.0428471 + 0.0428471i
\(627\) 0 0
\(628\) −12.3405 12.3405i −0.492441 0.492441i
\(629\) −22.7349 + 22.7349i −0.906499 + 0.906499i
\(630\) 0 0
\(631\) −30.7473 + 30.7473i −1.22403 + 1.22403i −0.257845 + 0.966186i \(0.583013\pi\)
−0.966186 + 0.257845i \(0.916987\pi\)
\(632\) 4.97419 0.197863
\(633\) 0 0
\(634\) −27.2403 −1.08185
\(635\) 29.5827 + 24.6488i 1.17395 + 0.978158i
\(636\) 0 0
\(637\) −22.2151 + 1.98166i −0.880195 + 0.0785162i
\(638\) −5.39746 + 5.39746i −0.213687 + 0.213687i
\(639\) 0 0
\(640\) 2.22687 0.202596i 0.0880248 0.00800833i
\(641\) 7.90192i 0.312107i 0.987749 + 0.156054i \(0.0498772\pi\)
−0.987749 + 0.156054i \(0.950123\pi\)
\(642\) 0 0
\(643\) 0.752273 0.0296668 0.0148334 0.999890i \(-0.495278\pi\)
0.0148334 + 0.999890i \(0.495278\pi\)
\(644\) 0.269736 + 0.269736i 0.0106291 + 0.0106291i
\(645\) 0 0
\(646\) 1.61393 0.0634991
\(647\) 13.6310 13.6310i 0.535888 0.535888i −0.386431 0.922319i \(-0.626292\pi\)
0.922319 + 0.386431i \(0.126292\pi\)
\(648\) 0 0
\(649\) −7.47079 −0.293254
\(650\) 4.81594 + 17.3726i 0.188897 + 0.681409i
\(651\) 0 0
\(652\) 22.5682i 0.883841i
\(653\) −13.4609 + 13.4609i −0.526767 + 0.526767i −0.919607 0.392840i \(-0.871493\pi\)
0.392840 + 0.919607i \(0.371493\pi\)
\(654\) 0 0
\(655\) −2.60524 28.6359i −0.101795 1.11890i
\(656\) 1.01801 + 1.01801i 0.0397467 + 0.0397467i
\(657\) 0 0
\(658\) 9.23816i 0.360141i
\(659\) 4.05064i 0.157790i 0.996883 + 0.0788952i \(0.0251393\pi\)
−0.996883 + 0.0788952i \(0.974861\pi\)
\(660\) 0 0
\(661\) −8.95910 + 8.95910i −0.348469 + 0.348469i −0.859539 0.511070i \(-0.829249\pi\)
0.511070 + 0.859539i \(0.329249\pi\)
\(662\) 19.6653 19.6653i 0.764313 0.764313i
\(663\) 0 0
\(664\) 1.83873i 0.0713566i
\(665\) −0.615832 0.513122i −0.0238809 0.0198980i
\(666\) 0 0
\(667\) 0.643742 0.643742i 0.0249258 0.0249258i
\(668\) 16.0230 0.619947
\(669\) 0 0
\(670\) −0.754828 8.29681i −0.0291615 0.320534i
\(671\) 18.6901 18.6901i 0.721525 0.721525i
\(672\) 0 0
\(673\) −9.48767 9.48767i −0.365723 0.365723i 0.500192 0.865915i \(-0.333263\pi\)
−0.865915 + 0.500192i \(0.833263\pi\)
\(674\) 2.03426 + 2.03426i 0.0783569 + 0.0783569i
\(675\) 0 0
\(676\) −12.7947 + 2.30097i −0.492106 + 0.0884989i
\(677\) −14.8157 14.8157i −0.569413 0.569413i 0.362551 0.931964i \(-0.381906\pi\)
−0.931964 + 0.362551i \(0.881906\pi\)
\(678\) 0 0
\(679\) 1.81929i 0.0698179i
\(680\) 5.81472 6.97864i 0.222985 0.267619i
\(681\) 0 0
\(682\) 13.1760i 0.504535i
\(683\) 7.51375i 0.287506i 0.989614 + 0.143753i \(0.0459171\pi\)
−0.989614 + 0.143753i \(0.954083\pi\)
\(684\) 0 0
\(685\) 3.40800 + 37.4595i 0.130213 + 1.43126i
\(686\) 11.8977i 0.454258i
\(687\) 0 0
\(688\) −5.17770 5.17770i −0.197398 0.197398i
