Properties

Label 1170.2.s.c.1061.1
Level $1170$
Weight $2$
Character 1170.1061
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(161,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,12,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1061.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1170.1061
Dual form 1170.2.s.c.161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(0.707107 - 0.707107i) q^{5} +(3.00000 - 3.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +1.00000i q^{10} +(2.82843 + 2.82843i) q^{11} +(-2.00000 - 3.00000i) q^{13} +4.24264i q^{14} -1.00000 q^{16} -2.82843 q^{17} +(5.00000 + 5.00000i) q^{19} +(-0.707107 - 0.707107i) q^{20} -4.00000 q^{22} +7.07107 q^{23} -1.00000i q^{25} +(3.53553 + 0.707107i) q^{26} +(-3.00000 - 3.00000i) q^{28} -2.82843i q^{29} +(-6.00000 - 6.00000i) q^{31} +(0.707107 - 0.707107i) q^{32} +(2.00000 - 2.00000i) q^{34} -4.24264i q^{35} +(-1.00000 + 1.00000i) q^{37} -7.07107 q^{38} +1.00000 q^{40} +(-5.65685 + 5.65685i) q^{41} -12.0000i q^{43} +(2.82843 - 2.82843i) q^{44} +(-5.00000 + 5.00000i) q^{46} +(5.65685 + 5.65685i) q^{47} -11.0000i q^{49} +(0.707107 + 0.707107i) q^{50} +(-3.00000 + 2.00000i) q^{52} +1.41421i q^{53} +4.00000 q^{55} +4.24264 q^{56} +(2.00000 + 2.00000i) q^{58} +(-8.48528 - 8.48528i) q^{59} +6.00000 q^{61} +8.48528 q^{62} +1.00000i q^{64} +(-3.53553 - 0.707107i) q^{65} +(6.00000 + 6.00000i) q^{67} +2.82843i q^{68} +(3.00000 + 3.00000i) q^{70} +(2.82843 - 2.82843i) q^{71} +(8.00000 - 8.00000i) q^{73} -1.41421i q^{74} +(5.00000 - 5.00000i) q^{76} +16.9706 q^{77} -4.00000 q^{79} +(-0.707107 + 0.707107i) q^{80} -8.00000i q^{82} +(2.82843 - 2.82843i) q^{83} +(-2.00000 + 2.00000i) q^{85} +(8.48528 + 8.48528i) q^{86} +4.00000i q^{88} +(5.65685 + 5.65685i) q^{89} +(-15.0000 - 3.00000i) q^{91} -7.07107i q^{92} -8.00000 q^{94} +7.07107 q^{95} +(7.77817 + 7.77817i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 12 q^{7} - 8 q^{13} - 4 q^{16} + 20 q^{19} - 16 q^{22} - 12 q^{28} - 24 q^{31} + 8 q^{34} - 4 q^{37} + 4 q^{40} - 20 q^{46} - 12 q^{52} + 16 q^{55} + 8 q^{58} + 24 q^{61} + 24 q^{67} + 12 q^{70} + 32 q^{73}+ \cdots - 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 0 0
\(7\) 3.00000 3.00000i 1.13389 1.13389i 0.144370 0.989524i \(-0.453885\pi\)
0.989524 0.144370i \(-0.0461154\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 2.82843 + 2.82843i 0.852803 + 0.852803i 0.990478 0.137675i \(-0.0439628\pi\)
−0.137675 + 0.990478i \(0.543963\pi\)
\(12\) 0 0
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) 4.24264i 1.13389i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.82843 −0.685994 −0.342997 0.939336i \(-0.611442\pi\)
−0.342997 + 0.939336i \(0.611442\pi\)
\(18\) 0 0
\(19\) 5.00000 + 5.00000i 1.14708 + 1.14708i 0.987124 + 0.159954i \(0.0511347\pi\)
0.159954 + 0.987124i \(0.448865\pi\)
\(20\) −0.707107 0.707107i −0.158114 0.158114i
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 7.07107 1.47442 0.737210 0.675664i \(-0.236143\pi\)
0.737210 + 0.675664i \(0.236143\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 3.53553 + 0.707107i 0.693375 + 0.138675i
\(27\) 0 0
\(28\) −3.00000 3.00000i −0.566947 0.566947i
\(29\) 2.82843i 0.525226i −0.964901 0.262613i \(-0.915416\pi\)
0.964901 0.262613i \(-0.0845842\pi\)
\(30\) 0 0
\(31\) −6.00000 6.00000i −1.07763 1.07763i −0.996721 0.0809104i \(-0.974217\pi\)
−0.0809104 0.996721i \(-0.525783\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 2.00000 2.00000i 0.342997 0.342997i
\(35\) 4.24264i 0.717137i
\(36\) 0 0
\(37\) −1.00000 + 1.00000i −0.164399 + 0.164399i −0.784512 0.620113i \(-0.787087\pi\)
0.620113 + 0.784512i \(0.287087\pi\)
\(38\) −7.07107 −1.14708
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −5.65685 + 5.65685i −0.883452 + 0.883452i −0.993884 0.110432i \(-0.964777\pi\)
0.110432 + 0.993884i \(0.464777\pi\)
\(42\) 0 0
\(43\) 12.0000i 1.82998i −0.403473 0.914991i \(-0.632197\pi\)
0.403473 0.914991i \(-0.367803\pi\)
\(44\) 2.82843 2.82843i 0.426401 0.426401i
\(45\) 0 0
\(46\) −5.00000 + 5.00000i −0.737210 + 0.737210i
\(47\) 5.65685 + 5.65685i 0.825137 + 0.825137i 0.986840 0.161703i \(-0.0516985\pi\)
−0.161703 + 0.986840i \(0.551699\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0.707107 + 0.707107i 0.100000 + 0.100000i
\(51\) 0 0
\(52\) −3.00000 + 2.00000i −0.416025 + 0.277350i
\(53\) 1.41421i 0.194257i 0.995272 + 0.0971286i \(0.0309658\pi\)
−0.995272 + 0.0971286i \(0.969034\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 4.24264 0.566947
\(57\) 0 0
\(58\) 2.00000 + 2.00000i 0.262613 + 0.262613i
\(59\) −8.48528 8.48528i −1.10469 1.10469i −0.993837 0.110853i \(-0.964642\pi\)
−0.110853 0.993837i \(-0.535358\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 8.48528 1.07763
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −3.53553 0.707107i −0.438529 0.0877058i
\(66\) 0 0
\(67\) 6.00000 + 6.00000i 0.733017 + 0.733017i 0.971216 0.238200i \(-0.0765572\pi\)
−0.238200 + 0.971216i \(0.576557\pi\)
\(68\) 2.82843i 0.342997i
\(69\) 0 0
\(70\) 3.00000 + 3.00000i 0.358569 + 0.358569i
\(71\) 2.82843 2.82843i 0.335673 0.335673i −0.519063 0.854736i \(-0.673719\pi\)
0.854736 + 0.519063i \(0.173719\pi\)
\(72\) 0 0
\(73\) 8.00000 8.00000i 0.936329 0.936329i −0.0617617 0.998091i \(-0.519672\pi\)
