Properties

Label 1170.2.o.c.287.5
Level $1170$
Weight $2$
Character 1170.287
Analytic conductor $9.342$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(53,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,4,0,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 12 x^{10} - 16 x^{9} + 8 x^{8} - 8 x^{7} + 18 x^{6} + 32 x^{5} + 16 x^{4} + 36 x^{3} + \cdots + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 287.5
Root \(-0.514363 - 1.24178i\) of defining polynomial
Character \(\chi\) \(=\) 1170.287
Dual form 1170.2.o.c.53.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(1.84387 + 1.26497i) q^{5} +(-3.59146 - 3.59146i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.19828 - 0.409343i) q^{10} +1.71125i q^{11} +(-0.707107 + 0.707107i) q^{13} -5.07909 q^{14} -1.00000 q^{16} +(4.78487 - 4.78487i) q^{17} -7.31199i q^{19} +(1.26497 - 1.84387i) q^{20} +(1.21004 + 1.21004i) q^{22} +(-3.54508 - 3.54508i) q^{23} +(1.79970 + 4.66488i) q^{25} +1.00000i q^{26} +(-3.59146 + 3.59146i) q^{28} -5.62425 q^{29} -4.05036 q^{31} +(-0.707107 + 0.707107i) q^{32} -6.76683i q^{34} +(-2.07909 - 11.1653i) q^{35} +(1.57389 + 1.57389i) q^{37} +(-5.17036 - 5.17036i) q^{38} +(-0.409343 - 2.19828i) q^{40} -5.00920i q^{41} +(4.54082 - 4.54082i) q^{43} +1.71125 q^{44} -5.01350 q^{46} +(8.44294 - 8.44294i) q^{47} +18.7972i q^{49} +(4.57115 + 2.02598i) q^{50} +(0.707107 + 0.707107i) q^{52} +(-0.817663 - 0.817663i) q^{53} +(-2.16468 + 3.15533i) q^{55} +5.07909i q^{56} +(-3.97695 + 3.97695i) q^{58} -5.36849 q^{59} -10.3407 q^{61} +(-2.86404 + 2.86404i) q^{62} +1.00000i q^{64} +(-2.19828 + 0.409343i) q^{65} +(10.8923 + 10.8923i) q^{67} +(-4.78487 - 4.78487i) q^{68} +(-9.36517 - 6.42490i) q^{70} +1.27407i q^{71} +(2.08637 - 2.08637i) q^{73} +2.22581 q^{74} -7.31199 q^{76} +(6.14590 - 6.14590i) q^{77} -9.68304i q^{79} +(-1.84387 - 1.26497i) q^{80} +(-3.54204 - 3.54204i) q^{82} +(3.21267 + 3.21267i) q^{83} +(14.8754 - 2.76995i) q^{85} -6.42168i q^{86} +(1.21004 - 1.21004i) q^{88} +7.44465 q^{89} +5.07909 q^{91} +(-3.54508 + 3.54508i) q^{92} -11.9401i q^{94} +(9.24945 - 13.4823i) q^{95} +(-3.37190 - 3.37190i) q^{97} +(13.2916 + 13.2916i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{5} - 4 q^{7} - 8 q^{14} - 12 q^{16} + 8 q^{17} + 4 q^{20} - 4 q^{22} + 12 q^{23} + 8 q^{25} - 4 q^{28} - 32 q^{29} - 16 q^{31} + 28 q^{35} + 16 q^{37} - 16 q^{38} - 4 q^{40} + 8 q^{43} + 64 q^{47}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.84387 + 1.26497i 0.824603 + 0.565712i
\(6\) 0 0
\(7\) −3.59146 3.59146i −1.35744 1.35744i −0.877056 0.480388i \(-0.840496\pi\)
−0.480388 0.877056i \(-0.659504\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 2.19828 0.409343i 0.695157 0.129446i
\(11\) 1.71125i 0.515962i 0.966150 + 0.257981i \(0.0830573\pi\)
−0.966150 + 0.257981i \(0.916943\pi\)
\(12\) 0 0
\(13\) −0.707107 + 0.707107i −0.196116 + 0.196116i
\(14\) −5.07909 −1.35744
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.78487 4.78487i 1.16050 1.16050i 0.176135 0.984366i \(-0.443640\pi\)
0.984366 0.176135i \(-0.0563596\pi\)
\(18\) 0 0
\(19\) 7.31199i 1.67749i −0.544528 0.838743i \(-0.683291\pi\)
0.544528 0.838743i \(-0.316709\pi\)
\(20\) 1.26497 1.84387i 0.282856 0.412302i
\(21\) 0 0
\(22\) 1.21004 + 1.21004i 0.257981 + 0.257981i
\(23\) −3.54508 3.54508i −0.739201 0.739201i 0.233223 0.972423i \(-0.425073\pi\)
−0.972423 + 0.233223i \(0.925073\pi\)
\(24\) 0 0
\(25\) 1.79970 + 4.66488i 0.359940 + 0.932975i
\(26\) 1.00000i 0.196116i
\(27\) 0 0
\(28\) −3.59146 + 3.59146i −0.678722 + 0.678722i
\(29\) −5.62425 −1.04440 −0.522199 0.852824i \(-0.674888\pi\)
−0.522199 + 0.852824i \(0.674888\pi\)
\(30\) 0 0
\(31\) −4.05036 −0.727467 −0.363733 0.931503i \(-0.618498\pi\)
−0.363733 + 0.931503i \(0.618498\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 6.76683i 1.16050i
\(35\) −2.07909 11.1653i −0.351430 1.88727i
\(36\) 0 0
\(37\) 1.57389 + 1.57389i 0.258746 + 0.258746i 0.824544 0.565798i \(-0.191432\pi\)
−0.565798 + 0.824544i \(0.691432\pi\)
\(38\) −5.17036 5.17036i −0.838743 0.838743i
\(39\) 0 0
\(40\) −0.409343 2.19828i −0.0647228 0.347579i
\(41\) 5.00920i 0.782305i −0.920326 0.391152i \(-0.872077\pi\)
0.920326 0.391152i \(-0.127923\pi\)
\(42\) 0 0
\(43\) 4.54082 4.54082i 0.692468 0.692468i −0.270306 0.962774i \(-0.587125\pi\)
0.962774 + 0.270306i \(0.0871250\pi\)
\(44\) 1.71125 0.257981
\(45\) 0 0
\(46\) −5.01350 −0.739201
\(47\) 8.44294 8.44294i 1.23153 1.23153i 0.268153 0.963376i \(-0.413587\pi\)
0.963376 0.268153i \(-0.0864132\pi\)
\(48\) 0 0
\(49\) 18.7972i 2.68531i
\(50\) 4.57115 + 2.02598i 0.646458 + 0.286517i
\(51\) 0 0
\(52\) 0.707107 + 0.707107i 0.0980581 + 0.0980581i
\(53\) −0.817663 0.817663i −0.112315 0.112315i 0.648716 0.761031i \(-0.275306\pi\)
−0.761031 + 0.648716i \(0.775306\pi\)
\(54\) 0 0
\(55\) −2.16468 + 3.15533i −0.291886 + 0.425464i
\(56\) 5.07909i 0.678722i
\(57\) 0 0
\(58\) −3.97695 + 3.97695i −0.522199 + 0.522199i
\(59\) −5.36849 −0.698918 −0.349459 0.936952i \(-0.613635\pi\)
−0.349459 + 0.936952i \(0.613635\pi\)
\(60\) 0 0
\(61\) −10.3407 −1.32399 −0.661996 0.749507i \(-0.730291\pi\)
−0.661996 + 0.749507i \(0.730291\pi\)
\(62\) −2.86404 + 2.86404i −0.363733 + 0.363733i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −2.19828 + 0.409343i −0.272663 + 0.0507728i
\(66\) 0 0
\(67\) 10.8923 + 10.8923i 1.33071 + 1.33071i 0.904739 + 0.425967i \(0.140066\pi\)
0.425967 + 0.904739i \(0.359934\pi\)
\(68\) −4.78487 4.78487i −0.580251 0.580251i
\(69\) 0 0
\(70\) −9.36517 6.42490i −1.11935 0.767922i
\(71\) 1.27407i 0.151204i 0.997138 + 0.0756021i \(0.0240879\pi\)
−0.997138 + 0.0756021i \(0.975912\pi\)