\(689\) 26.0089 31.1035i 0.990861 1.18495i
\(690\) 0 0
\(691\) −13.6012 13.6012i −0.517416 0.517416i 0.399373 0.916789i \(-0.369228\pi\)
−0.916789 + 0.399373i \(0.869228\pi\)
\(692\) 1.71083 + 1.71083i 0.0650360 + 0.0650360i
\(693\) 0 0
\(694\) −7.08390 + 7.08390i −0.268901 + 0.268901i
\(695\) −6.05393 + 0.550775i −0.229639 + 0.0208921i
\(696\) 0 0
\(697\) 5.84847 0.221527
\(698\) −8.93472 + 8.93472i −0.338184 + 0.338184i
\(699\) 0 0
\(700\) −4.43749 + 0.814168i −0.167721 + 0.0307726i
\(701\) 36.5503i 1.38049i −0.723577 0.690243i \(-0.757503\pi\)
0.723577 0.690243i \(-0.242497\pi\)
\(702\) 0 0
\(703\) 2.22345 2.22345i 0.0838590 0.0838590i
\(704\) −2.50645 + 2.50645i −0.0944655 + 0.0944655i
\(705\) 0 0
\(706\) 3.69337i 0.139002i
\(707\) 11.6752i 0.439092i
\(708\) 0 0
\(709\) −8.48180 8.48180i −0.318541 0.318541i 0.529666 0.848206i \(-0.322317\pi\)
−0.848206 + 0.529666i \(0.822317\pi\)
\(710\) −20.6145 17.1764i −0.773650 0.644618i
\(711\) 0 0
\(712\) −3.05788 + 3.05788i −0.114599 + 0.114599i
\(713\) 1.57147i 0.0588520i
\(714\) 0 0
\(715\) −23.4940 16.2706i −0.878626 0.608484i
\(716\) 2.08774 0.0780226
\(717\) 0 0
\(718\) 15.6735 15.6735i 0.584930 0.584930i
\(719\) 11.8158 0.440656 0.220328 0.975426i \(-0.429287\pi\)
0.220328 + 0.975426i \(0.429287\pi\)
\(720\) 0 0
\(721\) 3.76394 + 3.76394i 0.140176 + 0.140176i
\(722\) 18.8422 0.701233
\(723\) 0 0
\(724\) 5.08144i 0.188850i
\(725\) 1.94306 + 10.5904i 0.0721635 + 0.393316i
\(726\) 0 0
\(727\) 31.9067 31.9067i 1.18335 1.18335i 0.204485 0.978870i \(-0.434448\pi\)
0.978870 0.204485i \(-0.0655519\pi\)
\(728\) −0.289060 3.24047i −0.0107133 0.120100i
\(729\) 0 0
\(730\) −0.666028 7.32075i −0.0246508 0.270953i
\(731\) −29.7459 −1.10019
\(732\) 0 0
\(733\) −27.4594 −1.01424 −0.507118 0.861877i \(-0.669289\pi\)
−0.507118 + 0.861877i \(0.669289\pi\)
\(734\) 9.00704 9.00704i 0.332456 0.332456i
\(735\) 0 0
\(736\) 0.298938 0.298938i 0.0110190 0.0110190i
\(737\) 9.33847 + 9.33847i 0.343987 + 0.343987i
\(738\) 0 0
\(739\) −24.9129 24.9129i −0.916435 0.916435i 0.0803334 0.996768i \(-0.474402\pi\)
−0.996768 + 0.0803334i \(0.974402\pi\)
\(740\) −1.60348 17.6250i −0.0589453 0.647906i
\(741\) 0 0
\(742\) 7.17475 + 7.17475i 0.263393 + 0.263393i
\(743\) −1.45152 −0.0532510 −0.0266255 0.999645i \(-0.508476\pi\)
−0.0266255 + 0.999645i \(0.508476\pi\)
\(744\) 0 0
\(745\) −0.533632 0.444632i −0.0195508 0.0162900i
\(746\) 1.94492 + 1.94492i 0.0712085 + 0.0712085i
\(747\) 0 0
\(748\) 14.3996i 0.526500i
\(749\) 3.31137 + 3.31137i 0.120995 + 0.120995i
\(750\) 0 0
\(751\) 46.1389i 1.68363i 0.539765 + 0.841815i \(0.318513\pi\)
−0.539765 + 0.841815i \(0.681487\pi\)
\(752\) −10.2383 −0.373353
\(753\) 0 0