0.998091 + 0.0617617i \(0.0196719\pi\)
\(74\) 1.41421i 0.164399i
\(75\) 0 0
\(76\) 5.00000 5.00000i 0.573539 0.573539i
\(77\) 16.9706 1.93398
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) −0.707107 + 0.707107i −0.0790569 + 0.0790569i
\(81\) 0 0
\(82\) 8.00000i 0.883452i
\(83\) 2.82843 2.82843i 0.310460 0.310460i −0.534628 0.845088i \(-0.679548\pi\)
0.845088 + 0.534628i \(0.179548\pi\)
\(84\) 0 0
\(85\) −2.00000 + 2.00000i −0.216930 + 0.216930i
\(86\) 8.48528 + 8.48528i 0.914991 + 0.914991i
\(87\) 0 0
\(88\) 4.00000i 0.426401i
\(89\) 5.65685 + 5.65685i 0.599625 + 0.599625i 0.940213 0.340587i \(-0.110626\pi\)
−0.340587 + 0.940213i \(0.610626\pi\)
\(90\) 0 0
\(91\) −15.0000 3.00000i −1.57243 0.314485i
\(92\) 7.07107i 0.737210i
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 7.07107 0.725476
\(96\) 0 0
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) 7.77817 + 7.77817i 0.785714 + 0.785714i
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 2.00000i 0.197066i 0.995134 + 0.0985329i \(0.0314150\pi\)
−0.995134 + 0.0985329i \(0.968585\pi\)
\(104\) 0.707107 3.53553i 0.0693375 0.346688i
\(105\) 0 0
\(106\) −1.00000 1.00000i −0.0971286 0.0971286i
\(107\) 16.9706i 1.64061i 0.571929 + 0.820303i \(0.306195\pi\)
−0.571929 + 0.820303i \(0.693805\pi\)
\(108\) 0 0
\(109\) 12.0000 + 12.0000i 1.14939 + 1.14939i 0.986672 + 0.162719i \(0.0520264\pi\)
0.162719 + 0.986672i \(0.447974\pi\)
\(110\) −2.82843 + 2.82843i −0.269680 + 0.269680i
\(111\) 0 0
\(112\) −3.00000 + 3.00000i −0.283473 + 0.283473i
\(113\) 11.3137i 1.06430i −0.846649 0.532152i \(-0.821383\pi\)
0.846649 0.532152i \(-0.178617\pi\)
\(114\) 0 0
\(115\) 5.00000 5.00000i 0.466252 0.466252i
\(116\) −2.82843 −0.262613
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) −8.48528 + 8.48528i −0.777844 + 0.777844i
\(120\) 0 0
\(121\) 5.00000i 0.454545i
\(122\) −4.24264 + 4.24264i −0.384111 + 0.384111i
\(123\) 0 0
\(124\) −6.00000 + 6.00000i −0.538816 + 0.538816i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 14.0000i 1.24230i 0.783692 + 0.621150i \(0.213334\pi\)
−0.783692 + 0.621150i \(0.786666\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 3.00000 2.00000i 0.263117 0.175412i
\(131\) 7.07107i 0.617802i −0.951094 0.308901i \(-0.900039\pi\)
0.951094 0.308901i \(-0.0999612\pi\)
\(132\) 0 0
\(133\) 30.0000 2.60133
\(134\) −8.48528 −0.733017
\(135\) 0 0
\(136\) −2.00000 2.00000i −0.171499 0.171499i
\(137\) −12.7279 12.7279i −1.08742 1.08742i −0.995793 0.0916263i \(-0.970793\pi\)
−0.0916263 0.995793i \(-0.529207\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) −4.24264 −0.358569
\(141\) 0 0
\(142\) 4.00000i 0.335673i
\(143\) 2.82843 14.1421i 0.236525 1.18262i
\(144\) 0 0
\(145\) −2.00000 2.00000i −0.166091 0.166091i
\(146\) 11.3137i 0.936329i
\(147\) 0 0
\(148\) 1.00000 + 1.00000i 0.0821995 + 0.0821995i
\(149\) 4.24264 4.24264i 0.347571 0.347571i −0.511633 0.859204i \(-0.670959\pi\)
0.859204 + 0.511633i \(0.170959\pi\)
\(150\) 0 0
\(151\) −6.00000 + 6.00000i −0.488273 + 0.488273i −0.907761 0.419488i \(-0.862210\pi\)
0.419488 + 0.907761i \(0.362210\pi\)
\(152\) 7.07107i 0.573539i
\(153\) 0 0
\(154\) −12.0000 + 12.0000i −0.966988 + 0.966988i
\(155\) −8.48528 −0.681554
\(156\) 0 0
\(157\) 16.0000 1.27694 0.638470 0.769647i \(-0.279568\pi\)
0.638470 + 0.769647i \(0.279568\pi\)
\(158\) 2.82843 2.82843i 0.225018 0.225018i
\(159\) 0 0
\(160\) 1.00000i 0.0790569i
\(161\) 21.2132 21.2132i 1.67183 1.67183i
\(162\) 0 0
\(163\) 12.0000 12.0000i 0.939913 0.939913i −0.0583818 0.998294i \(-0.518594\pi\)
0.998294 + 0.0583818i \(0.0185941\pi\)
\(164\) 5.65685 + 5.65685i 0.441726 + 0.441726i
\(165\) 0 0
\(166\) 4.00000i 0.310460i
\(167\) −12.7279 12.7279i −0.984916 0.984916i 0.0149717 0.999888i \(-0.495234\pi\)
−0.999888 + 0.0149717i \(0.995234\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 2.82843i 0.216930i
\(171\) 0 0
\(172\) −12.0000 −0.914991
\(173\) −7.07107 −0.537603 −0.268802 0.963196i \(-0.586628\pi\)
−0.268802 + 0.963196i \(0.586628\pi\)
\(174\) 0 0
\(175\) −3.00000 3.00000i −0.226779 0.226779i
\(176\) −2.82843 2.82843i −0.213201 0.213201i
\(177\) 0 0
\(178\) −8.00000 −0.599625
\(179\) −24.0416 −1.79696 −0.898478 0.439019i \(-0.855326\pi\)
−0.898478 + 0.439019i \(0.855326\pi\)
\(180\) 0 0
\(181\) 14.0000i 1.04061i 0.853980 + 0.520306i \(0.174182\pi\)
−0.853980 + 0.520306i \(0.825818\pi\)
\(182\) 12.7279 8.48528i 0.943456 0.628971i
\(183\) 0 0
\(184\) 5.00000 + 5.00000i 0.368605 + 0.368605i
\(185\) 1.41421i 0.103975i
\(186\) 0 0
\(187\) −8.00000 8.00000i −0.585018 0.585018i
\(188\) 5.65685 5.65685i 0.412568 0.412568i
\(189\) 0 0
\(190\) −5.00000 + 5.00000i −0.362738 + 0.362738i
\(191\) 22.6274i 1.63726i 0.574320 + 0.818631i \(0.305267\pi\)
−0.574320 + 0.818631i \(0.694733\pi\)
\(192\) 0 0
\(193\) 6.00000 6.00000i 0.431889 0.431889i −0.457381 0.889271i \(-0.651213\pi\)
0.889271 + 0.457381i \(0.151213\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −11.0000 −0.785714
\(197\) 2.82843 2.82843i 0.201517 0.201517i −0.599133 0.800650i \(-0.704488\pi\)
0.800650 + 0.599133i \(0.204488\pi\)
\(198\) 0 0
\(199\) 8.00000i 0.567105i −0.958957 0.283552i \(-0.908487\pi\)
0.958957 0.283552i \(-0.0915130\pi\)
\(200\) 0.707107 0.707107i 0.0500000 0.0500000i
\(201\) 0 0
\(202\) 0 0