\(72\) 0 0
\(73\) 2.08637 2.08637i 0.244191 0.244191i −0.574390 0.818581i \(-0.694761\pi\)
0.818581 + 0.574390i \(0.194761\pi\)
\(74\) 2.22581 0.258746
\(75\) 0 0
\(76\) −7.31199 −0.838743
\(77\) 6.14590 6.14590i 0.700390 0.700390i
\(78\) 0 0
\(79\) 9.68304i 1.08943i −0.838622 0.544713i \(-0.816638\pi\)
0.838622 0.544713i \(-0.183362\pi\)
\(80\) −1.84387 1.26497i −0.206151 0.141428i
\(81\) 0 0
\(82\) −3.54204 3.54204i −0.391152 0.391152i
\(83\) 3.21267 + 3.21267i 0.352636 + 0.352636i 0.861089 0.508453i \(-0.169783\pi\)
−0.508453 + 0.861089i \(0.669783\pi\)
\(84\) 0 0
\(85\) 14.8754 2.76995i 1.61346 0.300444i
\(86\) 6.42168i 0.692468i
\(87\) 0 0
\(88\) 1.21004 1.21004i 0.128991 0.128991i
\(89\) 7.44465 0.789132 0.394566 0.918868i \(-0.370895\pi\)
0.394566 + 0.918868i \(0.370895\pi\)
\(90\) 0 0
\(91\) 5.07909 0.532433
\(92\) −3.54508 + 3.54508i −0.369600 + 0.369600i
\(93\) 0 0
\(94\) 11.9401i 1.23153i
\(95\) 9.24945 13.4823i 0.948973 1.38326i
\(96\) 0 0
\(97\) −3.37190 3.37190i −0.342365 0.342365i 0.514891 0.857256i \(-0.327832\pi\)
−0.857256 + 0.514891i \(0.827832\pi\)
\(98\) 13.2916 + 13.2916i 1.34265 + 1.34265i
\(99\) 0 0
\(100\) 4.66488 1.79970i 0.466488 0.179970i
\(101\) 4.76257i 0.473893i 0.971523 + 0.236947i \(0.0761466\pi\)
−0.971523 + 0.236947i \(0.923853\pi\)
\(102\) 0 0
\(103\) −7.33383 + 7.33383i −0.722623 + 0.722623i −0.969139 0.246515i \(-0.920714\pi\)
0.246515 + 0.969139i \(0.420714\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −1.15635 −0.112315
\(107\) −1.88067 + 1.88067i −0.181811 + 0.181811i −0.792145 0.610333i \(-0.791035\pi\)
0.610333 + 0.792145i \(0.291035\pi\)
\(108\) 0 0
\(109\) 0.0981889i 0.00940479i −0.999989 0.00470240i \(-0.998503\pi\)
0.999989 0.00470240i \(-0.00149682\pi\)
\(110\) 0.700490 + 3.76182i 0.0667891 + 0.358675i
\(111\) 0 0
\(112\) 3.59146 + 3.59146i 0.339361 + 0.339361i
\(113\) 7.46873 + 7.46873i 0.702599 + 0.702599i 0.964968 0.262369i \(-0.0845037\pi\)
−0.262369 + 0.964968i \(0.584504\pi\)
\(114\) 0 0
\(115\) −2.05224 11.0211i −0.191373 1.02772i
\(116\) 5.62425i 0.522199i
\(117\) 0 0
\(118\) −3.79610 + 3.79610i −0.349459 + 0.349459i
\(119\) −34.3693 −3.15063
\(120\) 0 0
\(121\) 8.07161 0.733783
\(122\) −7.31199 + 7.31199i −0.661996 + 0.661996i
\(123\) 0 0
\(124\) 4.05036i 0.363733i
\(125\) −2.58252 + 10.8780i −0.230987 + 0.972957i
\(126\) 0 0
\(127\) −4.02039 4.02039i −0.356752 0.356752i 0.505862 0.862614i \(-0.331174\pi\)
−0.862614 + 0.505862i \(0.831174\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −1.26497 + 1.84387i −0.110945 + 0.161718i
\(131\) 4.58401i 0.400507i −0.979744 0.200254i \(-0.935823\pi\)
0.979744 0.200254i \(-0.0641766\pi\)
\(132\) 0 0
\(133\) −26.2607 + 26.2607i −2.27709 + 2.27709i
\(134\) 15.4040 1.33071
\(135\) 0 0
\(136\) −6.76683 −0.580251
\(137\) 12.1390 12.1390i 1.03710 1.03710i 0.0378175 0.999285i \(-0.487959\pi\)
0.999285 0.0378175i \(-0.0120406\pi\)
\(138\) 0 0
\(139\) 20.4519i 1.73470i 0.497695 + 0.867352i \(0.334180\pi\)
−0.497695 + 0.867352i \(0.665820\pi\)
\(140\) −11.1653 + 2.07909i −0.943637 + 0.175715i
\(141\) 0 0
\(142\) 0.900903 + 0.900903i 0.0756021 + 0.0756021i
\(143\) −1.21004 1.21004i −0.101189 0.101189i
\(144\) 0 0
\(145\) −10.3704 7.11451i −0.861213 0.590828i
\(146\) 2.95057i 0.244191i
\(147\) 0 0
\(148\) 1.57389 1.57389i 0.129373 0.129373i
\(149\) 11.1167 0.910718 0.455359 0.890308i \(-0.349511\pi\)
0.455359 + 0.890308i \(0.349511\pi\)
\(150\) 0 0
\(151\) 12.6297 1.02779 0.513897 0.857852i \(-0.328201\pi\)
0.513897 + 0.857852i \(0.328201\pi\)
\(152\) −5.17036 + 5.17036i −0.419371 + 0.419371i
\(153\) 0 0
\(154\) 8.69161i 0.700390i
\(155\) −7.46834 5.12359i −0.599871 0.411537i
\(156\) 0 0
\(157\) 0.138278 + 0.138278i 0.0110358 + 0.0110358i 0.712603 0.701567i \(-0.247516\pi\)
−0.701567 + 0.712603i \(0.747516\pi\)
\(158\) −6.84694 6.84694i −0.544713 0.544713i
\(159\) 0 0
\(160\) −2.19828 + 0.409343i −0.173789 + 0.0323614i
\(161\) 25.4640i 2.00685i
\(162\) 0 0
\(163\) −13.9766 + 13.9766i −1.09473 + 1.09473i −0.0997147 + 0.995016i \(0.531793\pi\)
−0.995016 + 0.0997147i \(0.968207\pi\)
\(164\) −5.00920 −0.391152
\(165\) 0 0
\(166\) 4.54340 0.352636
\(167\) 14.3179 14.3179i 1.10795 1.10795i 0.114529 0.993420i \(-0.463464\pi\)
0.993420 0.114529i \(-0.0365359\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 8.55983 12.4771i 0.656509 0.956953i
\(171\) 0 0
\(172\) −4.54082 4.54082i −0.346234 0.346234i
\(173\) −0.153769 0.153769i −0.0116908 0.0116908i 0.701237 0.712928i \(-0.252631\pi\)
−0.712928 + 0.701237i \(0.752631\pi\)
\(174\) 0 0
\(175\) 10.2902 23.2173i 0.777863 1.75506i
\(176\) 1.71125i 0.128991i
\(177\) 0 0
\(178\) 5.26417 5.26417i 0.394566 0.394566i
\(179\) −5.18530 −0.387568 −0.193784 0.981044i \(-0.562076\pi\)
−0.193784 + 0.981044i \(0.562076\pi\)
\(180\) 0 0
\(181\) −7.46337 −0.554748 −0.277374 0.960762i \(-0.589464\pi\)
−0.277374 + 0.960762i \(0.589464\pi\)
\(182\) 3.59146 3.59146i 0.266217 0.266217i
\(183\) 0 0
\(184\) 5.01350i 0.369600i
\(185\) 0.911121 + 4.89296i 0.0669870 + 0.359738i
\(186\) 0 0
\(187\) 8.18813 + 8.18813i 0.598775 + 0.598775i
\(188\) −8.44294 8.44294i −0.615765 0.615765i
\(189\) 0 0
\(190\) −2.99311 16.0738i −0.217143 1.16612i
\(191\) 14.7875i 1.06998i 0.844857 + 0.534992i \(0.179686\pi\)
−0.844857 + 0.534992i \(0.820314\pi\)
\(192\) 0 0
\(193\) 3.46825 3.46825i 0.249650 0.249650i −0.571177 0.820827i \(-0.693513\pi\)
0.820827 + 0.571177i \(0.193513\pi\)
\(194\) −4.76859 −0.342365
\(195\) 0 0
\(196\) 18.7972 1.34265
\(197\) −11.1189 + 11.1189i −0.792191 + 0.792191i −0.981850 0.189659i \(-0.939262\pi\)
0.189659 + 0.981850i \(0.439262\pi\)
\(198\) 0 0
