Properties

Label 1170.2.i.j.451.1
Level $1170$
Weight $2$
Character 1170.451
Analytic conductor $9.342$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(451,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,-1,-2,0,3,-2,0,-1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1170.451
Dual form 1170.2.i.j.991.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} -1.00000 q^{5} +(1.50000 + 2.59808i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{10} +(0.500000 - 0.866025i) q^{11} +(2.50000 - 2.59808i) q^{13} +3.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(2.50000 + 4.33013i) q^{19} +(0.500000 + 0.866025i) q^{20} +(-0.500000 - 0.866025i) q^{22} +(-2.00000 + 3.46410i) q^{23} +1.00000 q^{25} +(-1.00000 - 3.46410i) q^{26} +(1.50000 - 2.59808i) q^{28} +10.0000 q^{31} +(0.500000 + 0.866025i) q^{32} +(-1.50000 - 2.59808i) q^{35} +(0.500000 - 0.866025i) q^{37} +5.00000 q^{38} +1.00000 q^{40} +(3.00000 - 5.19615i) q^{41} +(1.00000 + 1.73205i) q^{43} -1.00000 q^{44} +(2.00000 + 3.46410i) q^{46} +9.00000 q^{47} +(-1.00000 + 1.73205i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-3.50000 - 0.866025i) q^{52} +13.0000 q^{53} +(-0.500000 + 0.866025i) q^{55} +(-1.50000 - 2.59808i) q^{56} +(2.00000 + 3.46410i) q^{59} +(1.00000 + 1.73205i) q^{61} +(5.00000 - 8.66025i) q^{62} +1.00000 q^{64} +(-2.50000 + 2.59808i) q^{65} +(6.00000 - 10.3923i) q^{67} -3.00000 q^{70} +(-1.00000 - 1.73205i) q^{71} -16.0000 q^{73} +(-0.500000 - 0.866025i) q^{74} +(2.50000 - 4.33013i) q^{76} +3.00000 q^{77} -10.0000 q^{79} +(0.500000 - 0.866025i) q^{80} +(-3.00000 - 5.19615i) q^{82} -12.0000 q^{83} +2.00000 q^{86} +(-0.500000 + 0.866025i) q^{88} +(0.500000 - 0.866025i) q^{89} +(10.5000 + 2.59808i) q^{91} +4.00000 q^{92} +(4.50000 - 7.79423i) q^{94} +(-2.50000 - 4.33013i) q^{95} +(-6.00000 - 10.3923i) q^{97} +(1.00000 + 1.73205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{5} + 3 q^{7} - 2 q^{8} - q^{10} + q^{11} + 5 q^{13} + 6 q^{14} - q^{16} + 5 q^{19} + q^{20} - q^{22} - 4 q^{23} + 2 q^{25} - 2 q^{26} + 3 q^{28} + 20 q^{31} + q^{32} - 3 q^{35}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.50000 + 2.59808i 0.566947 + 0.981981i 0.996866 + 0.0791130i \(0.0252088\pi\)
−0.429919 + 0.902867i \(0.641458\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.500000 + 0.866025i −0.158114 + 0.273861i
\(11\) 0.500000 0.866025i 0.150756 0.261116i −0.780750 0.624844i \(-0.785163\pi\)
0.931505 + 0.363727i \(0.118496\pi\)
\(12\) 0 0
\(13\) 2.50000 2.59808i 0.693375 0.720577i
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 2.50000 + 4.33013i 0.573539 + 0.993399i 0.996199 + 0.0871106i \(0.0277634\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(20\) 0.500000 + 0.866025i 0.111803 + 0.193649i
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) −2.00000 + 3.46410i −0.417029 + 0.722315i −0.995639 0.0932891i \(-0.970262\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) 0 0
\(28\) 1.50000 2.59808i 0.283473 0.490990i
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0 0
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50000 2.59808i −0.253546 0.439155i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 5.00000 0.811107
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 3.00000 5.19615i 0.468521 0.811503i −0.530831 0.847477i \(-0.678120\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) 1.00000 + 1.73205i 0.152499 + 0.264135i 0.932145 0.362084i \(-0.117935\pi\)
−0.779647 + 0.626219i \(0.784601\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 2.00000 + 3.46410i 0.294884 + 0.510754i
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) −1.00000 + 1.73205i −0.142857 + 0.247436i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) −3.50000 0.866025i −0.485363 0.120096i
\(53\) 13.0000 1.78569 0.892844 0.450367i \(-0.148707\pi\)
0.892844 + 0.450367i \(0.148707\pi\)
\(54\) 0 0
\(55\) −0.500000 + 0.866025i −0.0674200 + 0.116775i
\(56\) −1.50000 2.59808i −0.200446 0.347183i
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) 5.00000 8.66025i 0.635001 1.09985i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.50000 + 2.59808i −0.310087 + 0.322252i
\(66\) 0 0
\(67\) 6.00000 10.3923i 0.733017 1.26962i −0.222571 0.974916i \(-0.571445\pi\)
0.955588 0.294706i \(-0.0952216\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −3.00000 −0.358569
\(71\) −1.00000 1.73205i −0.118678 0.205557i 0.800566 0.599245i \(-0.204532\pi\)
−0.919244 + 0.393688i \(0.871199\pi\)
\(72\) 0 0
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) 0 0
\(76\) 2.50000 4.33013i 0.286770 0.496700i
\(77\) 3.00000 0.341882
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0.500000 0.866025i 0.0559017 0.0968246i
\(81\) 0 0
\(82\) −3.00000 5.19615i −0.331295 0.573819i
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 0 0
\(88\) −0.500000 + 0.866025i −0.0533002 + 0.0923186i
\(89\) 0.500000 0.866025i 0.0529999 0.0917985i −0.838308 0.545197i \(-0.816455\pi\)
0.891308 + 0.453398i \(0.149788\pi\)
\(90\) 0 0
\(91\) 10.5000 + 2.59808i 1.10070 + 0.272352i
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) 4.50000 7.79423i 0.464140 0.803913i
\(95\) −2.50000 4.33013i −0.256495 0.444262i
\(96\) 0 0