\(203\) −8.48528 8.48528i −0.595550 0.595550i
\(204\) 0 0
\(205\) 8.00000i 0.558744i
\(206\) −1.41421 1.41421i −0.0985329 0.0985329i
\(207\) 0 0
\(208\) 2.00000 + 3.00000i 0.138675 + 0.208013i
\(209\) 28.2843i 1.95646i
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) 1.41421 0.0971286
\(213\) 0 0
\(214\) −12.0000 12.0000i −0.820303 0.820303i
\(215\) −8.48528 8.48528i −0.578691 0.578691i
\(216\) 0 0
\(217\) −36.0000 −2.44384
\(218\) −16.9706 −1.14939
\(219\) 0 0
\(220\) 4.00000i 0.269680i
\(221\) 5.65685 + 8.48528i 0.380521 + 0.570782i
\(222\) 0 0
\(223\) 3.00000 + 3.00000i 0.200895 + 0.200895i 0.800383 0.599489i \(-0.204629\pi\)
−0.599489 + 0.800383i \(0.704629\pi\)
\(224\) 4.24264i 0.283473i
\(225\) 0 0
\(226\) 8.00000 + 8.00000i 0.532152 + 0.532152i
\(227\) −8.48528 + 8.48528i −0.563188 + 0.563188i −0.930212 0.367024i \(-0.880377\pi\)
0.367024 + 0.930212i \(0.380377\pi\)
\(228\) 0 0
\(229\) 4.00000 4.00000i 0.264327 0.264327i −0.562482 0.826809i \(-0.690153\pi\)
0.826809 + 0.562482i \(0.190153\pi\)
\(230\) 7.07107i 0.466252i
\(231\) 0 0
\(232\) 2.00000 2.00000i 0.131306 0.131306i
\(233\) 2.82843 0.185296 0.0926482 0.995699i \(-0.470467\pi\)
0.0926482 + 0.995699i \(0.470467\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) −8.48528 + 8.48528i −0.552345 + 0.552345i
\(237\) 0 0
\(238\) 12.0000i 0.777844i
\(239\) 2.82843 2.82843i 0.182956 0.182956i −0.609687 0.792642i \(-0.708705\pi\)
0.792642 + 0.609687i \(0.208705\pi\)
\(240\) 0 0
\(241\) −15.0000 + 15.0000i −0.966235 + 0.966235i −0.999448 0.0332133i \(-0.989426\pi\)
0.0332133 + 0.999448i \(0.489426\pi\)
\(242\) −3.53553 3.53553i −0.227273 0.227273i
\(243\) 0 0
\(244\) 6.00000i 0.384111i
\(245\) −7.77817 7.77817i −0.496929 0.496929i
\(246\) 0 0
\(247\) 5.00000 25.0000i 0.318142 1.59071i
\(248\) 8.48528i 0.538816i
\(249\) 0 0
\(250\) 1.00000 0.0632456
\(251\) −1.41421 −0.0892644 −0.0446322 0.999003i \(-0.514212\pi\)
−0.0446322 + 0.999003i \(0.514212\pi\)
\(252\) 0 0
\(253\) 20.0000 + 20.0000i 1.25739 + 1.25739i
\(254\) −9.89949 9.89949i −0.621150 0.621150i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −16.9706 −1.05859 −0.529297 0.848436i \(-0.677544\pi\)
−0.529297 + 0.848436i \(0.677544\pi\)
\(258\) 0 0
\(259\) 6.00000i 0.372822i
\(260\) −0.707107 + 3.53553i −0.0438529 + 0.219265i
\(261\) 0 0
\(262\) 5.00000 + 5.00000i 0.308901 + 0.308901i
\(263\) 1.41421i 0.0872041i −0.999049 0.0436021i \(-0.986117\pi\)
0.999049 0.0436021i \(-0.0138834\pi\)
\(264\) 0 0
\(265\) 1.00000 + 1.00000i 0.0614295 + 0.0614295i
\(266\) −21.2132 + 21.2132i −1.30066 + 1.30066i
\(267\) 0 0
\(268\) 6.00000 6.00000i 0.366508 0.366508i
\(269\) 5.65685i 0.344904i 0.985018 + 0.172452i \(0.0551690\pi\)
−0.985018 + 0.172452i \(0.944831\pi\)
\(270\) 0 0
\(271\) −14.0000 + 14.0000i −0.850439 + 0.850439i −0.990187 0.139748i \(-0.955371\pi\)
0.139748 + 0.990187i \(0.455371\pi\)
\(272\) 2.82843 0.171499
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 2.82843 2.82843i 0.170561 0.170561i
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 9.89949 9.89949i 0.593732 0.593732i
\(279\) 0 0
\(280\) 3.00000 3.00000i 0.179284 0.179284i
\(281\) 1.41421 + 1.41421i 0.0843649 + 0.0843649i 0.748030 0.663665i \(-0.231000\pi\)
−0.663665 + 0.748030i \(0.731000\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i −0.879688 0.475551i \(-0.842249\pi\)
0.879688 0.475551i \(-0.157751\pi\)
\(284\) −2.82843 2.82843i −0.167836 0.167836i
\(285\) 0 0
\(286\) 8.00000 + 12.0000i 0.473050 + 0.709575i
\(287\) 33.9411i 2.00348i
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 2.82843 0.166091
\(291\) 0 0
\(292\) −8.00000 8.00000i −0.468165 0.468165i
\(293\) −1.41421 1.41421i −0.0826192 0.0826192i 0.664589 0.747209i \(-0.268606\pi\)
−0.747209 + 0.664589i \(0.768606\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) −1.41421 −0.0821995
\(297\) 0 0
\(298\) 6.00000i 0.347571i
\(299\) −14.1421 21.2132i −0.817861 1.22679i
\(300\) 0 0
\(301\) −36.0000 36.0000i −2.07501 2.07501i
\(302\) 8.48528i 0.488273i
\(303\) 0 0
\(304\) −5.00000 5.00000i −0.286770 0.286770i
\(305\) 4.24264 4.24264i 0.242933 0.242933i
\(306\) 0 0
\(307\) 6.00000 6.00000i 0.342438 0.342438i −0.514845 0.857283i \(-0.672151\pi\)
0.857283 + 0.514845i \(0.172151\pi\)
\(308\) 16.9706i 0.966988i
\(309\) 0 0
\(310\) 6.00000 6.00000i 0.340777 0.340777i
\(311\) −5.65685 −0.320771 −0.160385 0.987054i \(-0.551274\pi\)
−0.160385 + 0.987054i \(0.551274\pi\)
\(312\) 0 0
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) −11.3137 + 11.3137i −0.638470 + 0.638470i
\(315\) 0 0
\(316\) 4.00000i 0.225018i
\(317\) 1.41421 1.41421i 0.0794301 0.0794301i −0.666276 0.745706i \(-0.732113\pi\)
0.745706 + 0.666276i \(0.232113\pi\)
\(318\) 0 0
\(319\) 8.00000 8.00000i 0.447914 0.447914i
\(320\) 0.707107 + 0.707107i 0.0395285 + 0.0395285i
\(321\) 0 0
\(322\) 30.0000i 1.67183i
\(323\) −14.1421 14.1421i −0.786889 0.786889i
\(324\) 0 0
\(325\) −3.00000 + 2.00000i −0.166410 + 0.110940i
\(326\) 16.9706i 0.939913i
\(327\) 0 0
\(328\) −8.00000 −0.441726
\(329\) 33.9411 1.87123
\(330\) 0 0
\(331\) −9.00000 9.00000i −0.494685 0.494685i 0.415094 0.909779i \(-0.363749\pi\)
−0.909779 + 0.415094i \(0.863749\pi\)
\(332\) −2.82843 2.82843i −0.155230 0.155230i
\(333\) 0 0
\(334\) 18.0000 0.984916