\(199\) 1.17646i 0.0833967i 0.999130 + 0.0416984i \(0.0132768\pi\)
−0.999130 + 0.0416984i \(0.986723\pi\)
\(200\) 2.02598 4.57115i 0.143259 0.323229i
\(201\) 0 0
\(202\) 3.36764 + 3.36764i 0.236947 + 0.236947i
\(203\) 20.1993 + 20.1993i 1.41771 + 1.41771i
\(204\) 0 0
\(205\) 6.33648 9.23630i 0.442559 0.645091i
\(206\) 10.3716i 0.722623i
\(207\) 0 0
\(208\) 0.707107 0.707107i 0.0490290 0.0490290i
\(209\) 12.5127 0.865520
\(210\) 0 0
\(211\) −2.39291 −0.164735 −0.0823674 0.996602i \(-0.526248\pi\)
−0.0823674 + 0.996602i \(0.526248\pi\)
\(212\) −0.817663 + 0.817663i −0.0561573 + 0.0561573i
\(213\) 0 0
\(214\) 2.65967i 0.181811i
\(215\) 14.1167 2.62867i 0.962748 0.179274i
\(216\) 0 0
\(217\) 14.5467 + 14.5467i 0.987496 + 0.987496i
\(218\) −0.0694301 0.0694301i −0.00470240 0.00470240i
\(219\) 0 0
\(220\) 3.15533 + 2.16468i 0.212732 + 0.145943i
\(221\) 6.76683i 0.455186i
\(222\) 0 0
\(223\) 6.52830 6.52830i 0.437167 0.437167i −0.453890 0.891058i \(-0.649964\pi\)
0.891058 + 0.453890i \(0.149964\pi\)
\(224\) 5.07909 0.339361
\(225\) 0 0
\(226\) 10.5624 0.702599
\(227\) −3.89911 + 3.89911i −0.258793 + 0.258793i −0.824563 0.565770i \(-0.808579\pi\)
0.565770 + 0.824563i \(0.308579\pi\)
\(228\) 0 0
\(229\) 8.58262i 0.567156i 0.958949 + 0.283578i \(0.0915214\pi\)
−0.958949 + 0.283578i \(0.908479\pi\)
\(230\) −9.24424 6.34193i −0.609547 0.418175i
\(231\) 0 0
\(232\) 3.97695 + 3.97695i 0.261099 + 0.261099i
\(233\) −12.6344 12.6344i −0.827709 0.827709i 0.159490 0.987200i \(-0.449015\pi\)
−0.987200 + 0.159490i \(0.949015\pi\)
\(234\) 0 0
\(235\) 26.2477 4.88760i 1.71221 0.318832i
\(236\) 5.36849i 0.349459i
\(237\) 0 0
\(238\) −24.3028 + 24.3028i −1.57532 + 1.57532i
\(239\) 1.24186 0.0803291 0.0401645 0.999193i \(-0.487212\pi\)
0.0401645 + 0.999193i \(0.487212\pi\)
\(240\) 0 0
\(241\) 28.1888 1.81580 0.907899 0.419188i \(-0.137685\pi\)
0.907899 + 0.419188i \(0.137685\pi\)
\(242\) 5.70749 5.70749i 0.366891 0.366891i
\(243\) 0 0
\(244\) 10.3407i 0.661996i
\(245\) −23.7778 + 34.6595i −1.51911 + 2.21431i
\(246\) 0 0
\(247\) 5.17036 + 5.17036i 0.328982 + 0.328982i
\(248\) 2.86404 + 2.86404i 0.181867 + 0.181867i
\(249\) 0 0
\(250\) 5.86578 + 9.51801i 0.370985 + 0.601972i
\(251\) 15.9007i 1.00364i −0.864971 0.501822i \(-0.832663\pi\)
0.864971 0.501822i \(-0.167337\pi\)
\(252\) 0 0
\(253\) 6.06654 6.06654i 0.381400 0.381400i
\(254\) −5.68569 −0.356752
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.7911 18.7911i 1.17216 1.17216i 0.190463 0.981694i \(-0.439001\pi\)
0.981694 0.190463i \(-0.0609991\pi\)
\(258\) 0 0
\(259\) 11.3051i 0.702465i
\(260\) 0.409343 + 2.19828i 0.0253864 + 0.136332i
\(261\) 0 0
\(262\) −3.24139 3.24139i −0.200254 0.200254i
\(263\) 18.5497 + 18.5497i 1.14383 + 1.14383i 0.987744 + 0.156081i \(0.0498860\pi\)
0.156081 + 0.987744i \(0.450114\pi\)
\(264\) 0 0
\(265\) −0.473344 2.54198i −0.0290773 0.156153i
\(266\) 37.1383i 2.27709i
\(267\) 0 0
\(268\) 10.8923 10.8923i 0.665353 0.665353i
\(269\) 17.4203 1.06214 0.531069 0.847329i \(-0.321791\pi\)
0.531069 + 0.847329i \(0.321791\pi\)
\(270\) 0 0
\(271\) 10.5944 0.643566 0.321783 0.946813i \(-0.395718\pi\)
0.321783 + 0.946813i \(0.395718\pi\)
\(272\) −4.78487 + 4.78487i −0.290125 + 0.290125i
\(273\) 0 0
\(274\) 17.1671i 1.03710i
\(275\) −7.98279 + 3.07975i −0.481380 + 0.185716i
\(276\) 0 0
\(277\) 12.9617 + 12.9617i 0.778792 + 0.778792i 0.979625 0.200833i \(-0.0643650\pi\)
−0.200833 + 0.979625i \(0.564365\pi\)
\(278\) 14.4616 + 14.4616i 0.867352 + 0.867352i
\(279\) 0 0
\(280\) −6.42490 + 9.36517i −0.383961 + 0.559676i
\(281\) 9.97862i 0.595275i −0.954679 0.297637i \(-0.903801\pi\)
0.954679 0.297637i \(-0.0961986\pi\)
\(282\) 0 0
\(283\) 6.29606 6.29606i 0.374262 0.374262i −0.494765 0.869027i \(-0.664746\pi\)
0.869027 + 0.494765i \(0.164746\pi\)
\(284\) 1.27407 0.0756021
\(285\) 0 0
\(286\) −1.71125 −0.101189
\(287\) −17.9903 + 17.9903i −1.06194 + 1.06194i
\(288\) 0 0
\(289\) 28.7899i 1.69353i
\(290\) −12.3637 + 2.30225i −0.726021 + 0.135193i
\(291\) 0 0
\(292\) −2.08637 2.08637i −0.122095 0.122095i
\(293\) 17.0111 + 17.0111i 0.993798 + 0.993798i 0.999981 0.00618299i \(-0.00196812\pi\)
−0.00618299 + 0.999981i \(0.501968\pi\)
\(294\) 0 0
\(295\) −9.89879 6.79098i −0.576330 0.395386i
\(296\) 2.22581i 0.129373i
\(297\) 0 0
\(298\) 7.86072 7.86072i 0.455359 0.455359i
\(299\) 5.01350 0.289938
\(300\) 0 0
\(301\) −32.6163 −1.87997
\(302\) 8.93058 8.93058i 0.513897 0.513897i
\(303\) 0 0
\(304\) 7.31199i 0.419371i
\(305\) −19.0669 13.0807i −1.09177 0.748998i
\(306\) 0 0
\(307\) 3.40431 + 3.40431i 0.194294 + 0.194294i 0.797549 0.603254i \(-0.206130\pi\)
−0.603254 + 0.797549i \(0.706130\pi\)
\(308\) −6.14590 6.14590i −0.350195 0.350195i
\(309\) 0 0
\(310\) −8.90384 + 1.65799i −0.505704 + 0.0941674i
\(311\) 3.82411i 0.216846i 0.994105 + 0.108423i \(0.0345800\pi\)
−0.994105 + 0.108423i \(0.965420\pi\)
\(312\) 0 0
\(313\) 8.63440 8.63440i 0.488045 0.488045i −0.419644 0.907689i \(-0.637845\pi\)
0.907689 + 0.419644i \(0.137845\pi\)
\(314\) 0.195554 0.0110358
\(315\) 0 0
\(316\) −9.68304 −0.544713
\(317\) 5.03283 5.03283i 0.282672 0.282672i −0.551502 0.834174i \(-0.685945\pi\)
0.834174 + 0.551502i \(0.185945\pi\)
\(318\) 0 0
\(319\) 9.62452i 0.538870i
\(320\) −1.26497 + 1.84387i −0.0707140 + 0.103075i
\(321\) 0 0
\(322\) 18.0058 + 18.0058i 1.00342 + 1.00342i
\(323\) −34.9869 34.9869i −1.94672 1.94672i
\(324\) 0 0
\(325\) −4.57115 2.02598i −0.253562 0.112381i
\(326\) 19.7659i 1.09473i
\(327\) 0 0
\(328\) −3.54204 + 3.54204i −0.195576 + 0.195576i
\(329\) −60.6449 −3.34346
\(330\) 0 0
\(331\) −15.5941 −0.857131 −0.428566 0.903511i \(-0.640981\pi\)