\(754\) −7.73358 + 0.689859i −0.281640 + 0.0251232i
\(755\) −35.9675 29.9688i −1.30899 1.09067i
\(756\) 0 0
\(757\) 4.45999 + 4.45999i 0.162101 + 0.162101i 0.783497 0.621396i \(-0.213434\pi\)
−0.621396 + 0.783497i \(0.713434\pi\)
\(758\) −11.2556 11.2556i −0.408822 0.408822i
\(759\) 0 0
\(760\) −0.568674 + 0.682504i −0.0206280 + 0.0247570i
\(761\) 14.2992 14.2992i 0.518346 0.518346i −0.398725 0.917071i \(-0.630547\pi\)
0.917071 + 0.398725i \(0.130547\pi\)
\(762\) 0 0
\(763\) −6.15798 + 6.15798i −0.222934 + 0.222934i
\(764\) −12.0401 −0.435595
\(765\) 0 0
\(766\) 16.4651i 0.594909i
\(767\) −5.82957 4.87471i −0.210493 0.176016i
\(768\) 0 0
\(769\) 23.6603 23.6603i 0.853213 0.853213i −0.137314 0.990528i \(-0.543847\pi\)
0.990528 + 0.137314i \(0.0438470\pi\)
\(770\) 4.57811 5.49449i 0.164984 0.198008i
\(771\) 0 0
\(772\) 15.7987i 0.568608i
\(773\) 5.59189 0.201126 0.100563 0.994931i \(-0.467936\pi\)
0.100563 + 0.994931i \(0.467936\pi\)
\(774\) 0 0
\(775\) 15.2980 + 10.5547i 0.549519 + 0.379134i
\(776\) −2.01625 −0.0723792
\(777\) 0 0
\(778\) 26.7942i 0.960620i
\(779\) −0.571974 −0.0204931
\(780\) 0 0
\(781\) 42.5355 1.52204
\(782\) 1.71740i 0.0614141i
\(783\) 0 0
\(784\) −6.18583 −0.220923
\(785\) 24.9806 29.9809i 0.891596 1.07006i
\(786\) 0 0
\(787\) −19.0891 −0.680454 −0.340227 0.940343i \(-0.610504\pi\)
−0.340227 + 0.940343i \(0.610504\pi\)
\(788\) 12.7102i 0.452783i
\(789\) 0 0
\(790\) 1.00775 + 11.0769i 0.0358543 + 0.394098i
\(791\) −10.0049 + 10.0049i −0.355732 + 0.355732i
\(792\) 0 0
\(793\) 26.7796 2.38882i 0.950971 0.0848296i
\(794\) 17.9325i 0.636400i
\(795\) 0 0
\(796\) −15.5881 −0.552506
\(797\) 25.7517 25.7517i 0.912171 0.912171i −0.0842721 0.996443i \(-0.526857\pi\)
0.996443 + 0.0842721i \(0.0268565\pi\)
\(798\) 0 0
\(799\) −29.4096 + 29.4096i −1.04044 + 1.04044i
\(800\) 0.902312 + 4.91791i 0.0319016 + 0.173874i
\(801\) 0 0
\(802\) −1.68244 1.68244i −0.0594090 0.0594090i
\(803\) 8.23986 + 8.23986i 0.290778 + 0.290778i
\(804\) 0 0
\(805\) −0.546019 + 0.655314i −0.0192447 + 0.0230968i
\(806\) −8.59738 + 10.2814i −0.302830 + 0.362148i
\(807\) 0 0
\(808\) 12.9392 0.455200
\(809\) 15.6385i 0.549819i 0.961470 + 0.274909i \(0.0886479\pi\)
−0.961470 + 0.274909i \(0.911352\pi\)
\(810\) 0 0
\(811\) 1.09361 + 1.09361i 0.0384018 + 0.0384018i 0.726047 0.687645i \(-0.241355\pi\)
−0.687645 + 0.726047i \(0.741355\pi\)
\(812\) 1.94306i 0.0681881i
\(813\) 0 0
\(814\) 19.8378 + 19.8378i 0.695313 + 0.695313i
\(815\) 50.2566 4.57225i 1.76041 0.160159i
\(816\) 0 0
\(817\) 2.90912 0.101777
\(818\) 2.71561 + 2.71561i 0.0949491 + 0.0949491i
\(819\) 0 0
\(820\) −2.06073 + 2.47322i −0.0719639 + 0.0863688i
\(821\) −2.32596 2.32596i −0.0811766 0.0811766i 0.665353 0.746529i \(-0.268281\pi\)