\(335\) 8.48528 0.463600
\(336\) 0 0
\(337\) 14.0000i 0.762629i 0.924445 + 0.381314i \(0.124528\pi\)
−0.924445 + 0.381314i \(0.875472\pi\)
\(338\) −4.94975 12.0208i −0.269231 0.653846i
\(339\) 0 0
\(340\) 2.00000 + 2.00000i 0.108465 + 0.108465i
\(341\) 33.9411i 1.83801i
\(342\) 0 0
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) 8.48528 8.48528i 0.457496 0.457496i
\(345\) 0 0
\(346\) 5.00000 5.00000i 0.268802 0.268802i
\(347\) 25.4558i 1.36654i 0.730165 + 0.683271i \(0.239443\pi\)
−0.730165 + 0.683271i \(0.760557\pi\)
\(348\) 0 0
\(349\) −20.0000 + 20.0000i −1.07058 + 1.07058i −0.0732628 + 0.997313i \(0.523341\pi\)
−0.997313 + 0.0732628i \(0.976659\pi\)
\(350\) 4.24264 0.226779
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) −4.24264 + 4.24264i −0.225813 + 0.225813i −0.810941 0.585128i \(-0.801044\pi\)
0.585128 + 0.810941i \(0.301044\pi\)
\(354\) 0 0
\(355\) 4.00000i 0.212298i
\(356\) 5.65685 5.65685i 0.299813 0.299813i
\(357\) 0 0
\(358\) 17.0000 17.0000i 0.898478 0.898478i
\(359\) −22.6274 22.6274i −1.19423 1.19423i −0.975868 0.218361i \(-0.929929\pi\)
−0.218361 0.975868i \(-0.570071\pi\)
\(360\) 0 0
\(361\) 31.0000i 1.63158i
\(362\) −9.89949 9.89949i −0.520306 0.520306i
\(363\) 0 0
\(364\) −3.00000 + 15.0000i −0.157243 + 0.786214i
\(365\) 11.3137i 0.592187i
\(366\) 0 0
\(367\) −10.0000 −0.521996 −0.260998 0.965339i \(-0.584052\pi\)
−0.260998 + 0.965339i \(0.584052\pi\)
\(368\) −7.07107 −0.368605
\(369\) 0 0
\(370\) −1.00000 1.00000i −0.0519875 0.0519875i
\(371\) 4.24264 + 4.24264i 0.220267 + 0.220267i
\(372\) 0 0
\(373\) 32.0000 1.65690 0.828449 0.560065i \(-0.189224\pi\)
0.828449 + 0.560065i \(0.189224\pi\)
\(374\) 11.3137 0.585018
\(375\) 0 0
\(376\) 8.00000i 0.412568i
\(377\) −8.48528 + 5.65685i −0.437014 + 0.291343i
\(378\) 0 0
\(379\) −3.00000 3.00000i −0.154100 0.154100i 0.625847 0.779946i \(-0.284754\pi\)
−0.779946 + 0.625847i \(0.784754\pi\)
\(380\) 7.07107i 0.362738i
\(381\) 0 0
\(382\) −16.0000 16.0000i −0.818631 0.818631i
\(383\) −21.2132 + 21.2132i −1.08394 + 1.08394i −0.0878065 + 0.996138i \(0.527986\pi\)
−0.996138 + 0.0878065i \(0.972014\pi\)
\(384\) 0 0
\(385\) 12.0000 12.0000i 0.611577 0.611577i
\(386\) 8.48528i 0.431889i
\(387\) 0 0
\(388\) 0 0
\(389\) −11.3137 −0.573628 −0.286814 0.957986i \(-0.592596\pi\)
−0.286814 + 0.957986i \(0.592596\pi\)
\(390\) 0 0
\(391\) −20.0000 −1.01144
\(392\) 7.77817 7.77817i 0.392857 0.392857i
\(393\) 0 0
\(394\) 4.00000i 0.201517i
\(395\) −2.82843 + 2.82843i −0.142314 + 0.142314i
\(396\) 0 0
\(397\) 1.00000 1.00000i 0.0501886 0.0501886i −0.681567 0.731756i \(-0.738701\pi\)
0.731756 + 0.681567i \(0.238701\pi\)
\(398\) 5.65685 + 5.65685i 0.283552 + 0.283552i
\(399\) 0 0
\(400\) 1.00000i 0.0500000i
\(401\) 12.7279 + 12.7279i 0.635602 + 0.635602i 0.949467 0.313865i \(-0.101624\pi\)
−0.313865 + 0.949467i \(0.601624\pi\)
\(402\) 0 0
\(403\) −6.00000 + 30.0000i −0.298881 + 1.49441i
\(404\) 0 0
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) −5.65685 −0.280400
\(408\) 0 0
\(409\) 19.0000 + 19.0000i 0.939490 + 0.939490i 0.998271 0.0587813i \(-0.0187215\pi\)
−0.0587813 + 0.998271i \(0.518721\pi\)
\(410\) −5.65685 5.65685i −0.279372 0.279372i
\(411\) 0 0
\(412\) 2.00000 0.0985329
\(413\) −50.9117 −2.50520
\(414\) 0 0
\(415\) 4.00000i 0.196352i
\(416\) −3.53553 0.707107i −0.173344 0.0346688i
\(417\) 0 0
\(418\) −20.0000 20.0000i −0.978232 0.978232i
\(419\) 4.24264i 0.207267i 0.994616 + 0.103633i \(0.0330468\pi\)
−0.994616 + 0.103633i \(0.966953\pi\)
\(420\) 0 0
\(421\) −14.0000 14.0000i −0.682318 0.682318i 0.278204 0.960522i \(-0.410261\pi\)
−0.960522 + 0.278204i \(0.910261\pi\)
\(422\) −14.1421 + 14.1421i −0.688428 + 0.688428i
\(423\) 0 0
\(424\) −1.00000 + 1.00000i −0.0485643 + 0.0485643i
\(425\) 2.82843i 0.137199i
\(426\) 0 0
\(427\) 18.0000 18.0000i 0.871081 0.871081i
\(428\) 16.9706 0.820303
\(429\) 0 0
\(430\) 12.0000 0.578691
\(431\) 16.9706 16.9706i 0.817443 0.817443i −0.168294 0.985737i \(-0.553826\pi\)
0.985737 + 0.168294i \(0.0538257\pi\)
\(432\) 0 0
\(433\) 18.0000i 0.865025i 0.901628 + 0.432512i \(0.142373\pi\)
−0.901628 + 0.432512i \(0.857627\pi\)
\(434\) 25.4558 25.4558i 1.22192 1.22192i
\(435\) 0 0
\(436\) 12.0000 12.0000i 0.574696 0.574696i
\(437\) 35.3553 + 35.3553i 1.69128 + 1.69128i
\(438\) 0 0
\(439\) 8.00000i 0.381819i 0.981608 + 0.190910i \(0.0611437\pi\)
−0.981608 + 0.190910i \(0.938856\pi\)
\(440\) 2.82843 + 2.82843i 0.134840 + 0.134840i
\(441\) 0 0
\(442\) −10.0000 2.00000i −0.475651 0.0951303i
\(443\) 19.7990i 0.940678i 0.882486 + 0.470339i \(0.155868\pi\)
−0.882486 + 0.470339i \(0.844132\pi\)
\(444\) 0 0
\(445\) 8.00000 0.379236
\(446\) −4.24264 −0.200895
\(447\) 0 0
\(448\) 3.00000 + 3.00000i 0.141737 + 0.141737i
\(449\) 22.6274 + 22.6274i 1.06785 + 1.06785i 0.997524 + 0.0703301i \(0.0224052\pi\)
0.0703301 + 0.997524i \(0.477595\pi\)
\(450\) 0 0
\(451\) −32.0000 −1.50682
\(452\) −11.3137 −0.532152
\(453\) 0 0
\(454\) 12.0000i 0.563188i
\(455\) −12.7279 + 8.48528i −0.596694 + 0.397796i
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 5.65685i 0.264327i
\(459\) 0 0
\(460\) −5.00000 5.00000i −0.233126 0.233126i
\(461\) 7.07107 7.07107i 0.329332 0.329332i −0.523000 0.852333i \(-0.675187\pi\)
0.852333 + 0.523000i \(0.175187\pi\)
\(462\) 0 0