−0.428566 + 0.903511i \(0.640981\pi\)
\(332\) 3.21267 3.21267i 0.176318 0.176318i
\(333\) 0 0
\(334\) 20.2485i 1.10795i
\(335\) 6.30553 + 33.8624i 0.344508 + 1.85010i
\(336\) 0 0
\(337\) 4.33551 + 4.33551i 0.236170 + 0.236170i 0.815262 0.579092i \(-0.196593\pi\)
−0.579092 + 0.815262i \(0.696593\pi\)
\(338\) −0.707107 0.707107i −0.0384615 0.0384615i
\(339\) 0 0
\(340\) −2.76995 14.8754i −0.150222 0.806731i
\(341\) 6.93120i 0.375346i
\(342\) 0 0
\(343\) 42.3690 42.3690i 2.28771 2.28771i
\(344\) −6.42168 −0.346234
\(345\) 0 0
\(346\) −0.217462 −0.0116908
\(347\) 7.91903 7.91903i 0.425116 0.425116i −0.461845 0.886961i \(-0.652812\pi\)
0.886961 + 0.461845i \(0.152812\pi\)
\(348\) 0 0
\(349\) 4.26538i 0.228320i 0.993462 + 0.114160i \(0.0364177\pi\)
−0.993462 + 0.114160i \(0.963582\pi\)
\(350\) −9.14085 23.6933i −0.488599 1.26646i
\(351\) 0 0
\(352\) −1.21004 1.21004i −0.0644953 0.0644953i
\(353\) −18.9673 18.9673i −1.00953 1.00953i −0.999954 0.00957293i \(-0.996953\pi\)
−0.00957293 0.999954i \(-0.503047\pi\)
\(354\) 0 0
\(355\) −1.61166 + 2.34922i −0.0855380 + 0.124683i
\(356\) 7.44465i 0.394566i
\(357\) 0 0
\(358\) −3.66656 + 3.66656i −0.193784 + 0.193784i
\(359\) −2.11862 −0.111817 −0.0559083 0.998436i \(-0.517805\pi\)
−0.0559083 + 0.998436i \(0.517805\pi\)
\(360\) 0 0
\(361\) −34.4652 −1.81396
\(362\) −5.27740 + 5.27740i −0.277374 + 0.277374i
\(363\) 0 0
\(364\) 5.07909i 0.266217i
\(365\) 6.48618 1.20780i 0.339502 0.0632189i
\(366\) 0 0
\(367\) 2.79585 + 2.79585i 0.145942 + 0.145942i 0.776303 0.630360i \(-0.217093\pi\)
−0.630360 + 0.776303i \(0.717093\pi\)
\(368\) 3.54508 + 3.54508i 0.184800 + 0.184800i
\(369\) 0 0
\(370\) 4.10411 + 2.81559i 0.213362 + 0.146375i
\(371\) 5.87321i 0.304922i
\(372\) 0 0
\(373\) −12.8376 + 12.8376i −0.664705 + 0.664705i −0.956485 0.291780i \(-0.905752\pi\)
0.291780 + 0.956485i \(0.405752\pi\)
\(374\) 11.5798 0.598775
\(375\) 0 0
\(376\) −11.9401 −0.615765
\(377\) 3.97695 3.97695i 0.204823 0.204823i
\(378\) 0 0
\(379\) 25.1235i 1.29051i 0.763969 + 0.645253i \(0.223248\pi\)
−0.763969 + 0.645253i \(0.776752\pi\)
\(380\) −13.4823 9.24945i −0.691630 0.474487i
\(381\) 0 0
\(382\) 10.4563 + 10.4563i 0.534992 + 0.534992i
\(383\) 5.60289 + 5.60289i 0.286294 + 0.286294i 0.835613 0.549319i \(-0.185113\pi\)
−0.549319 + 0.835613i \(0.685113\pi\)
\(384\) 0 0
\(385\) 19.1066 3.55785i 0.973763 0.181325i
\(386\) 4.90485i 0.249650i
\(387\) 0 0
\(388\) −3.37190 + 3.37190i −0.171183 + 0.171183i
\(389\) −6.08318 −0.308430 −0.154215 0.988037i \(-0.549285\pi\)
−0.154215 + 0.988037i \(0.549285\pi\)
\(390\) 0 0
\(391\) −33.9255 −1.71569
\(392\) 13.2916 13.2916i 0.671327 0.671327i
\(393\) 0 0
\(394\) 15.7245i 0.792191i
\(395\) 12.2487 17.8542i 0.616301 0.898345i
\(396\) 0 0
\(397\) −23.4663 23.4663i −1.17774 1.17774i −0.980318 0.197424i \(-0.936743\pi\)
−0.197424 0.980318i \(-0.563257\pi\)
\(398\) 0.831879 + 0.831879i 0.0416984 + 0.0416984i
\(399\) 0 0
\(400\) −1.79970 4.66488i −0.0899851 0.233244i
\(401\) 18.8280i 0.940225i 0.882607 + 0.470112i \(0.155787\pi\)
−0.882607 + 0.470112i \(0.844213\pi\)
\(402\) 0 0
\(403\) 2.86404 2.86404i 0.142668 0.142668i
\(404\) 4.76257 0.236947
\(405\) 0 0
\(406\) 28.5661 1.41771
\(407\) −2.69332 + 2.69332i −0.133503 + 0.133503i
\(408\) 0 0
\(409\) 20.2581i 1.00170i 0.865535 + 0.500849i \(0.166979\pi\)
−0.865535 + 0.500849i \(0.833021\pi\)
\(410\) −2.05048 11.0116i −0.101266 0.543825i
\(411\) 0 0
\(412\) 7.33383 + 7.33383i 0.361312 + 0.361312i
\(413\) 19.2807 + 19.2807i 0.948742 + 0.948742i
\(414\) 0 0
\(415\) 1.85981 + 9.98766i 0.0912944 + 0.490275i
\(416\) 1.00000i 0.0490290i
\(417\) 0 0
\(418\) 8.84779 8.84779i 0.432760 0.432760i
\(419\) −32.8195 −1.60334 −0.801668 0.597770i \(-0.796054\pi\)
−0.801668 + 0.597770i \(0.796054\pi\)
\(420\) 0 0
\(421\) −36.7873 −1.79290 −0.896451 0.443142i \(-0.853864\pi\)
−0.896451 + 0.443142i \(0.853864\pi\)
\(422\) −1.69204 + 1.69204i −0.0823674 + 0.0823674i
\(423\) 0 0
\(424\) 1.15635i 0.0561573i
\(425\) 30.9322 + 13.7095i 1.50043 + 0.665008i
\(426\) 0 0
\(427\) 37.1383 + 37.1383i 1.79725 + 1.79725i
\(428\) 1.88067 + 1.88067i 0.0909056 + 0.0909056i
\(429\) 0 0
\(430\) 8.12324 11.8407i 0.391737 0.571011i
\(431\) 27.1329i 1.30695i −0.756950 0.653473i \(-0.773311\pi\)
0.756950 0.653473i \(-0.226689\pi\)
\(432\) 0 0
\(433\) −13.7048 + 13.7048i −0.658612 + 0.658612i −0.955052 0.296439i \(-0.904201\pi\)
0.296439 + 0.955052i \(0.404201\pi\)
\(434\) 20.5722 0.987496
\(435\) 0 0
\(436\) −0.0981889 −0.00470240
\(437\) −25.9216 + 25.9216i −1.24000 + 1.24000i
\(438\) 0 0
\(439\) 7.76024i 0.370376i 0.982703 + 0.185188i \(0.0592894\pi\)
−0.982703 + 0.185188i \(0.940711\pi\)
\(440\) 3.76182 0.700490i 0.179338 0.0333945i
\(441\) 0 0
\(442\) 4.78487 + 4.78487i 0.227593 + 0.227593i
\(443\) 23.7075 + 23.7075i 1.12638 + 1.12638i 0.990762 + 0.135616i \(0.0433012\pi\)
0.135616 + 0.990762i \(0.456699\pi\)
\(444\) 0 0
\(445\) 13.7270 + 9.41726i 0.650720 + 0.446421i
\(446\) 9.23241i 0.437167i
\(447\) 0 0
\(448\) 3.59146 3.59146i 0.169680 0.169680i
\(449\) 2.75448 0.129992 0.0649960 0.997886i \(-0.479297\pi\)
0.0649960 + 0.997886i \(0.479297\pi\)
\(450\) 0 0
\(451\) 8.57201 0.403640
\(452\) 7.46873 7.46873i 0.351300 0.351300i
\(453\) 0 0
\(454\) 5.51417i 0.258793i
\(455\) 9.36517 + 6.42490i 0.439046 + 0.301204i
\(456\) 0 0
\(457\) −21.6406 21.6406i −1.01231 1.01231i −0.999923 0.0123823i \(-0.996059\pi\)
−0.0123823 0.999923i \(-0.503941\pi\)
\(458\) 6.06883 + 6.06883i 0.283578 + 0.283578i
\(459\) 0 0
\(460\) −11.0211 + 2.05224i −0.513861 + 0.0956863i
\(461\) 32.5967i 1.51818i −0.650986 0.759090i \(-0.725644\pi\)
0.650986 0.759090i \(-0.274356\pi\)