−0.746529 + 0.665353i \(0.768281\pi\)
\(822\) 0 0
\(823\) 4.63869 + 4.63869i 0.161694 + 0.161694i 0.783317 0.621623i \(-0.213526\pi\)
−0.621623 + 0.783317i \(0.713526\pi\)
\(824\) 4.17144 4.17144i 0.145319 0.145319i
\(825\) 0 0
\(826\) 1.34473 1.34473i 0.0467890 0.0467890i
\(827\) 27.3159 0.949865 0.474933 0.880022i \(-0.342472\pi\)
0.474933 + 0.880022i \(0.342472\pi\)
\(828\) 0 0
\(829\) 29.4941 1.02437 0.512186 0.858875i \(-0.328836\pi\)
0.512186 + 0.858875i \(0.328836\pi\)
\(830\) 4.09462 0.372520i 0.142126 0.0129304i
\(831\) 0 0
\(832\) −3.59129 + 0.320354i −0.124506 + 0.0111063i
\(833\) −17.7688 + 17.7688i −0.615652 + 0.615652i
\(834\) 0 0
\(835\) 3.24620 + 35.6811i 0.112339 + 1.23479i
\(836\) 1.40826i 0.0487058i
\(837\) 0 0
\(838\) 36.7263 1.26869
\(839\) −38.3083 38.3083i −1.32255 1.32255i −0.911707 0.410841i \(-0.865235\pi\)
−0.410841 0.911707i \(-0.634765\pi\)
\(840\) 0 0
\(841\) 24.3628 0.840095
\(842\) −19.6978 + 19.6978i −0.678831 + 0.678831i
\(843\) 0 0
\(844\) −4.32936 −0.149023
\(845\) −7.71614 28.0261i −0.265443 0.964126i
\(846\) 0 0
\(847\) 1.41177i 0.0485089i
\(848\) 7.95152 7.95152i 0.273056 0.273056i
\(849\) 0 0
\(850\) 16.7186 + 11.5348i 0.573442 + 0.395640i
\(851\) −2.36600 2.36600i −0.0811054 0.0811054i
\(852\) 0 0
\(853\) 27.4148i 0.938664i 0.883022 + 0.469332i \(0.155505\pi\)
−0.883022 + 0.469332i \(0.844495\pi\)
\(854\) 6.72837i 0.230240i
\(855\) 0 0
\(856\) 3.66987 3.66987i 0.125433 0.125433i
\(857\) −18.6021 + 18.6021i −0.635436 + 0.635436i −0.949426 0.313990i \(-0.898334\pi\)
0.313990 + 0.949426i \(0.398334\pi\)
\(858\) 0 0
\(859\) 9.27736i 0.316540i −0.987396 0.158270i \(-0.949408\pi\)
0.987396 0.158270i \(-0.0505916\pi\)
\(860\) 10.4811 12.5791i 0.357402 0.428942i
\(861\) 0 0
\(862\) 27.9045 27.9045i 0.950432 0.950432i
\(863\) 3.48175 0.118520 0.0592601 0.998243i \(-0.481126\pi\)
0.0592601 + 0.998243i \(0.481126\pi\)
\(864\) 0 0
\(865\) −3.46319 + 4.15640i −0.117752 + 0.141322i
\(866\) −6.60618 + 6.60618i −0.224487 + 0.224487i
\(867\) 0 0
\(868\) −2.37165 2.37165i −0.0804991 0.0804991i
\(869\) −12.4676 12.4676i −0.422934 0.422934i
\(870\) 0 0
\(871\) 1.19357 + 13.3803i 0.0404425 + 0.453375i
\(872\) 6.82467 + 6.82467i 0.231112 + 0.231112i
\(873\) 0 0
\(874\) 0.167960i 0.00568133i
\(875\) −2.71207 9.71677i −0.0916846 0.328487i
\(876\) 0 0
\(877\) 49.5564i 1.67340i 0.547662 + 0.836700i \(0.315518\pi\)
−0.547662 + 0.836700i \(0.684482\pi\)
\(878\) 32.3810i 1.09281i
\(879\) 0 0
\(880\) −6.08935 5.07375i −0.205272 0.171036i
\(881\) 14.6069i 0.492119i −0.969255 0.246060i \(-0.920864\pi\)
0.969255 0.246060i \(-0.0791359\pi\)
\(882\) 0 0
\(883\) −25.1501 25.1501i −0.846367 0.846367i 0.143310 0.989678i \(-0.454225\pi\)