\(463\) 21.0000 21.0000i 0.975953 0.975953i −0.0237648 0.999718i \(-0.507565\pi\)
0.999718 + 0.0237648i \(0.00756529\pi\)
\(464\) 2.82843i 0.131306i
\(465\) 0 0
\(466\) −2.00000 + 2.00000i −0.0926482 + 0.0926482i
\(467\) 28.2843 1.30884 0.654420 0.756131i \(-0.272913\pi\)
0.654420 + 0.756131i \(0.272913\pi\)
\(468\) 0 0
\(469\) 36.0000 1.66233
\(470\) −5.65685 + 5.65685i −0.260931 + 0.260931i
\(471\) 0 0
\(472\) 12.0000i 0.552345i
\(473\) 33.9411 33.9411i 1.56061 1.56061i
\(474\) 0 0
\(475\) 5.00000 5.00000i 0.229416 0.229416i
\(476\) 8.48528 + 8.48528i 0.388922 + 0.388922i
\(477\) 0 0
\(478\) 4.00000i 0.182956i
\(479\) 25.4558 + 25.4558i 1.16311 + 1.16311i 0.983792 + 0.179316i \(0.0573883\pi\)
0.179316 + 0.983792i \(0.442612\pi\)
\(480\) 0 0
\(481\) 5.00000 + 1.00000i 0.227980 + 0.0455961i
\(482\) 21.2132i 0.966235i
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) 3.00000 + 3.00000i 0.135943 + 0.135943i 0.771804 0.635861i \(-0.219355\pi\)
−0.635861 + 0.771804i \(0.719355\pi\)
\(488\) 4.24264 + 4.24264i 0.192055 + 0.192055i
\(489\) 0 0
\(490\) 11.0000 0.496929
\(491\) −18.3848 −0.829693 −0.414847 0.909891i \(-0.636165\pi\)
−0.414847 + 0.909891i \(0.636165\pi\)
\(492\) 0 0
\(493\) 8.00000i 0.360302i
\(494\) 14.1421 + 21.2132i 0.636285 + 0.954427i
\(495\) 0 0
\(496\) 6.00000 + 6.00000i 0.269408 + 0.269408i
\(497\) 16.9706i 0.761234i
\(498\) 0 0
\(499\) 5.00000 + 5.00000i 0.223831 + 0.223831i 0.810109 0.586279i \(-0.199408\pi\)
−0.586279 + 0.810109i \(0.699408\pi\)
\(500\) −0.707107 + 0.707107i −0.0316228 + 0.0316228i
\(501\) 0 0
\(502\) 1.00000 1.00000i 0.0446322 0.0446322i
\(503\) 38.1838i 1.70253i 0.524736 + 0.851265i \(0.324164\pi\)
−0.524736 + 0.851265i \(0.675836\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −28.2843 −1.25739
\(507\) 0 0
\(508\) 14.0000 0.621150
\(509\) 12.7279 12.7279i 0.564155 0.564155i −0.366330 0.930485i \(-0.619386\pi\)
0.930485 + 0.366330i \(0.119386\pi\)
\(510\) 0 0
\(511\) 48.0000i 2.12339i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 12.0000 12.0000i 0.529297 0.529297i
\(515\) 1.41421 + 1.41421i 0.0623177 + 0.0623177i
\(516\) 0 0
\(517\) 32.0000i 1.40736i
\(518\) −4.24264 4.24264i −0.186411 0.186411i
\(519\) 0 0
\(520\) −2.00000 3.00000i −0.0877058 0.131559i
\(521\) 32.5269i 1.42503i 0.701657 + 0.712515i \(0.252444\pi\)
−0.701657 + 0.712515i \(0.747556\pi\)
\(522\) 0 0
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) −7.07107 −0.308901
\(525\) 0 0
\(526\) 1.00000 + 1.00000i 0.0436021 + 0.0436021i
\(527\) 16.9706 + 16.9706i 0.739249 + 0.739249i
\(528\) 0 0
\(529\) 27.0000 1.17391
\(530\) −1.41421 −0.0614295
\(531\) 0 0
\(532\) 30.0000i 1.30066i
\(533\) 28.2843 + 5.65685i 1.22513 + 0.245026i
\(534\) 0 0
\(535\) 12.0000 + 12.0000i 0.518805 + 0.518805i
\(536\) 8.48528i 0.366508i
\(537\) 0 0
\(538\) −4.00000 4.00000i −0.172452 0.172452i
\(539\) 31.1127 31.1127i 1.34012 1.34012i
\(540\) 0 0
\(541\) −6.00000 + 6.00000i −0.257960 + 0.257960i −0.824224 0.566264i \(-0.808388\pi\)
0.566264 + 0.824224i \(0.308388\pi\)
\(542\) 19.7990i 0.850439i
\(543\) 0 0
\(544\) −2.00000 + 2.00000i −0.0857493 + 0.0857493i
\(545\) 16.9706 0.726939
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) −12.7279 + 12.7279i −0.543710 + 0.543710i
\(549\) 0 0
\(550\) 4.00000i 0.170561i
\(551\) 14.1421 14.1421i 0.602475 0.602475i
\(552\) 0 0
\(553\) −12.0000 + 12.0000i −0.510292 + 0.510292i
\(554\) −15.5563 15.5563i −0.660926 0.660926i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) −16.9706 16.9706i −0.719066 0.719066i 0.249348 0.968414i \(-0.419784\pi\)
−0.968414 + 0.249348i \(0.919784\pi\)
\(558\) 0 0
\(559\) −36.0000 + 24.0000i −1.52264 + 1.01509i
\(560\) 4.24264i 0.179284i
\(561\) 0 0
\(562\) −2.00000 −0.0843649
\(563\) −14.1421 −0.596020 −0.298010 0.954563i \(-0.596323\pi\)
−0.298010 + 0.954563i \(0.596323\pi\)
\(564\) 0 0
\(565\) −8.00000 8.00000i −0.336563 0.336563i
\(566\) 11.3137 + 11.3137i 0.475551 + 0.475551i
\(567\) 0 0
\(568\) 4.00000 0.167836
\(569\) −1.41421 −0.0592869 −0.0296435 0.999561i \(-0.509437\pi\)
−0.0296435 + 0.999561i \(0.509437\pi\)
\(570\) 0 0
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) −14.1421 2.82843i −0.591312 0.118262i
\(573\) 0 0
\(574\) −24.0000 24.0000i −1.00174 1.00174i
\(575\) 7.07107i 0.294884i
\(576\) 0 0
\(577\) 10.0000 + 10.0000i 0.416305 + 0.416305i 0.883928 0.467623i \(-0.154889\pi\)
−0.467623 + 0.883928i \(0.654889\pi\)
\(578\) 6.36396 6.36396i 0.264706 0.264706i
\(579\) 0 0
\(580\) −2.00000 + 2.00000i −0.0830455 + 0.0830455i
\(581\) 16.9706i 0.704058i
\(582\) 0 0
\(583\) −4.00000 + 4.00000i −0.165663 + 0.165663i
\(584\) 11.3137 0.468165
\(585\) 0 0
\(586\) 2.00000 0.0826192
\(587\) 28.2843 28.2843i 1.16742 1.16742i 0.184604 0.982813i \(-0.440900\pi\)
0.982813 0.184604i \(-0.0591002\pi\)
\(588\) 0 0
\(589\) 60.0000i 2.47226i
\(590\) 8.48528 8.48528i 0.349334 0.349334i
\(591\) 0 0
\(592\) 1.00000 1.00000i 0.0410997 0.0410997i
\(593\) −4.24264 4.24264i −0.174224 0.174224i 0.614608 0.788833i \(-0.289314\pi\)
−0.788833 + 0.614608i \(0.789314\pi\)
\(594\) 0 0
\(595\) 12.0000i 0.491952i
\(596\) −4.24264 4.24264i −0.173785 0.173785i
\(597\) 0 0
\(598\) 25.0000 + 5.00000i 1.02233 + 0.204465i
\(599\) 39.5980i 1.61793i 0.587857 + 0.808965i \(0.299972\pi\)
−0.587857 + 0.808965i \(0.700028\pi\)