\(462\) 0 0
\(463\) 11.7158 11.7158i 0.544479 0.544479i −0.380360 0.924839i \(-0.624200\pi\)
0.924839 + 0.380360i \(0.124200\pi\)
\(464\) 5.62425 0.261099
\(465\) 0 0
\(466\) −17.8678 −0.827709
\(467\) 3.03350 3.03350i 0.140374 0.140374i −0.633428 0.773802i \(-0.718353\pi\)
0.773802 + 0.633428i \(0.218353\pi\)
\(468\) 0 0
\(469\) 78.2385i 3.61272i
\(470\) 15.1039 22.0160i 0.696691 1.01552i
\(471\) 0 0
\(472\) 3.79610 + 3.79610i 0.174730 + 0.174730i
\(473\) 7.77049 + 7.77049i 0.357287 + 0.357287i
\(474\) 0 0
\(475\) 34.1095 13.1594i 1.56505 0.603795i
\(476\) 34.3693i 1.57532i
\(477\) 0 0
\(478\) 0.878126 0.878126i 0.0401645 0.0401645i
\(479\) −6.20311 −0.283427 −0.141714 0.989908i \(-0.545261\pi\)
−0.141714 + 0.989908i \(0.545261\pi\)
\(480\) 0 0
\(481\) −2.22581 −0.101488
\(482\) 19.9325 19.9325i 0.907899 0.907899i
\(483\) 0 0
\(484\) 8.07161i 0.366891i
\(485\) −1.95199 10.4827i −0.0886353 0.475995i
\(486\) 0 0
\(487\) −18.9805 18.9805i −0.860091 0.860091i 0.131258 0.991348i \(-0.458098\pi\)
−0.991348 + 0.131258i \(0.958098\pi\)
\(488\) 7.31199 + 7.31199i 0.330998 + 0.330998i
\(489\) 0 0
\(490\) 7.69448 + 41.3214i 0.347601 + 1.86671i
\(491\) 0.808273i 0.0364768i 0.999834 + 0.0182384i \(0.00580579\pi\)
−0.999834 + 0.0182384i \(0.994194\pi\)
\(492\) 0 0
\(493\) −26.9113 + 26.9113i −1.21202 + 1.21202i
\(494\) 7.31199 0.328982
\(495\) 0 0
\(496\) 4.05036 0.181867
\(497\) 4.57577 4.57577i 0.205251 0.205251i
\(498\) 0 0
\(499\) 7.50350i 0.335903i −0.985795 0.167951i \(-0.946285\pi\)
0.985795 0.167951i \(-0.0537152\pi\)
\(500\) 10.8780 + 2.58252i 0.486478 + 0.115494i
\(501\) 0 0
\(502\) −11.2435 11.2435i −0.501822 0.501822i
\(503\) −10.2038 10.2038i −0.454963 0.454963i 0.442035 0.896998i \(-0.354257\pi\)
−0.896998 + 0.442035i \(0.854257\pi\)
\(504\) 0 0
\(505\) −6.02451 + 8.78155i −0.268087 + 0.390774i
\(506\) 8.57938i 0.381400i
\(507\) 0 0
\(508\) −4.02039 + 4.02039i −0.178376 + 0.178376i
\(509\) 28.4806 1.26238 0.631190 0.775628i \(-0.282567\pi\)
0.631190 + 0.775628i \(0.282567\pi\)
\(510\) 0 0
\(511\) −14.9862 −0.662951
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 26.5747i 1.17216i
\(515\) −22.7997 + 4.24554i −1.00467 + 0.187081i
\(516\) 0 0
\(517\) 14.4480 + 14.4480i 0.635423 + 0.635423i
\(518\) −7.99392 7.99392i −0.351233 0.351233i
\(519\) 0 0
\(520\) 1.84387 + 1.26497i 0.0808590 + 0.0554726i
\(521\) 10.4221i 0.456602i 0.973591 + 0.228301i \(0.0733170\pi\)
−0.973591 + 0.228301i \(0.926683\pi\)
\(522\) 0 0
\(523\) −5.42102 + 5.42102i −0.237045 + 0.237045i −0.815625 0.578581i \(-0.803607\pi\)
0.578581 + 0.815625i \(0.303607\pi\)
\(524\) −4.58401 −0.200254
\(525\) 0 0
\(526\) 26.2333 1.14383
\(527\) −19.3805 + 19.3805i −0.844226 + 0.844226i
\(528\) 0 0
\(529\) 2.13521i 0.0928352i
\(530\) −2.13216 1.46275i −0.0926150 0.0635377i
\(531\) 0 0
\(532\) 26.2607 + 26.2607i 1.13855 + 1.13855i
\(533\) 3.54204 + 3.54204i 0.153423 + 0.153423i
\(534\) 0 0
\(535\) −5.84670 + 1.08872i −0.252775 + 0.0470693i
\(536\) 15.4040i 0.665353i
\(537\) 0 0
\(538\) 12.3180 12.3180i 0.531069 0.531069i
\(539\) −32.1667 −1.38552
\(540\) 0 0
\(541\) −42.8418 −1.84191 −0.920955 0.389668i \(-0.872590\pi\)
−0.920955 + 0.389668i \(0.872590\pi\)
\(542\) 7.49140 7.49140i 0.321783 0.321783i
\(543\) 0 0
\(544\) 6.76683i 0.290125i
\(545\) 0.124206 0.181047i 0.00532040 0.00775522i
\(546\) 0 0
\(547\) −23.8615 23.8615i −1.02025 1.02025i −0.999791 0.0204542i \(-0.993489\pi\)
−0.0204542 0.999791i \(-0.506511\pi\)
\(548\) −12.1390 12.1390i −0.518551 0.518551i
\(549\) 0 0
\(550\) −3.46697 + 7.82239i −0.147832 + 0.333548i
\(551\) 41.1245i 1.75196i
\(552\) 0 0
\(553\) −34.7762 + 34.7762i −1.47884 + 1.47884i
\(554\) 18.3306 0.778792
\(555\) 0 0
\(556\) 20.4519 0.867352
\(557\) 14.8257 14.8257i 0.628185 0.628185i −0.319426 0.947611i \(-0.603490\pi\)
0.947611 + 0.319426i \(0.103490\pi\)
\(558\) 0 0
\(559\) 6.42168i 0.271608i
\(560\) 2.07909 + 11.1653i 0.0878576 + 0.471819i
\(561\) 0 0
\(562\) −7.05595 7.05595i −0.297637 0.297637i
\(563\) −24.7799 24.7799i −1.04435 1.04435i −0.998970 0.0453802i \(-0.985550\pi\)
−0.0453802 0.998970i \(-0.514450\pi\)
\(564\) 0 0
\(565\) 4.32364 + 23.2191i 0.181897 + 0.976834i
\(566\) 8.90398i 0.374262i
\(567\) 0 0
\(568\) 0.900903 0.900903i 0.0378010 0.0378010i
\(569\) 37.8539 1.58692 0.793460 0.608623i \(-0.208278\pi\)
0.793460 + 0.608623i \(0.208278\pi\)
\(570\) 0 0
\(571\) −20.4324 −0.855068 −0.427534 0.903999i \(-0.640618\pi\)
−0.427534 + 0.903999i \(0.640618\pi\)
\(572\) −1.21004 + 1.21004i −0.0505943 + 0.0505943i
\(573\) 0 0
\(574\) 25.4422i 1.06194i
\(575\) 10.1573 22.9175i 0.423588 0.955724i
\(576\) 0 0
\(577\) 25.6648 + 25.6648i 1.06844 + 1.06844i 0.997479 + 0.0709599i \(0.0226062\pi\)
0.0709599 + 0.997479i \(0.477394\pi\)
\(578\) −20.3576 20.3576i −0.846763 0.846763i
\(579\) 0 0
\(580\) −7.11451 + 10.3704i −0.295414 + 0.430607i
\(581\) 23.0763i 0.957367i
\(582\) 0 0
\(583\) 1.39923 1.39923i 0.0579501 0.0579501i
\(584\) −2.95057 −0.122095
\(585\) 0 0
\(586\) 24.0573 0.993798
\(587\) 23.4279 23.4279i 0.966973 0.966973i −0.0324987 0.999472i \(-0.510346\pi\)
0.999472 + 0.0324987i \(0.0103465\pi\)
\(588\) 0 0
\(589\) 29.6162i 1.22032i
\(590\) −11.8015 + 2.19756i −0.485858 + 0.0904719i
\(591\) 0 0
\(592\) −1.57389 1.57389i −0.0646864 0.0646864i
\(593\) −1.99530 1.99530i −0.0819371 0.0819371i 0.664950 0.746888i \(-0.268453\pi\)
−0.746888 + 0.664950i \(0.768453\pi\)
\(594\) 0 0
\(595\) −63.3725 43.4762i −2.59802 1.78235i
\(596\) 11.1167i 0.455359i
\(597\) 0 0
\(598\) 3.54508 3.54508i 0.144969 0.144969i
\(599\) −10.8720 −0.444218 −0.222109 0.975022i \(-0.571294\pi\)
−0.222109 + 0.975022i \(0.571294\pi\)