\(97\) −6.00000 10.3923i −0.609208 1.05518i −0.991371 0.131084i \(-0.958154\pi\)
0.382164 0.924095i \(-0.375179\pi\)
\(98\) 1.00000 + 1.73205i 0.101015 + 0.174964i
\(99\) 0 0
\(100\) −0.500000 0.866025i −0.0500000 0.0866025i
\(101\) 2.00000 3.46410i 0.199007 0.344691i −0.749199 0.662344i \(-0.769562\pi\)
0.948207 + 0.317653i \(0.102895\pi\)
\(102\) 0 0
\(103\) −9.00000 −0.886796 −0.443398 0.896325i \(-0.646227\pi\)
−0.443398 + 0.896325i \(0.646227\pi\)
\(104\) −2.50000 + 2.59808i −0.245145 + 0.254762i
\(105\) 0 0
\(106\) 6.50000 11.2583i 0.631336 1.09351i
\(107\) −3.00000 + 5.19615i −0.290021 + 0.502331i −0.973814 0.227345i \(-0.926996\pi\)
0.683793 + 0.729676i \(0.260329\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0.500000 + 0.866025i 0.0476731 + 0.0825723i
\(111\) 0 0
\(112\) −3.00000 −0.283473
\(113\) 8.00000 + 13.8564i 0.752577 + 1.30350i 0.946570 + 0.322498i \(0.104523\pi\)
−0.193993 + 0.981003i \(0.562144\pi\)
\(114\) 0 0
\(115\) 2.00000 3.46410i 0.186501 0.323029i
\(116\) 0 0
\(117\) 0 0
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) −5.00000 8.66025i −0.449013 0.777714i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.50000 + 4.33013i −0.221839 + 0.384237i −0.955366 0.295423i \(-0.904539\pi\)
0.733527 + 0.679660i \(0.237873\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.00000 + 3.46410i 0.0877058 + 0.303822i
\(131\) 15.0000 1.31056 0.655278 0.755388i \(-0.272551\pi\)
0.655278 + 0.755388i \(0.272551\pi\)
\(132\) 0 0
\(133\) −7.50000 + 12.9904i −0.650332 + 1.12641i
\(134\) −6.00000 10.3923i −0.518321 0.897758i
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 + 13.8564i 0.683486 + 1.18383i 0.973910 + 0.226935i \(0.0728704\pi\)
−0.290424 + 0.956898i \(0.593796\pi\)
\(138\) 0 0
\(139\) 4.50000 + 7.79423i 0.381685 + 0.661098i 0.991303 0.131597i \(-0.0420106\pi\)
−0.609618 + 0.792695i \(0.708677\pi\)
\(140\) −1.50000 + 2.59808i −0.126773 + 0.219578i
\(141\) 0 0
\(142\) −2.00000 −0.167836
\(143\) −1.00000 3.46410i −0.0836242 0.289683i
\(144\) 0 0
\(145\) 0 0
\(146\) −8.00000 + 13.8564i −0.662085 + 1.14676i
\(147\) 0 0
\(148\) −1.00000 −0.0821995
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) −6.00000 −0.488273 −0.244137 0.969741i \(-0.578505\pi\)
−0.244137 + 0.969741i \(0.578505\pi\)
\(152\) −2.50000 4.33013i −0.202777 0.351220i
\(153\) 0 0
\(154\) 1.50000 2.59808i 0.120873 0.209359i
\(155\) −10.0000 −0.803219
\(156\) 0 0
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) −5.00000 + 8.66025i −0.397779 + 0.688973i
\(159\) 0 0
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −12.0000 −0.945732
\(162\) 0 0
\(163\) 10.0000 + 17.3205i 0.783260 + 1.35665i 0.930033 + 0.367477i \(0.119778\pi\)
−0.146772 + 0.989170i \(0.546888\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) −6.50000 + 11.2583i −0.502985 + 0.871196i 0.497009 + 0.867745i \(0.334432\pi\)
−0.999994 + 0.00345033i \(0.998902\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) 0 0
\(172\) 1.00000 1.73205i 0.0762493 0.132068i
\(173\) −4.50000 7.79423i −0.342129 0.592584i 0.642699 0.766119i \(-0.277815\pi\)
−0.984828 + 0.173534i \(0.944481\pi\)
\(174\) 0 0
\(175\) 1.50000 + 2.59808i 0.113389 + 0.196396i
\(176\) 0.500000 + 0.866025i 0.0376889 + 0.0652791i
\(177\) 0 0
\(178\) −0.500000 0.866025i −0.0374766 0.0649113i
\(179\) 6.00000 10.3923i 0.448461 0.776757i −0.549825 0.835280i \(-0.685306\pi\)
0.998286 + 0.0585225i \(0.0186389\pi\)
\(180\) 0 0
\(181\) 6.00000 0.445976 0.222988 0.974821i \(-0.428419\pi\)
0.222988 + 0.974821i \(0.428419\pi\)
\(182\) 7.50000 7.79423i 0.555937 0.577747i
\(183\) 0 0
\(184\) 2.00000 3.46410i 0.147442 0.255377i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) 0 0
\(187\) 0 0
\(188\) −4.50000 7.79423i −0.328196 0.568453i
\(189\) 0 0
\(190\) −5.00000 −0.362738
\(191\) −9.00000 15.5885i −0.651217 1.12794i −0.982828 0.184525i \(-0.940925\pi\)
0.331611 0.943416i \(-0.392408\pi\)
\(192\) 0 0
\(193\) −8.00000 + 13.8564i −0.575853 + 0.997406i 0.420096 + 0.907480i \(0.361996\pi\)
−0.995948 + 0.0899262i \(0.971337\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) −7.50000 + 12.9904i −0.534353 + 0.925526i 0.464841 + 0.885394i \(0.346111\pi\)
−0.999194 + 0.0401324i \(0.987222\pi\)
\(198\) 0 0
\(199\) 1.00000 + 1.73205i 0.0708881 + 0.122782i 0.899291 0.437351i \(-0.144083\pi\)
−0.828403 + 0.560133i \(0.810750\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −2.00000 3.46410i −0.140720 0.243733i
\(203\) 0 0
\(204\) 0 0
\(205\) −3.00000 + 5.19615i −0.209529 + 0.362915i
\(206\) −4.50000 + 7.79423i −0.313530 + 0.543050i
\(207\) 0 0
\(208\) 1.00000 + 3.46410i 0.0693375 + 0.240192i
\(209\) 5.00000 0.345857
\(210\) 0 0
\(211\) 7.50000 12.9904i 0.516321 0.894295i −0.483499 0.875345i \(-0.660634\pi\)
0.999820 0.0189499i \(-0.00603229\pi\)
\(212\) −6.50000 11.2583i −0.446422 0.773225i
\(213\) 0 0
\(214\) 3.00000 + 5.19615i 0.205076 + 0.355202i
\(215\) −1.00000 1.73205i −0.0681994 0.118125i
\(216\) 0 0
\(217\) 15.0000 + 25.9808i 1.01827 + 1.76369i
\(218\) −5.00000 + 8.66025i −0.338643 + 0.586546i
\(219\) 0 0
\(220\) 1.00000 0.0674200
\(221\) 0 0
\(222\) 0 0
\(223\) −5.50000 + 9.52628i −0.368307 + 0.637927i −0.989301 0.145889i \(-0.953396\pi\)