\(600\) 0 0
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 50.9117 2.07501
\(603\) 0 0
\(604\) 6.00000 + 6.00000i 0.244137 + 0.244137i
\(605\) 3.53553 + 3.53553i 0.143740 + 0.143740i
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 7.07107 0.286770
\(609\) 0 0
\(610\) 6.00000i 0.242933i
\(611\) 5.65685 28.2843i 0.228852 1.14426i
\(612\) 0 0
\(613\) 1.00000 + 1.00000i 0.0403896 + 0.0403896i 0.727013 0.686624i \(-0.240908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 8.48528i 0.342438i
\(615\) 0 0
\(616\) 12.0000 + 12.0000i 0.483494 + 0.483494i
\(617\) −18.3848 + 18.3848i −0.740143 + 0.740143i −0.972605 0.232462i \(-0.925322\pi\)
0.232462 + 0.972605i \(0.425322\pi\)
\(618\) 0 0
\(619\) 29.0000 29.0000i 1.16561 1.16561i 0.182380 0.983228i \(-0.441620\pi\)
0.983228 0.182380i \(-0.0583802\pi\)
\(620\) 8.48528i 0.340777i
\(621\) 0 0
\(622\) 4.00000 4.00000i 0.160385 0.160385i
\(623\) 33.9411 1.35982
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 18.3848 18.3848i 0.734803 0.734803i
\(627\) 0 0
\(628\) 16.0000i 0.638470i
\(629\) 2.82843 2.82843i 0.112777 0.112777i
\(630\) 0 0
\(631\) −16.0000 + 16.0000i −0.636950 + 0.636950i −0.949802 0.312852i \(-0.898716\pi\)
0.312852 + 0.949802i \(0.398716\pi\)
\(632\) −2.82843 2.82843i −0.112509 0.112509i
\(633\) 0 0
\(634\) 2.00000i 0.0794301i
\(635\) 9.89949 + 9.89949i 0.392849 + 0.392849i
\(636\) 0 0
\(637\) −33.0000 + 22.0000i −1.30751 + 0.871672i
\(638\) 11.3137i 0.447914i
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) −15.5563 −0.614439 −0.307219 0.951639i \(-0.599399\pi\)
−0.307219 + 0.951639i \(0.599399\pi\)
\(642\) 0 0
\(643\) −26.0000 26.0000i −1.02534 1.02534i −0.999670 0.0256694i \(-0.991828\pi\)
−0.0256694 0.999670i \(-0.508172\pi\)
\(644\) −21.2132 21.2132i −0.835917 0.835917i
\(645\) 0 0
\(646\) 20.0000 0.786889
\(647\) −15.5563 −0.611583 −0.305792 0.952098i \(-0.598921\pi\)
−0.305792 + 0.952098i \(0.598921\pi\)
\(648\) 0 0
\(649\) 48.0000i 1.88416i
\(650\) 0.707107 3.53553i 0.0277350 0.138675i
\(651\) 0 0
\(652\) −12.0000 12.0000i −0.469956 0.469956i
\(653\) 4.24264i 0.166027i 0.996548 + 0.0830137i \(0.0264545\pi\)
−0.996548 + 0.0830137i \(0.973545\pi\)
\(654\) 0 0
\(655\) −5.00000 5.00000i −0.195366 0.195366i
\(656\) 5.65685 5.65685i 0.220863 0.220863i
\(657\) 0 0
\(658\) −24.0000 + 24.0000i −0.935617 + 0.935617i
\(659\) 26.8701i 1.04671i 0.852115 + 0.523354i \(0.175320\pi\)
−0.852115 + 0.523354i \(0.824680\pi\)
\(660\) 0 0
\(661\) −6.00000 + 6.00000i −0.233373 + 0.233373i −0.814099 0.580726i \(-0.802769\pi\)
0.580726 + 0.814099i \(0.302769\pi\)
\(662\) 12.7279 0.494685
\(663\) 0 0
\(664\) 4.00000 0.155230
\(665\) 21.2132 21.2132i 0.822613 0.822613i
\(666\) 0 0
\(667\) 20.0000i 0.774403i
\(668\) −12.7279 + 12.7279i −0.492458 + 0.492458i
\(669\) 0 0
\(670\) −6.00000 + 6.00000i −0.231800 + 0.231800i
\(671\) 16.9706 + 16.9706i 0.655141 + 0.655141i
\(672\) 0 0
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) −9.89949 9.89949i −0.381314 0.381314i
\(675\) 0 0
\(676\) 12.0000 + 5.00000i 0.461538 + 0.192308i
\(677\) 24.0416i 0.923995i −0.886881 0.461997i \(-0.847133\pi\)
0.886881 0.461997i \(-0.152867\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.82843 −0.108465
\(681\) 0 0
\(682\) 24.0000 + 24.0000i 0.919007 + 0.919007i
\(683\) −16.9706 16.9706i −0.649361 0.649361i 0.303478 0.952838i \(-0.401852\pi\)
−0.952838 + 0.303478i \(0.901852\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 16.9706 0.647939
\(687\) 0 0
\(688\) 12.0000i 0.457496i
\(689\) 4.24264 2.82843i 0.161632 0.107754i
\(690\) 0 0
\(691\) 33.0000 + 33.0000i 1.25538 + 1.25538i 0.953275 + 0.302104i \(0.0976891\pi\)
0.302104 + 0.953275i \(0.402311\pi\)
\(692\) 7.07107i 0.268802i
\(693\) 0 0
\(694\) −18.0000 18.0000i −0.683271 0.683271i
\(695\) −9.89949 + 9.89949i −0.375509 + 0.375509i
\(696\) 0 0
\(697\) 16.0000 16.0000i 0.606043 0.606043i
\(698\) 28.2843i 1.07058i
\(699\) 0 0
\(700\) −3.00000 + 3.00000i −0.113389 + 0.113389i
\(701\) 28.2843 1.06828 0.534141 0.845395i \(-0.320635\pi\)
0.534141 + 0.845395i \(0.320635\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) −2.82843 + 2.82843i −0.106600 + 0.106600i
\(705\) 0 0
\(706\) 6.00000i 0.225813i
\(707\) 0 0
\(708\) 0 0
\(709\) −12.0000 + 12.0000i −0.450669 + 0.450669i −0.895577 0.444907i \(-0.853237\pi\)
0.444907 + 0.895577i \(0.353237\pi\)
\(710\) 2.82843 + 2.82843i 0.106149 + 0.106149i
\(711\) 0 0
\(712\) 8.00000i 0.299813i
\(713\) −42.4264 42.4264i −1.58888 1.58888i
\(714\) 0 0
\(715\) −8.00000 12.0000i −0.299183 0.448775i
\(716\) 24.0416i 0.898478i
\(717\) 0 0
\(718\) 32.0000 1.19423
\(719\) 19.7990 0.738378 0.369189 0.929354i \(-0.379636\pi\)
0.369189 + 0.929354i \(0.379636\pi\)
\(720\) 0 0
\(721\) 6.00000 + 6.00000i 0.223452 + 0.223452i
\(722\) −21.9203 21.9203i −0.815789 0.815789i
\(723\) 0 0
\(724\) 14.0000 0.520306
\(725\) −2.82843 −0.105045
\(726\) 0 0
\(727\) 32.0000i 1.18681i 0.804902 + 0.593407i \(0.202218\pi\)
−0.804902 + 0.593407i \(0.797782\pi\)
\(728\) −8.48528 12.7279i −0.314485 0.471728i
\(729\) 0 0
\(730\) 8.00000 + 8.00000i 0.296093 + 0.296093i
\(731\) 33.9411i 1.25536i
\(732\) 0 0
\(733\) −15.0000 15.0000i −0.554038 0.554038i 0.373566 0.927604i \(-0.378135\pi\)
−0.927604 + 0.373566i \(0.878135\pi\)