\(600\) 0 0
\(601\) −12.4043 −0.505983 −0.252991 0.967469i \(-0.581414\pi\)
−0.252991 + 0.967469i \(0.581414\pi\)
\(602\) −23.0632 + 23.0632i −0.939986 + 0.939986i
\(603\) 0 0
\(604\) 12.6297i 0.513897i
\(605\) 14.8830 + 10.2103i 0.605079 + 0.415110i
\(606\) 0 0
\(607\) −29.1414 29.1414i −1.18281 1.18281i −0.979012 0.203802i \(-0.934670\pi\)
−0.203802 0.979012i \(-0.565330\pi\)
\(608\) 5.17036 + 5.17036i 0.209686 + 0.209686i
\(609\) 0 0
\(610\) −22.7318 + 4.23290i −0.920383 + 0.171385i
\(611\) 11.9401i 0.483045i
\(612\) 0 0
\(613\) −22.8508 + 22.8508i −0.922935 + 0.922935i −0.997236 0.0743005i \(-0.976328\pi\)
0.0743005 + 0.997236i \(0.476328\pi\)
\(614\) 4.81443 0.194294
\(615\) 0 0
\(616\) −8.69161 −0.350195
\(617\) 24.7096 24.7096i 0.994771 0.994771i −0.00521527 0.999986i \(-0.501660\pi\)
0.999986 + 0.00521527i \(0.00166008\pi\)
\(618\) 0 0
\(619\) 5.50448i 0.221244i 0.993863 + 0.110622i \(0.0352842\pi\)
−0.993863 + 0.110622i \(0.964716\pi\)
\(620\) −5.12359 + 7.46834i −0.205768 + 0.299936i
\(621\) 0 0
\(622\) 2.70406 + 2.70406i 0.108423 + 0.108423i
\(623\) −26.7372 26.7372i −1.07120 1.07120i
\(624\) 0 0
\(625\) −18.5221 + 16.7908i −0.740886 + 0.671631i
\(626\) 12.2109i 0.488045i
\(627\) 0 0
\(628\) 0.138278 0.138278i 0.00551788 0.00551788i
\(629\) 15.0617 0.600549
\(630\) 0 0
\(631\) 19.3796 0.771491 0.385746 0.922605i \(-0.373944\pi\)
0.385746 + 0.922605i \(0.373944\pi\)
\(632\) −6.84694 + 6.84694i −0.272357 + 0.272357i
\(633\) 0 0
\(634\) 7.11750i 0.282672i
\(635\) −2.32740 12.4987i −0.0923600 0.495998i
\(636\) 0 0
\(637\) −13.2916 13.2916i −0.526632 0.526632i
\(638\) −6.80557 6.80557i −0.269435 0.269435i
\(639\) 0 0
\(640\) 0.409343 + 2.19828i 0.0161807 + 0.0868947i
\(641\) 17.1209i 0.676237i −0.941104 0.338118i \(-0.890210\pi\)
0.941104 0.338118i \(-0.109790\pi\)
\(642\) 0 0
\(643\) 13.0974 13.0974i 0.516509 0.516509i −0.400004 0.916513i \(-0.630991\pi\)
0.916513 + 0.400004i \(0.130991\pi\)
\(644\) 25.4640 1.00342
\(645\) 0 0
\(646\) −49.4790 −1.94672
\(647\) 8.42447 8.42447i 0.331200 0.331200i −0.521842 0.853042i \(-0.674755\pi\)
0.853042 + 0.521842i \(0.174755\pi\)
\(648\) 0 0
\(649\) 9.18685i 0.360616i
\(650\) −4.66488 + 1.79970i −0.182972 + 0.0705901i
\(651\) 0 0
\(652\) 13.9766 + 13.9766i 0.547365 + 0.547365i
\(653\) 4.26386 + 4.26386i 0.166858 + 0.166858i 0.785597 0.618739i \(-0.212356\pi\)
−0.618739 + 0.785597i \(0.712356\pi\)
\(654\) 0 0
\(655\) 5.79864 8.45232i 0.226572 0.330259i
\(656\) 5.00920i 0.195576i
\(657\) 0 0
\(658\) −42.8824 + 42.8824i −1.67173 + 1.67173i
\(659\) −12.4071 −0.483313 −0.241656 0.970362i \(-0.577691\pi\)
−0.241656 + 0.970362i \(0.577691\pi\)
\(660\) 0 0
\(661\) 5.88278 0.228814 0.114407 0.993434i \(-0.463503\pi\)
0.114407 + 0.993434i \(0.463503\pi\)
\(662\) −11.0267 + 11.0267i −0.428566 + 0.428566i
\(663\) 0 0
\(664\) 4.54340i 0.176318i
\(665\) −81.6403 + 15.2023i −3.16588 + 0.589519i
\(666\) 0 0
\(667\) 19.9384 + 19.9384i 0.772019 + 0.772019i
\(668\) −14.3179 14.3179i −0.553974 0.553974i
\(669\) 0 0
\(670\) 28.4030 + 19.4856i 1.09730 + 0.752796i
\(671\) 17.6956i 0.683131i
\(672\) 0 0
\(673\) 10.5670 10.5670i 0.407329 0.407329i −0.473477 0.880806i \(-0.657001\pi\)
0.880806 + 0.473477i \(0.157001\pi\)
\(674\) 6.13133 0.236170
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) −19.4286 + 19.4286i −0.746701 + 0.746701i −0.973858 0.227157i \(-0.927057\pi\)
0.227157 + 0.973858i \(0.427057\pi\)
\(678\) 0 0
\(679\) 24.2201i 0.929483i
\(680\) −12.4771 8.55983i −0.478476 0.328255i
\(681\) 0 0
\(682\) −4.90110 4.90110i −0.187673 0.187673i
\(683\) 12.7030 + 12.7030i 0.486065 + 0.486065i 0.907062 0.420997i \(-0.138320\pi\)
−0.420997 + 0.907062i \(0.638320\pi\)
\(684\) 0 0
\(685\) 37.7381 7.02723i 1.44190 0.268497i
\(686\) 59.9188i 2.28771i
\(687\) 0 0
\(688\) −4.54082 + 4.54082i −0.173117 + 0.173117i
\(689\) 1.15635 0.0440534
\(690\) 0 0
\(691\) −9.55542 −0.363505 −0.181753 0.983344i \(-0.558177\pi\)
−0.181753 + 0.983344i \(0.558177\pi\)
\(692\) −0.153769 + 0.153769i −0.00584542 + 0.00584542i
\(693\) 0 0
\(694\) 11.1992i 0.425116i
\(695\) −25.8710 + 37.7105i −0.981343 + 1.43044i
\(696\) 0 0
\(697\) −23.9683 23.9683i −0.907866 0.907866i
\(698\) 3.01608 + 3.01608i 0.114160 + 0.114160i
\(699\) 0 0
\(700\) −23.2173 10.2902i −0.877530 0.388931i
\(701\) 36.7288i 1.38723i −0.720348 0.693613i \(-0.756018\pi\)
0.720348 0.693613i \(-0.243982\pi\)
\(702\) 0 0
\(703\) 11.5083 11.5083i 0.434042 0.434042i
\(704\) −1.71125 −0.0644953
\(705\) 0 0
\(706\) −26.8238 −1.00953
\(707\) 17.1046 17.1046i 0.643283 0.643283i
\(708\) 0 0
\(709\) 13.0331i 0.489470i 0.969590 + 0.244735i \(0.0787010\pi\)
−0.969590 + 0.244735i \(0.921299\pi\)
\(710\) 0.521531 + 2.80076i 0.0195727 + 0.105111i
\(711\) 0 0
\(712\) −5.26417 5.26417i −0.197283 0.197283i
\(713\) 14.3589 + 14.3589i 0.537744 + 0.537744i
\(714\) 0 0
\(715\) −0.700490 3.76182i −0.0261968 0.140684i
\(716\) 5.18530i 0.193784i
\(717\) 0 0
\(718\) −1.49809 + 1.49809i −0.0559083 + 0.0559083i
\(719\) −7.86257 −0.293224 −0.146612 0.989194i \(-0.546837\pi\)
−0.146612 + 0.989194i \(0.546837\pi\)
\(720\) 0 0
\(721\) 52.6783 1.96184
\(722\) −24.3706 + 24.3706i −0.906979 + 0.906979i
\(723\) 0 0
\(724\) 7.46337i 0.277374i
\(725\) −10.1220 26.2364i −0.375921 0.974397i
\(726\) 0 0
\(727\) −24.7849 24.7849i −0.919223 0.919223i 0.0777502 0.996973i \(-0.475226\pi\)
−0.996973 + 0.0777502i \(0.975226\pi\)
\(728\) −3.59146 3.59146i −0.133108 0.133108i
\(729\) 0 0
\(730\) 3.73238 5.44046i 0.138142 0.201361i
\(731\) 43.4544i 1.60722i
\(732\) 0 0
\(733\) 25.0621 25.0621i 0.925690 0.925690i −0.0717338 0.997424i \(-0.522853\pi\)