0.620994 + 0.783815i \(0.286729\pi\)
\(224\) −1.50000 + 2.59808i −0.100223 + 0.173591i
\(225\) 0 0
\(226\) 16.0000 1.06430
\(227\) −10.0000 17.3205i −0.663723 1.14960i −0.979630 0.200812i \(-0.935642\pi\)
0.315906 0.948790i \(-0.397691\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) −2.00000 3.46410i −0.131876 0.228416i
\(231\) 0 0
\(232\) 0 0
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 2.00000 3.46410i 0.130189 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) −7.50000 12.9904i −0.483117 0.836784i 0.516695 0.856170i \(-0.327162\pi\)
−0.999812 + 0.0193858i \(0.993829\pi\)
\(242\) 10.0000 0.642824
\(243\) 0 0
\(244\) 1.00000 1.73205i 0.0640184 0.110883i
\(245\) 1.00000 1.73205i 0.0638877 0.110657i
\(246\) 0 0
\(247\) 17.5000 + 4.33013i 1.11350 + 0.275519i
\(248\) −10.0000 −0.635001
\(249\) 0 0
\(250\) −0.500000 + 0.866025i −0.0316228 + 0.0547723i
\(251\) 5.50000 + 9.52628i 0.347157 + 0.601293i 0.985743 0.168257i \(-0.0538138\pi\)
−0.638586 + 0.769550i \(0.720480\pi\)
\(252\) 0 0
\(253\) 2.00000 + 3.46410i 0.125739 + 0.217786i
\(254\) 2.50000 + 4.33013i 0.156864 + 0.271696i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −12.0000 + 20.7846i −0.748539 + 1.29651i 0.199983 + 0.979799i \(0.435911\pi\)
−0.948523 + 0.316709i \(0.897422\pi\)
\(258\) 0 0
\(259\) 3.00000 0.186411
\(260\) 3.50000 + 0.866025i 0.217061 + 0.0537086i
\(261\) 0 0
\(262\) 7.50000 12.9904i 0.463352 0.802548i
\(263\) 1.50000 2.59808i 0.0924940 0.160204i −0.816066 0.577959i \(-0.803849\pi\)
0.908560 + 0.417755i \(0.137183\pi\)
\(264\) 0 0
\(265\) −13.0000 −0.798584
\(266\) 7.50000 + 12.9904i 0.459855 + 0.796491i
\(267\) 0 0
\(268\) −12.0000 −0.733017
\(269\) −10.0000 17.3205i −0.609711 1.05605i −0.991288 0.131713i \(-0.957952\pi\)
0.381577 0.924337i \(-0.375381\pi\)
\(270\) 0 0
\(271\) 12.0000 20.7846i 0.728948 1.26258i −0.228380 0.973572i \(-0.573343\pi\)
0.957328 0.289003i \(-0.0933238\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 16.0000 0.966595
\(275\) 0.500000 0.866025i 0.0301511 0.0522233i
\(276\) 0 0
\(277\) −11.5000 19.9186i −0.690968 1.19679i −0.971521 0.236953i \(-0.923851\pi\)
0.280553 0.959839i \(-0.409482\pi\)
\(278\) 9.00000 0.539784
\(279\) 0 0
\(280\) 1.50000 + 2.59808i 0.0896421 + 0.155265i
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −1.00000 + 1.73205i −0.0594438 + 0.102960i −0.894216 0.447636i \(-0.852266\pi\)
0.834772 + 0.550596i \(0.185599\pi\)
\(284\) −1.00000 + 1.73205i −0.0593391 + 0.102778i
\(285\) 0 0
\(286\) −3.50000 0.866025i −0.206959 0.0512092i
\(287\) 18.0000 1.06251
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 8.00000 + 13.8564i 0.468165 + 0.810885i
\(293\) 6.50000 + 11.2583i 0.379734 + 0.657719i 0.991023 0.133689i \(-0.0426822\pi\)
−0.611289 + 0.791407i \(0.709349\pi\)
\(294\) 0 0
\(295\) −2.00000 3.46410i −0.116445 0.201688i
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 4.00000 + 13.8564i 0.231326 + 0.801337i
\(300\) 0 0
\(301\) −3.00000 + 5.19615i −0.172917 + 0.299501i
\(302\) −3.00000 + 5.19615i −0.172631 + 0.299005i
\(303\) 0 0
\(304\) −5.00000 −0.286770
\(305\) −1.00000 1.73205i −0.0572598 0.0991769i
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) −1.50000 2.59808i −0.0854704 0.148039i
\(309\) 0 0
\(310\) −5.00000 + 8.66025i −0.283981 + 0.491869i
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) 0.500000 0.866025i 0.0282166 0.0488726i
\(315\) 0 0
\(316\) 5.00000 + 8.66025i 0.281272 + 0.487177i
\(317\) −19.0000 −1.06715 −0.533573 0.845754i \(-0.679151\pi\)
−0.533573 + 0.845754i \(0.679151\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) −6.00000 + 10.3923i −0.334367 + 0.579141i
\(323\) 0 0
\(324\) 0 0
\(325\) 2.50000 2.59808i 0.138675 0.144115i
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) −3.00000 + 5.19615i −0.165647 + 0.286910i
\(329\) 13.5000 + 23.3827i 0.744279 + 1.28913i
\(330\) 0 0
\(331\) −14.0000 24.2487i −0.769510 1.33283i −0.937829 0.347097i \(-0.887167\pi\)
0.168320 0.985732i \(-0.446166\pi\)
\(332\) 6.00000 + 10.3923i 0.329293 + 0.570352i
\(333\) 0 0
\(334\) 6.50000 + 11.2583i 0.355664 + 0.616028i
\(335\) −6.00000 + 10.3923i −0.327815 + 0.567792i
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) −11.5000 6.06218i −0.625518 0.329739i
\(339\) 0 0
\(340\) 0 0
\(341\) 5.00000 8.66025i 0.270765 0.468979i
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) −1.00000 1.73205i −0.0539164 0.0933859i
\(345\) 0 0
\(346\) −9.00000 −0.483843
\(347\) −14.0000 24.2487i −0.751559 1.30174i −0.947067 0.321037i \(-0.895969\pi\)
0.195507 0.980702i \(-0.437365\pi\)
\(348\) 0 0
\(349\) −18.0000 + 31.1769i −0.963518 + 1.66886i −0.249973 + 0.968253i \(0.580422\pi\)
−0.713545 + 0.700609i \(0.752912\pi\)
\(350\) 3.00000 0.160357
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −18.0000 + 31.1769i −0.958043 + 1.65938i −0.230799 + 0.973002i \(0.574134\pi\)
−0.727245 + 0.686378i \(0.759200\pi\)
\(354\) 0 0
\(355\) 1.00000 + 1.73205i 0.0530745 + 0.0919277i
\(356\) −1.00000 −0.0529999
\(357\) 0 0
\(358\) −6.00000 10.3923i −0.317110 0.549250i
\(359\) −34.0000 −1.79445 −0.897226 0.441572i \(-0.854421\pi\)
−0.897226 + 0.441572i \(0.854421\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) 3.00000 5.19615i 0.157676 0.273104i