\(734\) 7.07107 7.07107i 0.260998 0.260998i
\(735\) 0 0
\(736\) 5.00000 5.00000i 0.184302 0.184302i
\(737\) 33.9411i 1.25024i
\(738\) 0 0
\(739\) −35.0000 + 35.0000i −1.28750 + 1.28750i −0.351193 + 0.936303i \(0.614224\pi\)
−0.936303 + 0.351193i \(0.885776\pi\)
\(740\) 1.41421 0.0519875
\(741\) 0 0
\(742\) −6.00000 −0.220267
\(743\) 7.07107 7.07107i 0.259412 0.259412i −0.565403 0.824815i \(-0.691279\pi\)
0.824815 + 0.565403i \(0.191279\pi\)
\(744\) 0 0
\(745\) 6.00000i 0.219823i
\(746\) −22.6274 + 22.6274i −0.828449 + 0.828449i
\(747\) 0 0
\(748\) −8.00000 + 8.00000i −0.292509 + 0.292509i
\(749\) 50.9117 + 50.9117i 1.86027 + 1.86027i
\(750\) 0 0
\(751\) 4.00000i 0.145962i −0.997333 0.0729810i \(-0.976749\pi\)
0.997333 0.0729810i \(-0.0232513\pi\)
\(752\) −5.65685 5.65685i −0.206284 0.206284i
\(753\) 0 0
\(754\) 2.00000 10.0000i 0.0728357 0.364179i
\(755\) 8.48528i 0.308811i
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 4.24264 0.154100
\(759\) 0 0
\(760\) 5.00000 + 5.00000i 0.181369 + 0.181369i
\(761\) −8.48528 8.48528i −0.307591 0.307591i 0.536383 0.843975i \(-0.319790\pi\)
−0.843975 + 0.536383i \(0.819790\pi\)
\(762\) 0 0
\(763\) 72.0000 2.60658
\(764\) 22.6274 0.818631
\(765\) 0 0
\(766\) 30.0000i 1.08394i
\(767\) −8.48528 + 42.4264i −0.306386 + 1.53193i
\(768\) 0 0
\(769\) −25.0000 25.0000i −0.901523 0.901523i 0.0940449 0.995568i \(-0.470020\pi\)
−0.995568 + 0.0940449i \(0.970020\pi\)
\(770\) 16.9706i 0.611577i
\(771\) 0 0
\(772\) −6.00000 6.00000i −0.215945 0.215945i
\(773\) 4.24264 4.24264i 0.152597 0.152597i −0.626680 0.779277i \(-0.715587\pi\)
0.779277 + 0.626680i \(0.215587\pi\)
\(774\) 0 0
\(775\) −6.00000 + 6.00000i −0.215526 + 0.215526i
\(776\) 0 0
\(777\) 0 0
\(778\) 8.00000 8.00000i 0.286814 0.286814i
\(779\) −56.5685 −2.02678
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 14.1421 14.1421i 0.505722 0.505722i
\(783\) 0 0
\(784\) 11.0000i 0.392857i
\(785\) 11.3137 11.3137i 0.403804 0.403804i
\(786\) 0 0
\(787\) −24.0000 + 24.0000i −0.855508 + 0.855508i −0.990805 0.135297i \(-0.956801\pi\)
0.135297 + 0.990805i \(0.456801\pi\)
\(788\) −2.82843 2.82843i −0.100759 0.100759i
\(789\) 0 0
\(790\) 4.00000i 0.142314i
\(791\) −33.9411 33.9411i −1.20681 1.20681i
\(792\) 0 0
\(793\) −12.0000 18.0000i −0.426132 0.639199i
\(794\) 1.41421i 0.0501886i
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 26.8701 0.951786 0.475893 0.879503i \(-0.342125\pi\)
0.475893 + 0.879503i \(0.342125\pi\)
\(798\) 0 0
\(799\) −16.0000 16.0000i −0.566039 0.566039i
\(800\) −0.707107 0.707107i −0.0250000 0.0250000i
\(801\) 0 0
\(802\) −18.0000 −0.635602
\(803\) 45.2548 1.59701
\(804\) 0 0
\(805\) 30.0000i 1.05736i
\(806\) −16.9706 25.4558i −0.597763 0.896644i
\(807\) 0 0
\(808\) 0 0
\(809\) 35.3553i 1.24303i 0.783403 + 0.621514i \(0.213482\pi\)
−0.783403 + 0.621514i \(0.786518\pi\)
\(810\) 0 0
\(811\) −5.00000 5.00000i −0.175574 0.175574i 0.613849 0.789423i \(-0.289620\pi\)
−0.789423 + 0.613849i \(0.789620\pi\)
\(812\) −8.48528 + 8.48528i −0.297775 + 0.297775i
\(813\) 0 0
\(814\) 4.00000 4.00000i 0.140200 0.140200i
\(815\) 16.9706i 0.594453i
\(816\) 0 0
\(817\) 60.0000 60.0000i 2.09913 2.09913i
\(818\) −26.8701 −0.939490
\(819\) 0 0
\(820\) 8.00000 0.279372
\(821\) 4.24264 4.24264i 0.148069 0.148069i −0.629186 0.777255i \(-0.716612\pi\)
0.777255 + 0.629186i \(0.216612\pi\)
\(822\) 0 0
\(823\) 14.0000i 0.488009i −0.969774 0.244005i \(-0.921539\pi\)
0.969774 0.244005i \(-0.0784612\pi\)
\(824\) −1.41421 + 1.41421i −0.0492665 + 0.0492665i
\(825\) 0 0
\(826\) 36.0000 36.0000i 1.25260 1.25260i
\(827\) −16.9706 16.9706i −0.590124 0.590124i 0.347541 0.937665i \(-0.387017\pi\)
−0.937665 + 0.347541i \(0.887017\pi\)
\(828\) 0 0
\(829\) 34.0000i 1.18087i −0.807086 0.590434i \(-0.798956\pi\)
0.807086 0.590434i \(-0.201044\pi\)
\(830\) 2.82843 + 2.82843i 0.0981761 + 0.0981761i
\(831\) 0 0
\(832\) 3.00000 2.00000i 0.104006 0.0693375i
\(833\) 31.1127i 1.07799i
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 28.2843 0.978232
\(837\) 0 0
\(838\) −3.00000 3.00000i −0.103633 0.103633i
\(839\) 2.82843 + 2.82843i 0.0976481 + 0.0976481i 0.754243 0.656595i \(-0.228004\pi\)
−0.656595 + 0.754243i \(0.728004\pi\)
\(840\) 0 0
\(841\) 21.0000 0.724138
\(842\) 19.7990 0.682318
\(843\) 0 0
\(844\) 20.0000i 0.688428i
\(845\) 4.94975 + 12.0208i 0.170276 + 0.413529i
\(846\) 0 0
\(847\) 15.0000 + 15.0000i 0.515406 + 0.515406i
\(848\) 1.41421i 0.0485643i
\(849\) 0 0
\(850\) −2.00000 2.00000i −0.0685994 0.0685994i
\(851\) −7.07107 + 7.07107i −0.242393 + 0.242393i
\(852\) 0 0
\(853\) −35.0000 + 35.0000i −1.19838 + 1.19838i −0.223725 + 0.974652i \(0.571822\pi\)
−0.974652 + 0.223725i \(0.928178\pi\)
\(854\) 25.4558i 0.871081i
\(855\) 0 0
\(856\) −12.0000 + 12.0000i −0.410152 + 0.410152i
\(857\) −11.3137 −0.386469 −0.193234 0.981153i \(-0.561898\pi\)
−0.193234 + 0.981153i \(0.561898\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) −8.48528 + 8.48528i −0.289346 + 0.289346i
\(861\) 0 0
\(862\) 24.0000i 0.817443i
\(863\) 26.8701 26.8701i 0.914667 0.914667i −0.0819676 0.996635i \(-0.526120\pi\)
0.996635 + 0.0819676i \(0.0261204\pi\)
\(864\) 0 0
\(865\) −5.00000 + 5.00000i −0.170005 + 0.170005i
\(866\) −12.7279 12.7279i −0.432512 0.432512i
\(867\) 0 0
\(868\) 36.0000i 1.22192i