0.997424 + 0.0717338i \(0.0228532\pi\)
\(734\) 3.95393 0.145942
\(735\) 0 0
\(736\) 5.01350 0.184800
\(737\) −18.6395 + 18.6395i −0.686594 + 0.686594i
\(738\) 0 0
\(739\) 9.68127i 0.356131i −0.984019 0.178066i \(-0.943016\pi\)
0.984019 0.178066i \(-0.0569839\pi\)
\(740\) 4.89296 0.911121i 0.179869 0.0334935i
\(741\) 0 0
\(742\) 4.15298 + 4.15298i 0.152461 + 0.152461i
\(743\) −6.68940 6.68940i −0.245410 0.245410i 0.573674 0.819084i \(-0.305518\pi\)
−0.819084 + 0.573674i \(0.805518\pi\)
\(744\) 0 0
\(745\) 20.4978 + 14.0623i 0.750981 + 0.515204i
\(746\) 18.1551i 0.664705i
\(747\) 0 0
\(748\) 8.18813 8.18813i 0.299388 0.299388i
\(749\) 13.5087 0.493597
\(750\) 0 0
\(751\) 15.0058 0.547569 0.273785 0.961791i \(-0.411724\pi\)
0.273785 + 0.961791i \(0.411724\pi\)
\(752\) −8.44294 + 8.44294i −0.307882 + 0.307882i
\(753\) 0 0
\(754\) 5.62425i 0.204823i
\(755\) 23.2876 + 15.9762i 0.847522 + 0.581435i
\(756\) 0 0
\(757\) −0.776511 0.776511i −0.0282228 0.0282228i 0.692855 0.721077i \(-0.256353\pi\)
−0.721077 + 0.692855i \(0.756353\pi\)
\(758\) 17.7650 + 17.7650i 0.645253 + 0.645253i
\(759\) 0 0
\(760\) −16.0738 + 2.99311i −0.583058 + 0.108572i
\(761\) 7.91919i 0.287070i 0.989645 + 0.143535i \(0.0458470\pi\)
−0.989645 + 0.143535i \(0.954153\pi\)
\(762\) 0 0
\(763\) −0.352642 + 0.352642i −0.0127665 + 0.0127665i
\(764\) 14.7875 0.534992
\(765\) 0 0
\(766\) 7.92368 0.286294
\(767\) 3.79610 3.79610i 0.137069 0.137069i
\(768\) 0 0
\(769\) 14.7029i 0.530199i 0.964221 + 0.265099i \(0.0854048\pi\)
−0.964221 + 0.265099i \(0.914595\pi\)
\(770\) 10.9946 16.0262i 0.396219 0.577544i
\(771\) 0 0
\(772\) −3.46825 3.46825i −0.124825 0.124825i
\(773\) 23.3264 + 23.3264i 0.838992 + 0.838992i 0.988726 0.149735i \(-0.0478420\pi\)
−0.149735 + 0.988726i \(0.547842\pi\)
\(774\) 0 0
\(775\) −7.28945 18.8945i −0.261845 0.678709i
\(776\) 4.76859i 0.171183i
\(777\) 0 0
\(778\) −4.30146 + 4.30146i −0.154215 + 0.154215i
\(779\) −36.6272 −1.31231
\(780\) 0 0
\(781\) −2.18026 −0.0780157
\(782\) −23.9890 + 23.9890i −0.857843 + 0.857843i
\(783\) 0 0
\(784\) 18.7972i 0.671327i
\(785\) 0.0800487 + 0.429883i 0.00285706 + 0.0153432i
\(786\) 0 0
\(787\) −2.70024 2.70024i −0.0962531 0.0962531i 0.657341 0.753594i \(-0.271681\pi\)
−0.753594 + 0.657341i \(0.771681\pi\)
\(788\) 11.1189 + 11.1189i 0.396096 + 0.396096i
\(789\) 0 0
\(790\) −3.96368 21.2860i −0.141022 0.757323i
\(791\) 53.6473i 1.90748i
\(792\) 0 0
\(793\) 7.31199 7.31199i 0.259656 0.259656i
\(794\) −33.1864 −1.17774
\(795\) 0 0
\(796\) 1.17646 0.0416984
\(797\) −1.92662 + 1.92662i −0.0682442 + 0.0682442i −0.740405 0.672161i \(-0.765366\pi\)
0.672161 + 0.740405i \(0.265366\pi\)
\(798\) 0 0
\(799\) 80.7967i 2.85838i
\(800\) −4.57115 2.02598i −0.161614 0.0716294i
\(801\) 0 0
\(802\) 13.3134 + 13.3134i 0.470112 + 0.470112i
\(803\) 3.57031 + 3.57031i 0.125993 + 0.125993i
\(804\) 0 0
\(805\) −32.2112 + 46.9523i −1.13530 + 1.65485i
\(806\) 4.05036i 0.142668i
\(807\) 0 0
\(808\) 3.36764 3.36764i 0.118473 0.118473i
\(809\) −26.1622 −0.919813 −0.459906 0.887967i \(-0.652117\pi\)
−0.459906 + 0.887967i \(0.652117\pi\)
\(810\) 0 0
\(811\) 22.3254 0.783951 0.391975 0.919976i \(-0.371792\pi\)
0.391975 + 0.919976i \(0.371792\pi\)
\(812\) 20.1993 20.1993i 0.708856 0.708856i
\(813\) 0 0
\(814\) 3.80893i 0.133503i
\(815\) −43.4509 + 8.09102i −1.52202 + 0.283416i
\(816\) 0 0
\(817\) −33.2024 33.2024i −1.16160 1.16160i
\(818\) 14.3246 + 14.3246i 0.500849 + 0.500849i
\(819\) 0 0
\(820\) −9.23630 6.33648i −0.322546 0.221280i
\(821\) 15.5053i 0.541137i 0.962701 + 0.270569i \(0.0872117\pi\)
−0.962701 + 0.270569i \(0.912788\pi\)
\(822\) 0 0
\(823\) −8.72280 + 8.72280i −0.304058 + 0.304058i −0.842599 0.538541i \(-0.818976\pi\)
0.538541 + 0.842599i \(0.318976\pi\)
\(824\) 10.3716 0.361312
\(825\) 0 0
\(826\) 27.2671 0.948742
\(827\) 28.0679 28.0679i 0.976018 0.976018i −0.0237013 0.999719i \(-0.507545\pi\)
0.999719 + 0.0237013i \(0.00754506\pi\)
\(828\) 0 0
\(829\) 27.9728i 0.971536i 0.874088 + 0.485768i \(0.161460\pi\)
−0.874088 + 0.485768i \(0.838540\pi\)
\(830\) 8.37743 + 5.74726i 0.290785 + 0.199490i
\(831\) 0 0
\(832\) −0.707107 0.707107i −0.0245145 0.0245145i
\(833\) 89.9419 + 89.9419i 3.11630 + 3.11630i
\(834\) 0 0
\(835\) 44.5119 8.28858i 1.54040 0.286838i
\(836\) 12.5127i 0.432760i
\(837\) 0 0
\(838\) −23.2069 + 23.2069i −0.801668 + 0.801668i
\(839\) 52.1327 1.79982 0.899911 0.436074i \(-0.143631\pi\)
0.899911 + 0.436074i \(0.143631\pi\)
\(840\) 0 0
\(841\) 2.63222 0.0907662
\(842\) −26.0125 + 26.0125i −0.896451 + 0.896451i
\(843\) 0 0
\(844\) 2.39291i 0.0823674i
\(845\) 1.26497 1.84387i 0.0435163 0.0634310i
\(846\) 0 0
\(847\) −28.9889 28.9889i −0.996069 0.996069i
\(848\) 0.817663 + 0.817663i 0.0280787 + 0.0280787i
\(849\) 0 0
\(850\) 31.5664 12.1783i 1.08272 0.417711i
\(851\) 11.1591i 0.382530i
\(852\) 0 0
\(853\) 31.5359 31.5359i 1.07977 1.07977i 0.0832382 0.996530i \(-0.473474\pi\)
0.996530 0.0832382i \(-0.0265262\pi\)
\(854\) 52.5214 1.79725
\(855\) 0 0
\(856\) 2.65967 0.0909056
\(857\) 16.3191 16.3191i 0.557451 0.557451i −0.371130 0.928581i \(-0.621030\pi\)
0.928581 + 0.371130i \(0.121030\pi\)
\(858\) 0 0
\(859\) 30.6059i 1.04426i 0.852865 + 0.522131i \(0.174863\pi\)
−0.852865 + 0.522131i \(0.825137\pi\)
\(860\) −2.62867 14.1167i −0.0896369 0.481374i
\(861\) 0 0
\(862\) −19.1859 19.1859i −0.653473 0.653473i
\(863\) 17.0492 + 17.0492i 0.580361 + 0.580361i 0.935002 0.354641i \(-0.115397\pi\)
−0.354641 + 0.935002i \(0.615397\pi\)
\(864\) 0 0
\(865\) −0.0890167 0.478043i −0.00302666 0.0162540i
\(866\) 19.3816i 0.658612i
\(867\) 0 0
\(868\) 14.5467 14.5467i 0.493748 0.493748i
\(869\) 16.5701 0.562103