\(363\) 0 0
\(364\) −3.00000 10.3923i −0.157243 0.544705i
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) −2.00000 3.46410i −0.104257 0.180579i
\(369\) 0 0
\(370\) 0.500000 + 0.866025i 0.0259938 + 0.0450225i
\(371\) 19.5000 + 33.7750i 1.01239 + 1.75351i
\(372\) 0 0
\(373\) −5.00000 8.66025i −0.258890 0.448411i 0.707055 0.707159i \(-0.250023\pi\)
−0.965945 + 0.258748i \(0.916690\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −9.00000 −0.464140
\(377\) 0 0
\(378\) 0 0
\(379\) 0.500000 0.866025i 0.0256833 0.0444847i −0.852898 0.522077i \(-0.825157\pi\)
0.878581 + 0.477593i \(0.158491\pi\)
\(380\) −2.50000 + 4.33013i −0.128247 + 0.222131i
\(381\) 0 0
\(382\) −18.0000 −0.920960
\(383\) −14.0000 24.2487i −0.715367 1.23905i −0.962818 0.270151i \(-0.912926\pi\)
0.247451 0.968900i \(-0.420407\pi\)
\(384\) 0 0
\(385\) −3.00000 −0.152894
\(386\) 8.00000 + 13.8564i 0.407189 + 0.705273i
\(387\) 0 0
\(388\) −6.00000 + 10.3923i −0.304604 + 0.527589i
\(389\) 16.0000 0.811232 0.405616 0.914044i \(-0.367057\pi\)
0.405616 + 0.914044i \(0.367057\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 1.73205i 0.0505076 0.0874818i
\(393\) 0 0
\(394\) 7.50000 + 12.9904i 0.377845 + 0.654446i
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) 16.5000 + 28.5788i 0.828111 + 1.43433i 0.899518 + 0.436884i \(0.143918\pi\)
−0.0714068 + 0.997447i \(0.522749\pi\)
\(398\) 2.00000 0.100251
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 12.5000 21.6506i 0.624220 1.08118i −0.364471 0.931215i \(-0.618750\pi\)
0.988691 0.149966i \(-0.0479165\pi\)
\(402\) 0 0
\(403\) 25.0000 25.9808i 1.24534 1.29419i
\(404\) −4.00000 −0.199007
\(405\) 0 0
\(406\) 0 0
\(407\) −0.500000 0.866025i −0.0247841 0.0429273i
\(408\) 0 0
\(409\) −8.50000 14.7224i −0.420298 0.727977i 0.575670 0.817682i \(-0.304741\pi\)
−0.995968 + 0.0897044i \(0.971408\pi\)
\(410\) 3.00000 + 5.19615i 0.148159 + 0.256620i
\(411\) 0 0
\(412\) 4.50000 + 7.79423i 0.221699 + 0.383994i
\(413\) −6.00000 + 10.3923i −0.295241 + 0.511372i
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 3.50000 + 0.866025i 0.171602 + 0.0424604i
\(417\) 0 0
\(418\) 2.50000 4.33013i 0.122279 0.211793i
\(419\) −14.0000 + 24.2487i −0.683945 + 1.18463i 0.289822 + 0.957080i \(0.406404\pi\)
−0.973767 + 0.227547i \(0.926930\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) −7.50000 12.9904i −0.365094 0.632362i
\(423\) 0 0
\(424\) −13.0000 −0.631336
\(425\) 0 0
\(426\) 0 0
\(427\) −3.00000 + 5.19615i −0.145180 + 0.251459i
\(428\) 6.00000 0.290021
\(429\) 0 0
\(430\) −2.00000 −0.0964486
\(431\) 18.0000 31.1769i 0.867029 1.50174i 0.00201168 0.999998i \(-0.499360\pi\)
0.865018 0.501741i \(-0.167307\pi\)
\(432\) 0 0
\(433\) −8.00000 13.8564i −0.384455 0.665896i 0.607238 0.794520i \(-0.292277\pi\)
−0.991693 + 0.128624i \(0.958944\pi\)
\(434\) 30.0000 1.44005
\(435\) 0 0
\(436\) 5.00000 + 8.66025i 0.239457 + 0.414751i
\(437\) −20.0000 −0.956730
\(438\) 0 0
\(439\) 5.00000 8.66025i 0.238637 0.413331i −0.721686 0.692220i \(-0.756633\pi\)
0.960323 + 0.278889i \(0.0899661\pi\)
\(440\) 0.500000 0.866025i 0.0238366 0.0412861i
\(441\) 0 0
\(442\) 0 0
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 0 0
\(445\) −0.500000 + 0.866025i −0.0237023 + 0.0410535i
\(446\) 5.50000 + 9.52628i 0.260433 + 0.451082i
\(447\) 0 0
\(448\) 1.50000 + 2.59808i 0.0708683 + 0.122748i
\(449\) −7.50000 12.9904i −0.353947 0.613054i 0.632990 0.774160i \(-0.281827\pi\)
−0.986937 + 0.161106i \(0.948494\pi\)
\(450\) 0 0
\(451\) −3.00000 5.19615i −0.141264 0.244677i
\(452\) 8.00000 13.8564i 0.376288 0.651751i
\(453\) 0 0
\(454\) −20.0000 −0.938647
\(455\) −10.5000 2.59808i −0.492248 0.121800i
\(456\) 0 0
\(457\) −11.0000 + 19.0526i −0.514558 + 0.891241i 0.485299 + 0.874348i \(0.338711\pi\)
−0.999857 + 0.0168929i \(0.994623\pi\)
\(458\) −5.00000 + 8.66025i −0.233635 + 0.404667i
\(459\) 0 0
\(460\) −4.00000 −0.186501
\(461\) −6.00000 10.3923i −0.279448 0.484018i 0.691800 0.722089i \(-0.256818\pi\)
−0.971248 + 0.238071i \(0.923485\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −5.00000 + 8.66025i −0.231621 + 0.401179i
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 0 0
\(469\) 36.0000 1.66233
\(470\) −4.50000 + 7.79423i −0.207570 + 0.359521i
\(471\) 0 0
\(472\) −2.00000 3.46410i −0.0920575 0.159448i
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) 2.50000 + 4.33013i 0.114708 + 0.198680i
\(476\) 0 0
\(477\) 0 0
\(478\) 1.00000 1.73205i 0.0457389 0.0792222i
\(479\) −4.00000 + 6.92820i −0.182765 + 0.316558i −0.942821 0.333300i \(-0.891838\pi\)
0.760056 + 0.649857i \(0.225171\pi\)
\(480\) 0 0
\(481\) −1.00000 3.46410i −0.0455961 0.157949i
\(482\) −15.0000 −0.683231
\(483\) 0 0
\(484\) 5.00000 8.66025i 0.227273 0.393648i
\(485\) 6.00000 + 10.3923i 0.272446 + 0.471890i
\(486\) 0 0
\(487\) −17.5000 30.3109i −0.793001 1.37352i −0.924101 0.382148i \(-0.875184\pi\)
0.131100 0.991369i \(-0.458149\pi\)
\(488\) −1.00000 1.73205i −0.0452679 0.0784063i
\(489\) 0 0
\(490\) −1.00000 1.73205i −0.0451754 0.0782461i
\(491\) 12.5000 21.6506i 0.564117 0.977079i −0.433014 0.901387i \(-0.642550\pi\)
0.997131 0.0756923i \(-0.0241167\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 12.5000 12.9904i 0.562402 0.584465i