−0.989678 + 0.143310i \(0.954225\pi\)
\(884\) −9.39576 + 11.2362i −0.316014 + 0.377914i
\(885\) 0 0
\(886\) 25.0288 + 25.0288i 0.840859 + 0.840859i
\(887\) 29.0929 + 29.0929i 0.976846 + 0.976846i 0.999738 0.0228924i \(-0.00728750\pi\)
−0.0228924 + 0.999738i \(0.507288\pi\)
\(888\) 0 0
\(889\) 10.9871 10.9871i 0.368496 0.368496i
\(890\) −7.42903 6.18999i −0.249022 0.207489i
\(891\) 0 0
\(892\) 8.55297 0.286375
\(893\) 2.87622 2.87622i 0.0962492 0.0962492i
\(894\) 0 0
\(895\) 0.422969 + 4.64913i 0.0141383 + 0.155403i
\(896\) 0.902312i 0.0301441i
\(897\) 0 0
\(898\) 5.77218 5.77218i 0.192620 0.192620i
\(899\) −5.66010 + 5.66010i −0.188775 + 0.188775i
\(900\) 0 0
\(901\) 45.6814i 1.52187i
\(902\) 5.10319i 0.169918i
\(903\) 0 0
\(904\) 11.0880 + 11.0880i 0.368782 + 0.368782i
\(905\) 11.3157 1.02948i 0.376147 0.0342211i
\(906\) 0 0
\(907\) −14.7775 + 14.7775i −0.490679 + 0.490679i −0.908520 0.417841i \(-0.862787\pi\)
0.417841 + 0.908520i \(0.362787\pi\)
\(908\) 1.30008i 0.0431448i
\(909\) 0 0
\(910\) 7.15754 1.30021i 0.237270 0.0431014i
\(911\) −19.4565 −0.644623 −0.322311 0.946634i \(-0.604460\pi\)
−0.322311 + 0.946634i \(0.604460\pi\)
\(912\) 0 0
\(913\) −4.60869 + 4.60869i −0.152525 + 0.152525i
\(914\) 21.2810 0.703912
\(915\) 0 0
\(916\) −19.3801 19.3801i −0.640335 0.640335i
\(917\) −11.6031 −0.383167
\(918\) 0 0
\(919\) 10.6444i 0.351126i 0.984468 + 0.175563i \(0.0561745\pi\)
−0.984468 + 0.175563i \(0.943825\pi\)
\(920\) 0.726261 + 0.605133i 0.0239441 + 0.0199507i
\(921\) 0 0
\(922\) −0.427100 + 0.427100i −0.0140658 + 0.0140658i
\(923\) 33.1911 + 27.7546i 1.09250 + 0.913553i
\(924\) 0 0
\(925\) 38.9236 7.14151i 1.27980 0.234811i
\(926\) −37.4058 −1.22923
\(927\) 0 0
\(928\) −2.15343 −0.0706897
\(929\) 8.73291 8.73291i 0.286517 0.286517i −0.549184 0.835701i \(-0.685061\pi\)
0.835701 + 0.549184i \(0.185061\pi\)
\(930\) 0 0
\(931\) 1.73777 1.73777i 0.0569531 0.0569531i
\(932\) 3.75807 + 3.75807i 0.123100 + 0.123100i
\(933\) 0 0
\(934\) 15.1590 + 15.1590i 0.496019 + 0.496019i
\(935\) −32.0660 + 2.91730i −1.04867 + 0.0954059i
\(936\) 0 0
\(937\) 13.3508 + 13.3508i 0.436152 + 0.436152i 0.890715 0.454563i \(-0.150205\pi\)
−0.454563 + 0.890715i \(0.650205\pi\)
\(938\) −3.36181 −0.109767
\(939\) 0 0
\(940\) −2.07425 22.7994i −0.0676545 0.743635i
\(941\) 9.62151 + 9.62151i 0.313652 + 0.313652i 0.846323 0.532670i \(-0.178811\pi\)
−0.532670 + 0.846323i \(0.678811\pi\)
\(942\) 0 0
\(943\) 0.608645i 0.0198202i
\(944\) −1.49031 1.49031i −0.0485055 0.0485055i
\(945\) 0 0
\(946\) 25.9553i 0.843880i
\(947\) 43.6546 1.41858 0.709292 0.704915i \(-0.249015\pi\)
0.709292 + 0.704915i \(0.249015\pi\)
\(948\) 0 0