\(869\) −11.3137 11.3137i −0.383791 0.383791i
\(870\) 0 0
\(871\) 6.00000 30.0000i 0.203302 1.01651i
\(872\) 16.9706i 0.574696i
\(873\) 0 0
\(874\) −50.0000 −1.69128
\(875\) −4.24264 −0.143427
\(876\) 0 0
\(877\) 17.0000 + 17.0000i 0.574049 + 0.574049i 0.933257 0.359208i \(-0.116953\pi\)
−0.359208 + 0.933257i \(0.616953\pi\)
\(878\) −5.65685 5.65685i −0.190910 0.190910i
\(879\) 0 0
\(880\) −4.00000 −0.134840
\(881\) −55.1543 −1.85820 −0.929098 0.369833i \(-0.879415\pi\)
−0.929098 + 0.369833i \(0.879415\pi\)
\(882\) 0 0
\(883\) 8.00000i 0.269221i −0.990899 0.134611i \(-0.957022\pi\)
0.990899 0.134611i \(-0.0429784\pi\)
\(884\) 8.48528 5.65685i 0.285391 0.190261i
\(885\) 0 0
\(886\) −14.0000 14.0000i −0.470339 0.470339i
\(887\) 7.07107i 0.237423i 0.992929 + 0.118712i \(0.0378764\pi\)
−0.992929 + 0.118712i \(0.962124\pi\)
\(888\) 0 0
\(889\) 42.0000 + 42.0000i 1.40863 + 1.40863i
\(890\) −5.65685 + 5.65685i −0.189618 + 0.189618i
\(891\) 0 0
\(892\) 3.00000 3.00000i 0.100447 0.100447i
\(893\) 56.5685i 1.89299i
\(894\) 0 0
\(895\) −17.0000 + 17.0000i −0.568247 + 0.568247i
\(896\) −4.24264 −0.141737
\(897\) 0 0
\(898\) −32.0000 −1.06785
\(899\) −16.9706 + 16.9706i −0.566000 + 0.566000i
\(900\) 0 0
\(901\) 4.00000i 0.133259i
\(902\) 22.6274 22.6274i 0.753411 0.753411i
\(903\) 0 0
\(904\) 8.00000 8.00000i 0.266076 0.266076i
\(905\) 9.89949 + 9.89949i 0.329070 + 0.329070i
\(906\) 0 0
\(907\) 44.0000i 1.46100i −0.682915 0.730498i \(-0.739288\pi\)
0.682915 0.730498i \(-0.260712\pi\)
\(908\) 8.48528 + 8.48528i 0.281594 + 0.281594i
\(909\) 0 0
\(910\) 3.00000 15.0000i 0.0994490 0.497245i
\(911\) 8.48528i 0.281130i −0.990071 0.140565i \(-0.955108\pi\)
0.990071 0.140565i \(-0.0448919\pi\)
\(912\) 0 0
\(913\) 16.0000 0.529523
\(914\) 0 0
\(915\) 0 0
\(916\) −4.00000 4.00000i −0.132164 0.132164i
\(917\) −21.2132 21.2132i −0.700522 0.700522i
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 7.07107 0.233126
\(921\) 0 0
\(922\) 10.0000i 0.329332i
\(923\) −14.1421 2.82843i −0.465494 0.0930988i
\(924\) 0 0
\(925\) 1.00000 + 1.00000i 0.0328798 + 0.0328798i
\(926\) 29.6985i 0.975953i
\(927\) 0 0
\(928\) −2.00000 2.00000i −0.0656532 0.0656532i
\(929\) −9.89949 + 9.89949i −0.324792 + 0.324792i −0.850602 0.525810i \(-0.823762\pi\)
0.525810 + 0.850602i \(0.323762\pi\)
\(930\) 0 0
\(931\) 55.0000 55.0000i 1.80255 1.80255i
\(932\) 2.82843i 0.0926482i
\(933\) 0 0
\(934\) −20.0000 + 20.0000i −0.654420 + 0.654420i
\(935\) −11.3137 −0.369998
\(936\) 0 0
\(937\) 30.0000 0.980057 0.490029 0.871706i \(-0.336986\pi\)
0.490029 + 0.871706i \(0.336986\pi\)
\(938\) −25.4558 + 25.4558i −0.831163 + 0.831163i
\(939\) 0 0
\(940\) 8.00000i 0.260931i
\(941\) −12.7279 + 12.7279i −0.414918 + 0.414918i −0.883448 0.468529i \(-0.844784\pi\)
0.468529 + 0.883448i \(0.344784\pi\)
\(942\) 0 0
\(943\) −40.0000 + 40.0000i −1.30258 + 1.30258i
\(944\) 8.48528 + 8.48528i 0.276172 + 0.276172i
\(945\) 0 0
\(946\) 48.0000i 1.56061i
\(947\) −22.6274 22.6274i −0.735292 0.735292i 0.236371 0.971663i \(-0.424042\pi\)
−0.971663 + 0.236371i \(0.924042\pi\)
\(948\) 0 0
\(949\) −40.0000 8.00000i −1.29845 0.259691i
\(950\) 7.07107i 0.229416i
\(951\) 0 0
\(952\) −12.0000 −0.388922
\(953\) 19.7990 0.641352 0.320676 0.947189i \(-0.396090\pi\)
0.320676 + 0.947189i \(0.396090\pi\)
\(954\) 0 0
\(955\) 16.0000 + 16.0000i 0.517748 + 0.517748i
\(956\) −2.82843 2.82843i −0.0914779 0.0914779i
\(957\) 0 0
\(958\) −36.0000 −1.16311
\(959\) −76.3675 −2.46604
\(960\) 0 0
\(961\) 41.0000i 1.32258i
\(962\) −4.24264 + 2.82843i −0.136788 + 0.0911922i
\(963\) 0 0
\(964\) 15.0000 + 15.0000i 0.483117 + 0.483117i
\(965\) 8.48528i 0.273151i
\(966\) 0 0
\(967\) −19.0000 19.0000i −0.610999 0.610999i 0.332208 0.943206i \(-0.392207\pi\)
−0.943206 + 0.332208i \(0.892207\pi\)
\(968\) −3.53553 + 3.53553i −0.113636 + 0.113636i
\(969\) 0 0
\(970\) 0 0
\(971\) 29.6985i 0.953070i −0.879156 0.476535i \(-0.841893\pi\)
0.879156 0.476535i \(-0.158107\pi\)
\(972\) 0 0
\(973\) −42.0000 + 42.0000i −1.34646 + 1.34646i
\(974\) −4.24264 −0.135943
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) −35.3553 + 35.3553i −1.13112 + 1.13112i −0.141126 + 0.989992i \(0.545072\pi\)
−0.989992 + 0.141126i \(0.954928\pi\)
\(978\) 0 0
\(979\) 32.0000i 1.02272i
\(980\) −7.77817 + 7.77817i −0.248465 + 0.248465i
\(981\) 0 0
\(982\) 13.0000 13.0000i 0.414847 0.414847i
\(983\) 7.07107 + 7.07107i 0.225532 + 0.225532i 0.810823 0.585291i \(-0.199020\pi\)
−0.585291 + 0.810823i \(0.699020\pi\)
\(984\) 0 0
\(985\) 4.00000i 0.127451i
\(986\) −5.65685 5.65685i −0.180151 0.180151i
\(987\) 0 0
\(988\) −25.0000 5.00000i −0.795356 0.159071i
\(989\) 84.8528i 2.69816i
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) −8.48528 −0.269408
\(993\) 0 0
\(994\) 12.0000 + 12.0000i 0.380617 + 0.380617i
\(995\) −5.65685 5.65685i −0.179334 0.179334i
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) −7.07107 −0.223831
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.s.c.1061.1 yes 4
3.2 odd 2 inner 1170.2.s.c.1061.2 yes 4
13.5 odd 4 inner 1170.2.s.c.161.2 yes 4
39.5 even 4 inner 1170.2.s.c.161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.s.c.161.1 4 39.5 even 4 inner
1170.2.s.c.161.2 yes 4 13.5 odd 4 inner
1170.2.s.c.1061.1 yes 4 1.1 even 1 trivial
1170.2.s.c.1061.2 yes 4 3.2 odd 2 inner