\(495\) 0 0
\(496\) −5.00000 + 8.66025i −0.224507 + 0.388857i
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0.500000 + 0.866025i 0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) 11.0000 0.490954
\(503\) −0.500000 0.866025i −0.0222939 0.0386142i 0.854663 0.519183i \(-0.173764\pi\)
−0.876957 + 0.480569i \(0.840430\pi\)
\(504\) 0 0
\(505\) −2.00000 + 3.46410i −0.0889988 + 0.154150i
\(506\) 4.00000 0.177822
\(507\) 0 0
\(508\) 5.00000 0.221839
\(509\) 9.00000 15.5885i 0.398918 0.690946i −0.594675 0.803966i \(-0.702719\pi\)
0.993593 + 0.113020i \(0.0360525\pi\)
\(510\) 0 0
\(511\) −24.0000 41.5692i −1.06170 1.83891i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 12.0000 + 20.7846i 0.529297 + 0.916770i
\(515\) 9.00000 0.396587
\(516\) 0 0
\(517\) 4.50000 7.79423i 0.197910 0.342790i
\(518\) 1.50000 2.59808i 0.0659062 0.114153i
\(519\) 0 0
\(520\) 2.50000 2.59808i 0.109632 0.113933i
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) 0 0
\(523\) −3.00000 + 5.19615i −0.131181 + 0.227212i −0.924132 0.382073i \(-0.875210\pi\)
0.792951 + 0.609285i \(0.208544\pi\)
\(524\) −7.50000 12.9904i −0.327639 0.567487i
\(525\) 0 0
\(526\) −1.50000 2.59808i −0.0654031 0.113282i
\(527\) 0 0
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) −6.50000 + 11.2583i −0.282342 + 0.489031i
\(531\) 0 0
\(532\) 15.0000 0.650332
\(533\) −6.00000 20.7846i −0.259889 0.900281i
\(534\) 0 0
\(535\) 3.00000 5.19615i 0.129701 0.224649i
\(536\) −6.00000 + 10.3923i −0.259161 + 0.448879i
\(537\) 0 0
\(538\) −20.0000 −0.862261
\(539\) 1.00000 + 1.73205i 0.0430730 + 0.0746047i
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) −12.0000 20.7846i −0.515444 0.892775i
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) 34.0000 1.45374 0.726868 0.686778i \(-0.240975\pi\)
0.726868 + 0.686778i \(0.240975\pi\)
\(548\) 8.00000 13.8564i 0.341743 0.591916i
\(549\) 0 0
\(550\) −0.500000 0.866025i −0.0213201 0.0369274i
\(551\) 0 0
\(552\) 0 0
\(553\) −15.0000 25.9808i −0.637865 1.10481i
\(554\) −23.0000 −0.977176
\(555\) 0 0
\(556\) 4.50000 7.79423i 0.190843 0.330549i
\(557\) −1.50000 + 2.59808i −0.0635570 + 0.110084i −0.896053 0.443947i \(-0.853578\pi\)
0.832496 + 0.554031i \(0.186911\pi\)
\(558\) 0 0
\(559\) 7.00000 + 1.73205i 0.296068 + 0.0732579i
\(560\) 3.00000 0.126773
\(561\) 0 0
\(562\) −5.00000 + 8.66025i −0.210912 + 0.365311i
\(563\) 12.0000 + 20.7846i 0.505740 + 0.875967i 0.999978 + 0.00664037i \(0.00211371\pi\)
−0.494238 + 0.869326i \(0.664553\pi\)
\(564\) 0 0
\(565\) −8.00000 13.8564i −0.336563 0.582943i
\(566\) 1.00000 + 1.73205i 0.0420331 + 0.0728035i
\(567\) 0 0
\(568\) 1.00000 + 1.73205i 0.0419591 + 0.0726752i
\(569\) −5.50000 + 9.52628i −0.230572 + 0.399362i −0.957977 0.286846i \(-0.907393\pi\)
0.727405 + 0.686209i \(0.240726\pi\)
\(570\) 0 0
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) −2.50000 + 2.59808i −0.104530 + 0.108631i
\(573\) 0 0
\(574\) 9.00000 15.5885i 0.375653 0.650650i
\(575\) −2.00000 + 3.46410i −0.0834058 + 0.144463i
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) −8.50000 14.7224i −0.353553 0.612372i
\(579\) 0 0
\(580\) 0 0
\(581\) −18.0000 31.1769i −0.746766 1.29344i
\(582\) 0 0
\(583\) 6.50000 11.2583i 0.269202 0.466272i
\(584\) 16.0000 0.662085
\(585\) 0 0
\(586\) 13.0000 0.537025
\(587\) −9.00000 + 15.5885i −0.371470 + 0.643404i −0.989792 0.142520i \(-0.954479\pi\)
0.618322 + 0.785925i \(0.287813\pi\)
\(588\) 0 0
\(589\) 25.0000 + 43.3013i 1.03011 + 1.78420i
\(590\) −4.00000 −0.164677
\(591\) 0 0
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) −28.0000 −1.14982 −0.574911 0.818216i \(-0.694963\pi\)
−0.574911 + 0.818216i \(0.694963\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 0 0
\(598\) 14.0000 + 3.46410i 0.572503 + 0.141658i
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 13.5000 23.3827i 0.550676 0.953800i −0.447549 0.894259i \(-0.647703\pi\)
0.998226 0.0595404i \(-0.0189635\pi\)
\(602\) 3.00000 + 5.19615i 0.122271 + 0.211779i
\(603\) 0 0
\(604\) 3.00000 + 5.19615i 0.122068 + 0.211428i
\(605\) −5.00000 8.66025i −0.203279 0.352089i
\(606\) 0 0
\(607\) −18.5000 32.0429i −0.750892 1.30058i −0.947391 0.320079i \(-0.896291\pi\)
0.196499 0.980504i \(-0.437043\pi\)
\(608\) −2.50000 + 4.33013i −0.101388 + 0.175610i
\(609\) 0 0
\(610\) −2.00000 −0.0809776
\(611\) 22.5000 23.3827i 0.910253 0.945962i
\(612\) 0 0
\(613\) −11.5000 + 19.9186i −0.464481 + 0.804504i −0.999178 0.0405396i \(-0.987092\pi\)
0.534697 + 0.845044i \(0.320426\pi\)
\(614\) 9.00000 15.5885i 0.363210 0.629099i
\(615\) 0 0
\(616\) −3.00000 −0.120873
\(617\) −3.00000 5.19615i −0.120775 0.209189i 0.799298 0.600935i \(-0.205205\pi\)
−0.920074 + 0.391745i \(0.871871\pi\)
\(618\) 0 0
\(619\) −31.0000 −1.24600 −0.622998 0.782224i \(-0.714085\pi\)
−0.622998 + 0.782224i \(0.714085\pi\)
\(620\) 5.00000 + 8.66025i 0.200805 + 0.347804i
\(621\) 0 0
\(622\) 6.00000 10.3923i 0.240578 0.416693i
\(623\) 3.00000 0.120192
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −17.0000 + 29.4449i −0.679457 + 1.17685i
\(627\) 0 0
\(628\) −0.500000 0.866025i −0.0199522 0.0345582i
\(629\) 0 0
\(630\) 0 0
\(631\) 2.00000 + 3.46410i 0.0796187 + 0.137904i 0.903085 0.429461i \(-0.141296\pi\)