\(949\) 1.05315 + 11.8062i 0.0341868 + 0.383246i
\(950\) −1.63506 1.12809i −0.0530483 0.0366001i
\(951\) 0 0
\(952\) −2.59189 2.59189i −0.0840037 0.0840037i
\(953\) −24.1126 24.1126i −0.781084 0.781084i 0.198930 0.980014i \(-0.436253\pi\)
−0.980014 + 0.198930i \(0.936253\pi\)
\(954\) 0 0
\(955\) −2.43928 26.8117i −0.0789332 0.867607i
\(956\) 9.12433 9.12433i 0.295102 0.295102i
\(957\) 0 0
\(958\) −21.9120 + 21.9120i −0.707944 + 0.707944i
\(959\) 15.1783 0.490134
\(960\) 0 0
\(961\) 17.1829i 0.554286i
\(962\) 2.53550 + 28.4239i 0.0817478 + 0.916423i
\(963\) 0 0
\(964\) −17.5200 + 17.5200i −0.564282 + 0.564282i
\(965\) 35.1817 3.20076i 1.13254 0.103036i
\(966\) 0 0
\(967\) 52.7379i 1.69594i −0.530046 0.847969i \(-0.677825\pi\)
0.530046 0.847969i \(-0.322175\pi\)
\(968\) 1.56461 0.0502885
\(969\) 0 0
\(970\) −0.408485 4.48993i −0.0131157 0.144163i
\(971\) −48.4650 −1.55532 −0.777658 0.628687i \(-0.783593\pi\)
−0.777658 + 0.628687i \(0.783593\pi\)
\(972\) 0 0
\(973\) 2.45301i 0.0786399i
\(974\) 25.8968 0.829786
\(975\) 0 0
\(976\) 7.45681 0.238687
\(977\) 4.05447i 0.129714i −0.997895 0.0648569i \(-0.979341\pi\)
0.997895 0.0648569i \(-0.0206591\pi\)
\(978\) 0 0
\(979\) 15.3289 0.489913
\(980\) −1.25323 13.7751i −0.0400329 0.440028i
\(981\) 0 0
\(982\) 24.8773 0.793866
\(983\) 31.1178i 0.992504i −0.868178 0.496252i \(-0.834709\pi\)
0.868178 0.496252i \(-0.165291\pi\)
\(984\) 0 0
\(985\) −28.3040 + 2.57505i −0.901841 + 0.0820478i
\(986\) −6.18571 + 6.18571i −0.196993 + 0.196993i
\(987\) 0 0
\(988\) 0.918896 1.09889i 0.0292340 0.0349603i
\(989\) 3.09563i 0.0984352i
\(990\) 0 0
\(991\) −24.6125 −0.781843 −0.390922 0.920424i \(-0.627844\pi\)
−0.390922 + 0.920424i \(0.627844\pi\)
\(992\) −2.62842 + 2.62842i −0.0834523 + 0.0834523i
\(993\) 0 0
\(994\) −7.65631 + 7.65631i −0.242843 + 0.242843i
\(995\) −3.15810 34.7127i −0.100118 1.10047i
\(996\) 0 0
\(997\) 7.41636 + 7.41636i 0.234878 + 0.234878i 0.814725 0.579847i \(-0.196888\pi\)
−0.579847 + 0.814725i \(0.696888\pi\)
\(998\) −24.5043 24.5043i −0.775671 0.775671i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.w.h.307.3 yes 14
3.2 odd 2 1170.2.w.g.307.5 yes 14
5.3 odd 4 1170.2.m.g.73.1 14
13.5 odd 4 1170.2.m.g.577.1 yes 14
15.8 even 4 1170.2.m.h.73.7 yes 14
39.5 even 4 1170.2.m.h.577.7 yes 14
65.18 even 4 inner 1170.2.w.h.343.3 yes 14
195.83 odd 4 1170.2.w.g.343.5 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.m.g.73.1 14 5.3 odd 4
1170.2.m.g.577.1 yes 14 13.5 odd 4
1170.2.m.h.73.7 yes 14 15.8 even 4
1170.2.m.h.577.7 yes 14 39.5 even 4
1170.2.w.g.307.5 yes 14 3.2 odd 2
1170.2.w.g.343.5 yes 14 195.83 odd 4
1170.2.w.h.307.3 yes 14 1.1 even 1 trivial
1170.2.w.h.343.3 yes 14 65.18 even 4 inner