\(870\) 0 0
\(871\) −15.4040 −0.521946
\(872\) −0.0694301 + 0.0694301i −0.00235120 + 0.00235120i
\(873\) 0 0
\(874\) 36.6587i 1.24000i
\(875\) 48.3428 29.7928i 1.63429 1.00718i
\(876\) 0 0
\(877\) 35.5379 + 35.5379i 1.20003 + 1.20003i 0.974157 + 0.225872i \(0.0725230\pi\)
0.225872 + 0.974157i \(0.427477\pi\)
\(878\) 5.48732 + 5.48732i 0.185188 + 0.185188i
\(879\) 0 0
\(880\) 2.16468 3.15533i 0.0729715 0.106366i
\(881\) 0.540239i 0.0182011i −0.999959 0.00910055i \(-0.997103\pi\)
0.999959 0.00910055i \(-0.00289684\pi\)
\(882\) 0 0
\(883\) 3.42941 3.42941i 0.115409 0.115409i −0.647044 0.762453i \(-0.723995\pi\)
0.762453 + 0.647044i \(0.223995\pi\)
\(884\) 6.76683 0.227593
\(885\) 0 0
\(886\) 33.5275 1.12638
\(887\) −32.3524 + 32.3524i −1.08629 + 1.08629i −0.0903810 + 0.995907i \(0.528808\pi\)
−0.995907 + 0.0903810i \(0.971192\pi\)
\(888\) 0 0
\(889\) 28.8781i 0.968542i
\(890\) 16.3654 3.04742i 0.548571 0.102150i
\(891\) 0 0
\(892\) −6.52830 6.52830i −0.218584 0.218584i
\(893\) −61.7347 61.7347i −2.06587 2.06587i
\(894\) 0 0
\(895\) −9.56101 6.55925i −0.319589 0.219252i
\(896\) 5.07909i 0.169680i
\(897\) 0 0
\(898\) 1.94771 1.94771i 0.0649960 0.0649960i
\(899\) 22.7803 0.759765
\(900\) 0 0
\(901\) −7.82482 −0.260683
\(902\) 6.06132 6.06132i 0.201820 0.201820i
\(903\) 0 0
\(904\) 10.5624i 0.351300i
\(905\) −13.7615 9.44094i −0.457447 0.313827i
\(906\) 0 0
\(907\) 1.12583 + 1.12583i 0.0373826 + 0.0373826i 0.725551 0.688168i \(-0.241585\pi\)
−0.688168 + 0.725551i \(0.741585\pi\)
\(908\) 3.89911 + 3.89911i 0.129396 + 0.129396i
\(909\) 0 0
\(910\) 11.1653 2.07909i 0.370125 0.0689212i
\(911\) 13.3271i 0.441548i −0.975325 0.220774i \(-0.929142\pi\)
0.975325 0.220774i \(-0.0708583\pi\)
\(912\) 0 0
\(913\) −5.49769 + 5.49769i −0.181947 + 0.181947i
\(914\) −30.6045 −1.01231
\(915\) 0 0
\(916\) 8.58262 0.283578
\(917\) −16.4633 + 16.4633i −0.543666 + 0.543666i
\(918\) 0 0
\(919\) 15.9159i 0.525018i 0.964930 + 0.262509i \(0.0845499\pi\)
−0.964930 + 0.262509i \(0.915450\pi\)
\(920\) −6.34193 + 9.24424i −0.209087 + 0.304774i
\(921\) 0 0
\(922\) −23.0493 23.0493i −0.759090 0.759090i
\(923\) −0.900903 0.900903i −0.0296536 0.0296536i
\(924\) 0 0
\(925\) −4.50946 + 10.1745i −0.148270 + 0.334536i
\(926\) 16.5686i 0.544479i
\(927\) 0 0
\(928\) 3.97695 3.97695i 0.130550 0.130550i
\(929\) 44.3230 1.45419 0.727096 0.686536i \(-0.240870\pi\)
0.727096 + 0.686536i \(0.240870\pi\)
\(930\) 0 0
\(931\) 137.445 4.50457
\(932\) −12.6344 + 12.6344i −0.413855 + 0.413855i
\(933\) 0 0
\(934\) 4.29002i 0.140374i
\(935\) 4.74009 + 25.4556i 0.155018 + 0.832486i
\(936\) 0 0
\(937\) 30.0986 + 30.0986i 0.983279 + 0.983279i 0.999862 0.0165833i \(-0.00527886\pi\)
−0.0165833 + 0.999862i \(0.505279\pi\)
\(938\) −55.3229 55.3229i −1.80636 1.80636i
\(939\) 0 0
\(940\) −4.88760 26.2477i −0.159416 0.856107i
\(941\) 35.0136i 1.14141i −0.821154 0.570706i \(-0.806670\pi\)
0.821154 0.570706i \(-0.193330\pi\)
\(942\) 0 0
\(943\) −17.7580 + 17.7580i −0.578280 + 0.578280i
\(944\) 5.36849 0.174730
\(945\) 0 0
\(946\) 10.9891 0.357287
\(947\) −9.31018 + 9.31018i −0.302540 + 0.302540i −0.842007 0.539467i \(-0.818626\pi\)
0.539467 + 0.842007i \(0.318626\pi\)
\(948\) 0 0
\(949\) 2.95057i 0.0957796i
\(950\) 14.8140 33.4242i 0.480629 1.08442i
\(951\) 0 0
\(952\) 24.3028 + 24.3028i 0.787658 + 0.787658i
\(953\) 23.5750 + 23.5750i 0.763669 + 0.763669i 0.976984 0.213315i \(-0.0684260\pi\)
−0.213315 + 0.976984i \(0.568426\pi\)
\(954\) 0 0
\(955\) −18.7057 + 27.2662i −0.605303 + 0.882313i
\(956\) 1.24186i 0.0401645i
\(957\) 0 0
\(958\) −4.38626 + 4.38626i −0.141714 + 0.141714i
\(959\) −87.1932 −2.81562
\(960\) 0 0
\(961\) −14.5945 −0.470792
\(962\) −1.57389 + 1.57389i −0.0507442 + 0.0507442i
\(963\) 0 0
\(964\) 28.1888i 0.907899i
\(965\) 10.7822 2.00777i 0.347092 0.0646323i
\(966\) 0 0
\(967\) −27.5665 27.5665i −0.886479 0.886479i 0.107704 0.994183i \(-0.465650\pi\)
−0.994183 + 0.107704i \(0.965650\pi\)
\(968\) −5.70749 5.70749i −0.183446 0.183446i
\(969\) 0 0
\(970\) −8.79266 6.03213i −0.282315 0.193680i
\(971\) 50.8374i 1.63145i 0.578440 + 0.815725i \(0.303662\pi\)
−0.578440 + 0.815725i \(0.696338\pi\)
\(972\) 0 0
\(973\) 73.4520 73.4520i 2.35476 2.35476i
\(974\) −26.8425 −0.860091
\(975\) 0 0
\(976\) 10.3407 0.330998
\(977\) −25.0969 + 25.0969i −0.802919 + 0.802919i −0.983551 0.180631i \(-0.942186\pi\)
0.180631 + 0.983551i \(0.442186\pi\)
\(978\) 0 0
\(979\) 12.7397i 0.407162i
\(980\) 34.6595 + 23.7778i 1.10716 + 0.759555i
\(981\) 0 0
\(982\) 0.571535 + 0.571535i 0.0182384 + 0.0182384i
\(983\) 9.41214 + 9.41214i 0.300201 + 0.300201i 0.841092 0.540892i \(-0.181913\pi\)
−0.540892 + 0.841092i \(0.681913\pi\)
\(984\) 0 0
\(985\) −34.5670 + 6.43673i −1.10140 + 0.205091i
\(986\) 38.0583i 1.21202i
\(987\) 0 0
\(988\) 5.17036 5.17036i 0.164491 0.164491i
\(989\) −32.1951 −1.02375
\(990\) 0 0
\(991\) 5.13968 0.163267 0.0816337 0.996662i \(-0.473986\pi\)
0.0816337 + 0.996662i \(0.473986\pi\)
\(992\) 2.86404 2.86404i 0.0909334 0.0909334i
\(993\) 0 0
\(994\) 6.47111i 0.205251i
\(995\) −1.48818 + 2.16923i −0.0471785 + 0.0687692i
\(996\) 0 0
\(997\) −17.9263 17.9263i −0.567732 0.567732i 0.363760 0.931493i \(-0.381493\pi\)
−0.931493 + 0.363760i \(0.881493\pi\)
\(998\) −5.30578 5.30578i −0.167951 0.167951i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.o.c.287.5 yes 12
3.2 odd 2 1170.2.o.a.287.2 yes 12
5.3 odd 4 1170.2.o.a.53.2 12
15.8 even 4 inner 1170.2.o.c.53.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.o.a.53.2 12 5.3 odd 4
1170.2.o.a.287.2 yes 12 3.2 odd 2
1170.2.o.c.53.5 yes 12 15.8 even 4 inner
1170.2.o.c.287.5 yes 12 1.1 even 1 trivial