−0.823467 + 0.567365i \(0.807963\pi\)
\(632\) 10.0000 0.397779
\(633\) 0 0
\(634\) −9.50000 + 16.4545i −0.377293 + 0.653491i
\(635\) 2.50000 4.33013i 0.0992095 0.171836i
\(636\) 0 0
\(637\) 2.00000 + 6.92820i 0.0792429 + 0.274505i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.500000 + 0.866025i −0.0197642 + 0.0342327i
\(641\) −4.50000 7.79423i −0.177739 0.307854i 0.763367 0.645966i \(-0.223545\pi\)
−0.941106 + 0.338112i \(0.890212\pi\)
\(642\) 0 0
\(643\) 22.0000 + 38.1051i 0.867595 + 1.50272i 0.864447 + 0.502724i \(0.167669\pi\)
0.00314839 + 0.999995i \(0.498998\pi\)
\(644\) 6.00000 + 10.3923i 0.236433 + 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) 4.50000 7.79423i 0.176913 0.306423i −0.763908 0.645325i \(-0.776722\pi\)
0.940822 + 0.338902i \(0.110055\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) −1.00000 3.46410i −0.0392232 0.135873i
\(651\) 0 0
\(652\) 10.0000 17.3205i 0.391630 0.678323i
\(653\) 20.5000 35.5070i 0.802227 1.38950i −0.115920 0.993259i \(-0.536982\pi\)
0.918147 0.396239i \(-0.129685\pi\)
\(654\) 0 0
\(655\) −15.0000 −0.586098
\(656\) 3.00000 + 5.19615i 0.117130 + 0.202876i
\(657\) 0 0
\(658\) 27.0000 1.05257
\(659\) 2.00000 + 3.46410i 0.0779089 + 0.134942i 0.902348 0.431009i \(-0.141842\pi\)
−0.824439 + 0.565951i \(0.808509\pi\)
\(660\) 0 0
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 7.50000 12.9904i 0.290838 0.503745i
\(666\) 0 0
\(667\) 0 0
\(668\) 13.0000 0.502985
\(669\) 0 0
\(670\) 6.00000 + 10.3923i 0.231800 + 0.401490i
\(671\) 2.00000 0.0772091
\(672\) 0 0
\(673\) 16.0000 27.7128i 0.616755 1.06825i −0.373319 0.927703i \(-0.621780\pi\)
0.990074 0.140548i \(-0.0448863\pi\)
\(674\) 1.00000 1.73205i 0.0385186 0.0667161i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 26.0000 0.999261 0.499631 0.866239i \(-0.333469\pi\)
0.499631 + 0.866239i \(0.333469\pi\)
\(678\) 0 0
\(679\) 18.0000 31.1769i 0.690777 1.19646i
\(680\) 0 0
\(681\) 0 0
\(682\) −5.00000 8.66025i −0.191460 0.331618i
\(683\) −13.0000 22.5167i −0.497431 0.861576i 0.502564 0.864540i \(-0.332390\pi\)
−0.999996 + 0.00296369i \(0.999057\pi\)
\(684\) 0 0
\(685\) −8.00000 13.8564i −0.305664 0.529426i
\(686\) 7.50000 12.9904i 0.286351 0.495975i
\(687\) 0 0
\(688\) −2.00000 −0.0762493
\(689\) 32.5000 33.7750i 1.23815 1.28672i
\(690\) 0 0
\(691\) −16.5000 + 28.5788i −0.627690 + 1.08719i 0.360325 + 0.932827i \(0.382666\pi\)
−0.988014 + 0.154363i \(0.950667\pi\)
\(692\) −4.50000 + 7.79423i −0.171064 + 0.296292i
\(693\) 0 0
\(694\) −28.0000 −1.06287
\(695\) −4.50000 7.79423i −0.170695 0.295652i
\(696\) 0 0
\(697\) 0 0
\(698\) 18.0000 + 31.1769i 0.681310 + 1.18006i
\(699\) 0 0
\(700\) 1.50000 2.59808i 0.0566947 0.0981981i
\(701\) −4.00000 −0.151078 −0.0755390 0.997143i \(-0.524068\pi\)
−0.0755390 + 0.997143i \(0.524068\pi\)
\(702\) 0 0
\(703\) 5.00000 0.188579
\(704\) 0.500000 0.866025i 0.0188445 0.0326396i
\(705\) 0 0
\(706\) 18.0000 + 31.1769i 0.677439 + 1.17336i
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) −2.00000 3.46410i −0.0751116 0.130097i 0.826023 0.563636i \(-0.190598\pi\)
−0.901135 + 0.433539i \(0.857265\pi\)
\(710\) 2.00000 0.0750587
\(711\) 0 0
\(712\) −0.500000 + 0.866025i −0.0187383 + 0.0324557i
\(713\) −20.0000 + 34.6410i −0.749006 + 1.29732i
\(714\) 0 0
\(715\) 1.00000 + 3.46410i 0.0373979 + 0.129550i
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) −17.0000 + 29.4449i −0.634434 + 1.09887i
\(719\) 18.0000 + 31.1769i 0.671287 + 1.16270i 0.977539 + 0.210752i \(0.0675914\pi\)
−0.306253 + 0.951950i \(0.599075\pi\)
\(720\) 0 0
\(721\) −13.5000 23.3827i −0.502766 0.870817i
\(722\) 3.00000 + 5.19615i 0.111648 + 0.193381i
\(723\) 0 0
\(724\) −3.00000 5.19615i −0.111494 0.193113i
\(725\) 0 0
\(726\) 0 0
\(727\) −37.0000 −1.37225 −0.686127 0.727482i \(-0.740691\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(728\) −10.5000 2.59808i −0.389156 0.0962911i
\(729\) 0 0
\(730\) 8.00000 13.8564i 0.296093 0.512849i
\(731\) 0 0
\(732\) 0 0
\(733\) −5.00000 −0.184679 −0.0923396 0.995728i \(-0.529435\pi\)
−0.0923396 + 0.995728i \(0.529435\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) −6.00000 10.3923i −0.221013 0.382805i
\(738\) 0 0
\(739\) −17.5000 + 30.3109i −0.643748 + 1.11500i 0.340841 + 0.940121i \(0.389288\pi\)
−0.984589 + 0.174883i \(0.944045\pi\)
\(740\) 1.00000 0.0367607
\(741\) 0 0
\(742\) 39.0000 1.43174
\(743\) 12.0000 20.7846i 0.440237 0.762513i −0.557470 0.830197i \(-0.688228\pi\)
0.997707 + 0.0676840i \(0.0215610\pi\)
\(744\) 0 0
\(745\) 3.00000 + 5.19615i 0.109911 + 0.190372i
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 0 0
\(749\) −18.0000 −0.657706
\(750\) 0 0
\(751\) −22.0000 + 38.1051i −0.802791 + 1.39048i 0.114981 + 0.993368i \(0.463319\pi\)
−0.917772 + 0.397108i \(0.870014\pi\)
\(752\) −4.50000 + 7.79423i −0.164098 + 0.284226i
\(753\) 0 0
\(754\) 0 0
\(755\) 6.00000 0.218362
\(756\) 0 0
\(757\) −19.5000 + 33.7750i −0.708740 + 1.22757i 0.256585 + 0.966522i \(0.417403\pi\)
−0.965325 + 0.261051i \(0.915931\pi\)
\(758\) −0.500000 0.866025i −0.0181608 0.0314555i
\(759\) 0 0
\(760\) 2.50000 + 4.33013i 0.0906845 + 0.157070i
\(761\) 22.5000 + 38.9711i 0.815624 + 1.41270i 0.908879 + 0.417061i \(0.136940\pi\)
−0.0932544 + 0.995642i \(0.529727\pi\)
\(762\) 0 0
\(763\) −15.0000 25.9808i −0.543036 0.940567i
\(764\) −9.00000 + 15.5885i −0.325609 + 0.563971i
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 14.0000 + 3.46410i 0.505511 + 0.125081i
\(768\) 0 0
\(769\) 13.0000 22.5167i 0.468792 0.811972i −0.530572 0.847640i \(-0.678023\pi\)
0.999364 + 0.0356685i \(0.0113561\pi\)
\(770\) −1.50000 + 2.59808i −0.0540562 + 0.0936282i
\(771\) 0 0
\(772\) 16.0000 0.575853
\(773\) −18.5000 32.0429i −0.665399 1.15250i −0.979177 0.203008i \(-0.934928\pi\)
0.313778 0.949496i \(-0.398405\pi\)
\(774\) 0 0
\(775\) 10.0000 0.359211
\(776\) 6.00000 + 10.3923i 0.215387 + 0.373062i
\(777\) 0 0
\(778\) 8.00000 13.8564i 0.286814 0.496776i
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 1.73205i −0.0357143 0.0618590i
\(785\) −1.00000 −0.0356915
\(786\) 0 0
\(787\) −8.00000 13.8564i −0.285169 0.493928i 0.687481 0.726202i \(-0.258716\pi\)
−0.972650 + 0.232275i \(0.925383\pi\)
\(788\) 15.0000 0.534353
\(789\) 0 0
\(790\) 5.00000 8.66025i 0.177892 0.308118i
\(791\) −24.0000 + 41.5692i −0.853342 + 1.47803i
\(792\) 0 0
\(793\) 7.00000 + 1.73205i 0.248577 + 0.0615069i
\(794\) 33.0000 1.17113
\(795\) 0 0
\(796\) 1.00000 1.73205i 0.0354441 0.0613909i
\(797\) −7.00000 12.1244i −0.247953 0.429467i 0.715005 0.699119i \(-0.246424\pi\)
−0.962958 + 0.269653i \(0.913091\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.500000 + 0.866025i 0.0176777 + 0.0306186i
\(801\) 0 0
\(802\) −12.5000 21.6506i −0.441390 0.764511i
\(803\) −8.00000 + 13.8564i −0.282314 + 0.488982i
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) −10.0000 34.6410i −0.352235 1.22018i
\(807\) 0 0
\(808\) −2.00000 + 3.46410i −0.0703598 + 0.121867i
\(809\) −9.00000 + 15.5885i −0.316423 + 0.548061i −0.979739 0.200279i \(-0.935815\pi\)
0.663316 + 0.748340i \(0.269149\pi\)
\(810\) 0 0
\(811\) 33.0000 1.15879 0.579393 0.815048i \(-0.303290\pi\)
0.579393 + 0.815048i \(0.303290\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −1.00000 −0.0350500
\(815\) −10.0000 17.3205i −0.350285 0.606711i
\(816\) 0 0
\(817\) −5.00000 + 8.66025i −0.174928 + 0.302984i
\(818\) −17.0000 −0.594391
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) 9.00000 15.5885i 0.314102 0.544041i −0.665144 0.746715i \(-0.731630\pi\)
0.979246 + 0.202674i \(0.0649632\pi\)
\(822\) 0 0
\(823\) 2.50000 + 4.33013i 0.0871445 + 0.150939i 0.906303 0.422628i \(-0.138892\pi\)
−0.819159 + 0.573567i \(0.805559\pi\)
\(824\) 9.00000 0.313530
\(825\) 0 0
\(826\) 6.00000 + 10.3923i 0.208767 + 0.361595i
\(827\) 30.0000 1.04320 0.521601 0.853189i \(-0.325335\pi\)
0.521601 + 0.853189i \(0.325335\pi\)
\(828\) 0 0
\(829\) 22.0000 38.1051i 0.764092 1.32345i −0.176634 0.984277i \(-0.556521\pi\)
0.940726 0.339169i \(-0.110146\pi\)
\(830\) 6.00000 10.3923i 0.208263 0.360722i
\(831\) 0 0
\(832\) 2.50000 2.59808i 0.0866719 0.0900721i
\(833\) 0 0
\(834\) 0 0
\(835\) 6.50000 11.2583i 0.224942 0.389611i
\(836\) −2.50000 4.33013i −0.0864643 0.149761i
\(837\) 0 0
\(838\) 14.0000 + 24.2487i 0.483622 + 0.837658i
\(839\) −27.0000 46.7654i −0.932144 1.61452i −0.779650 0.626215i \(-0.784603\pi\)
−0.152493 0.988304i \(-0.548730\pi\)
\(840\) 0 0
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 10.0000 17.3205i 0.344623 0.596904i
\(843\) 0 0
\(844\) −15.0000 −0.516321
\(845\) 0.500000 + 12.9904i 0.0172005 + 0.446883i
\(846\) 0 0
\(847\) −15.0000 + 25.9808i −0.515406 + 0.892710i
\(848\) −6.50000 + 11.2583i −0.223211 + 0.386613i
\(849\) 0 0
\(850\) 0 0
\(851\) 2.00000 + 3.46410i 0.0685591 + 0.118748i
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 3.00000 + 5.19615i 0.102658 + 0.177809i
\(855\) 0 0
\(856\) 3.00000 5.19615i 0.102538 0.177601i
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) 19.0000 0.648272 0.324136 0.946011i \(-0.394927\pi\)
0.324136 + 0.946011i \(0.394927\pi\)
\(860\) −1.00000 + 1.73205i −0.0340997 + 0.0590624i
\(861\) 0 0
\(862\) −18.0000 31.1769i −0.613082 1.06189i
\(863\) 48.0000 1.63394 0.816970 0.576681i \(-0.195652\pi\)
0.816970 + 0.576681i \(0.195652\pi\)
\(864\) 0 0
\(865\) 4.50000 + 7.79423i 0.153005 + 0.265012i
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) 15.0000 25.9808i 0.509133 0.881845i
\(869\) −5.00000 + 8.66025i −0.169613 + 0.293779i
\(870\) 0 0
\(871\) −12.0000 41.5692i −0.406604 1.40852i
\(872\) 10.0000 0.338643
\(873\) 0 0
\(874\) −10.0000 + 17.3205i −0.338255 + 0.585875i
\(875\) −1.50000 2.59808i −0.0507093 0.0878310i
\(876\) 0 0
\(877\) −19.0000 32.9090i −0.641584 1.11126i −0.985079 0.172102i \(-0.944944\pi\)
0.343495 0.939155i \(-0.388389\pi\)
\(878\) −5.00000 8.66025i −0.168742 0.292269i
\(879\) 0 0
\(880\) −0.500000 0.866025i −0.0168550 0.0291937i
\(881\) 2.50000 4.33013i 0.0842271 0.145886i −0.820834 0.571166i \(-0.806491\pi\)
0.905062 + 0.425280i \(0.139825\pi\)
\(882\) 0 0
\(883\) 42.0000 1.41341 0.706706 0.707507i \(-0.250180\pi\)
0.706706 + 0.707507i \(0.250180\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 9.00000 15.5885i 0.302361 0.523704i
\(887\) −6.50000 + 11.2583i −0.218249 + 0.378018i −0.954273 0.298938i \(-0.903368\pi\)
0.736024 + 0.676955i \(0.236701\pi\)
\(888\) 0 0
\(889\) −15.0000 −0.503084
\(890\) 0.500000 + 0.866025i 0.0167600 + 0.0290292i
\(891\) 0 0
\(892\) 11.0000 0.368307
\(893\) 22.5000 + 38.9711i 0.752934 + 1.30412i
\(894\) 0 0
\(895\) −6.00000 + 10.3923i −0.200558 + 0.347376i
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) −15.0000 −0.500556
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) −6.00000 −0.199778
\(903\) 0 0
\(904\) −8.00000 13.8564i −0.266076 0.460857i
\(905\) −6.00000 −0.199447
\(906\) 0 0
\(907\) −21.0000 + 36.3731i −0.697294 + 1.20775i 0.272108 + 0.962267i \(0.412279\pi\)
−0.969401 + 0.245481i \(0.921054\pi\)
\(908\) −10.0000 + 17.3205i −0.331862 + 0.574801i
\(909\) 0 0
\(910\) −7.50000 + 7.79423i −0.248623 + 0.258376i
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 0 0
\(913\) −6.00000 + 10.3923i −0.198571 + 0.343935i
\(914\) 11.0000 + 19.0526i 0.363848 + 0.630203i
\(915\) 0 0
\(916\) 5.00000 + 8.66025i 0.165205 + 0.286143i
\(917\) 22.5000 + 38.9711i 0.743015 + 1.28694i
\(918\) 0 0
\(919\) −17.0000 29.4449i −0.560778 0.971296i −0.997429 0.0716652i \(-0.977169\pi\)
0.436650 0.899631i \(-0.356165\pi\)
\(920\) −2.00000 + 3.46410i −0.0659380 + 0.114208i
\(921\) 0 0
\(922\) −12.0000 −0.395199
\(923\) −7.00000 1.73205i −0.230408 0.0570111i
\(924\) 0 0
\(925\) 0.500000 0.866025i 0.0164399 0.0284747i
\(926\) −8.00000 + 13.8564i −0.262896 + 0.455350i
\(927\) 0 0
\(928\) 0 0
\(929\) 17.0000 + 29.4449i 0.557752 + 0.966055i 0.997684 + 0.0680235i \(0.0216693\pi\)
−0.439932 + 0.898031i \(0.644997\pi\)
\(930\) 0 0
\(931\) −10.0000 −0.327737
\(932\) 5.00000 + 8.66025i 0.163780 + 0.283676i
\(933\) 0 0
\(934\) 18.0000 31.1769i 0.588978 1.02014i
\(935\) 0 0
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 18.0000 31.1769i 0.587721 1.01796i
\(939\) 0 0
\(940\) 4.50000 + 7.79423i 0.146774 + 0.254220i
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 0 0
\(943\) 12.0000 + 20.7846i 0.390774 + 0.676840i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 1.00000 1.73205i 0.0325128 0.0563138i
\(947\) −19.0000 + 32.9090i −0.617417 + 1.06940i 0.372538 + 0.928017i \(0.378488\pi\)
−0.989955 + 0.141381i \(0.954846\pi\)
\(948\) 0 0
\(949\) −40.0000 + 41.5692i −1.29845 + 1.34939i
\(950\) 5.00000 0.162221
\(951\) 0 0
\(952\) 0 0
\(953\) 11.0000 + 19.0526i 0.356325 + 0.617173i 0.987344 0.158595i \(-0.0506963\pi\)
−0.631019 + 0.775768i \(0.717363\pi\)
\(954\) 0 0
\(955\) 9.00000 + 15.5885i 0.291233 + 0.504431i
\(956\) −1.00000 1.73205i −0.0323423 0.0560185i
\(957\) 0 0
\(958\) 4.00000 + 6.92820i 0.129234 + 0.223840i
\(959\) −24.0000 + 41.5692i −0.775000 + 1.34234i
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) −3.50000 0.866025i −0.112845 0.0279218i
\(963\) 0 0
\(964\) −7.50000 + 12.9904i −0.241559 + 0.418392i
\(965\) 8.00000 13.8564i 0.257529 0.446054i
\(966\) 0 0
\(967\) 7.00000 0.225105 0.112552 0.993646i \(-0.464097\pi\)
0.112552 + 0.993646i \(0.464097\pi\)
\(968\) −5.00000 8.66025i −0.160706 0.278351i
\(969\) 0 0
\(970\) 12.0000 0.385297
\(971\) 13.5000 + 23.3827i 0.433236 + 0.750386i 0.997150 0.0754473i \(-0.0240385\pi\)
−0.563914 + 0.825833i \(0.690705\pi\)
\(972\) 0 0
\(973\) −13.5000 + 23.3827i −0.432790 + 0.749614i
\(974\) −35.0000 −1.12147
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) 24.0000 41.5692i 0.767828 1.32992i −0.170910 0.985287i \(-0.554671\pi\)
0.938738 0.344631i \(-0.111996\pi\)
\(978\) 0 0
\(979\) −0.500000 0.866025i −0.0159801 0.0276783i
\(980\) −2.00000 −0.0638877
\(981\) 0 0
\(982\) −12.5000 21.6506i −0.398891 0.690900i
\(983\) −53.0000 −1.69044 −0.845219 0.534421i \(-0.820530\pi\)
−0.845219 + 0.534421i \(0.820530\pi\)
\(984\) 0 0
\(985\) 7.50000 12.9904i 0.238970 0.413908i
\(986\) 0 0
\(987\) 0 0
\(988\) −5.00000 17.3205i −0.159071 0.551039i
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) −19.0000 + 32.9090i −0.603555 + 1.04539i 0.388723 + 0.921355i \(0.372916\pi\)
−0.992278 + 0.124033i \(0.960417\pi\)
\(992\) 5.00000 + 8.66025i 0.158750 + 0.274963i
\(993\) 0 0
\(994\) −3.00000 5.19615i −0.0951542 0.164812i
\(995\) −1.00000 1.73205i −0.0317021 0.0549097i
\(996\) 0 0
\(997\) 3.50000 + 6.06218i 0.110846 + 0.191991i 0.916112 0.400923i \(-0.131311\pi\)
−0.805266 + 0.592914i \(0.797977\pi\)
\(998\) 10.0000 17.3205i 0.316544 0.548271i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.i.j.451.1 2
3.2 odd 2 390.2.i.b.61.1 2
13.3 even 3 inner 1170.2.i.j.991.1 2
15.2 even 4 1950.2.z.i.1699.1 4
15.8 even 4 1950.2.z.i.1699.2 4
15.14 odd 2 1950.2.i.o.451.1 2
39.17 odd 6 5070.2.a.c.1.1 1
39.20 even 12 5070.2.b.a.1351.2 2
39.29 odd 6 390.2.i.b.211.1 yes 2
39.32 even 12 5070.2.b.a.1351.1 2
39.35 odd 6 5070.2.a.q.1.1 1
195.29 odd 6 1950.2.i.o.601.1 2
195.68 even 12 1950.2.z.i.1849.1 4
195.107 even 12 1950.2.z.i.1849.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.i.b.61.1 2 3.2 odd 2
390.2.i.b.211.1 yes 2 39.29 odd 6
1170.2.i.j.451.1 2 1.1 even 1 trivial
1170.2.i.j.991.1 2 13.3 even 3 inner
1950.2.i.o.451.1 2 15.14 odd 2
1950.2.i.o.601.1 2 195.29 odd 6
1950.2.z.i.1699.1 4 15.2 even 4
1950.2.z.i.1699.2 4 15.8 even 4
1950.2.z.i.1849.1 4 195.68 even 12
1950.2.z.i.1849.2 4 195.107 even 12
5070.2.a.c.1.1 1 39.17 odd 6
5070.2.a.q.1.1 1 39.35 odd 6
5070.2.b.a.1351.1 2 39.32 even 12
5070.2.b.a.1351.2 2 39.20 even 12