Properties

Label 117.9.j.a.73.7
Level $117$
Weight $9$
Character 117.73
Analytic conductor $47.663$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,9,Mod(73,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.73"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,2,0,0,-166] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.6632973772\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} + 13 x^{16} + 10976 x^{15} + 1201625 x^{14} + 122002 x^{13} + 46813351 x^{12} + \cdots + 12\!\cdots\!50 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{8}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.7
Root \(9.74776 + 10.7478i\) of defining polynomial
Character \(\chi\) \(=\) 117.73
Dual form 117.9.j.a.109.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.74776 + 9.74776i) q^{2} -65.9624i q^{4} +(198.672 + 198.672i) q^{5} +(-1520.85 + 1520.85i) q^{7} +(3138.41 - 3138.41i) q^{8} +3873.22i q^{10} +(2962.81 - 2962.81i) q^{11} +(1826.58 - 28502.5i) q^{13} -29649.7 q^{14} +44298.6 q^{16} +32359.8i q^{17} +(-10661.6 - 10661.6i) q^{19} +(13104.9 - 13104.9i) q^{20} +57761.5 q^{22} +60462.2i q^{23} -311684. i q^{25} +(295641. - 260031. i) q^{26} +(100319. + 100319. i) q^{28} +549285. q^{29} +(-19449.9 - 19449.9i) q^{31} +(-371622. - 371622. i) q^{32} +(-315436. + 315436. i) q^{34} -604300. q^{35} +(1.93961e6 - 1.93961e6i) q^{37} -207854. i q^{38} +1.24703e6 q^{40} +(-253299. - 253299. i) q^{41} -5.09242e6i q^{43} +(-195434. - 195434. i) q^{44} +(-589371. + 589371. i) q^{46} +(6.02802e6 - 6.02802e6i) q^{47} +1.13885e6i q^{49} +(3.03822e6 - 3.03822e6i) q^{50} +(-1.88010e6 - 120486. i) q^{52} +1.10541e7 q^{53} +1.17726e6 q^{55} +9.54609e6i q^{56} +(5.35430e6 + 5.35430e6i) q^{58} +(-1.69750e6 + 1.69750e6i) q^{59} +1.11241e7 q^{61} -379185. i q^{62} -1.85854e7i q^{64} +(6.02555e6 - 5.29977e6i) q^{65} +(1.60890e7 + 1.60890e7i) q^{67} +2.13453e6 q^{68} +(-5.89057e6 - 5.89057e6i) q^{70} +(-2.04642e7 - 2.04642e7i) q^{71} +(-2.81599e7 + 2.81599e7i) q^{73} +3.78138e7 q^{74} +(-703266. + 703266. i) q^{76} +9.01196e6i q^{77} +6.53546e6 q^{79} +(8.80090e6 + 8.80090e6i) q^{80} -4.93819e6i q^{82} +(3.82312e7 + 3.82312e7i) q^{83} +(-6.42900e6 + 6.42900e6i) q^{85} +(4.96396e7 - 4.96396e7i) q^{86} -1.85970e7i q^{88} +(3.40081e7 - 3.40081e7i) q^{89} +(4.05700e7 + 4.61259e7i) q^{91} +3.98823e6 q^{92} +1.17519e8 q^{94} -4.23634e6i q^{95} +(-1.29141e7 - 1.29141e7i) q^{97} +(-1.11012e7 + 1.11012e7i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} - 166 q^{5} + 5308 q^{7} - 10464 q^{8} + 31556 q^{11} + 71300 q^{13} + 110260 q^{14} - 522860 q^{16} + 100288 q^{19} - 736268 q^{20} - 977312 q^{22} - 2952238 q^{26} + 4497084 q^{28} + 2479024 q^{29}+ \cdots - 588677614 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.74776 + 9.74776i 0.609235 + 0.609235i 0.942746 0.333511i \(-0.108234\pi\)
−0.333511 + 0.942746i \(0.608234\pi\)
\(3\) 0 0
\(4\) 65.9624i 0.257666i
\(5\) 198.672 + 198.672i 0.317876 + 0.317876i 0.847951 0.530075i \(-0.177836\pi\)
−0.530075 + 0.847951i \(0.677836\pi\)
\(6\) 0 0
\(7\) −1520.85 + 1520.85i −0.633422 + 0.633422i −0.948925 0.315502i \(-0.897827\pi\)
0.315502 + 0.948925i \(0.397827\pi\)
\(8\) 3138.41 3138.41i 0.766214 0.766214i
\(9\) 0 0
\(10\) 3873.22i 0.387322i
\(11\) 2962.81 2962.81i 0.202364 0.202364i −0.598648 0.801012i \(-0.704295\pi\)
0.801012 + 0.598648i \(0.204295\pi\)
\(12\) 0 0
\(13\) 1826.58 28502.5i 0.0639537 0.997953i
\(14\) −29649.7 −0.771806
\(15\) 0 0
\(16\) 44298.6 0.675943
\(17\) 32359.8i 0.387445i 0.981056 + 0.193723i \(0.0620562\pi\)
−0.981056 + 0.193723i \(0.937944\pi\)
\(18\) 0 0
\(19\) −10661.6 10661.6i −0.0818105 0.0818105i 0.665017 0.746828i \(-0.268424\pi\)
−0.746828 + 0.665017i \(0.768424\pi\)
\(20\) 13104.9 13104.9i 0.0819056 0.0819056i
\(21\) 0 0
\(22\) 57761.5 0.246574
\(23\) 60462.2i 0.216059i 0.994148 + 0.108030i \(0.0344541\pi\)
−0.994148 + 0.108030i \(0.965546\pi\)
\(24\) 0 0
\(25\) 311684.i 0.797910i
\(26\) 295641. 260031.i 0.646951 0.569025i
\(27\) 0 0
\(28\) 100319. + 100319.i 0.163211 + 0.163211i
\(29\) 549285. 0.776615 0.388308 0.921530i \(-0.373060\pi\)
0.388308 + 0.921530i \(0.373060\pi\)
\(30\) 0 0
\(31\) −19449.9 19449.9i −0.0210605 0.0210605i 0.696498 0.717559i \(-0.254740\pi\)
−0.717559 + 0.696498i \(0.754740\pi\)
\(32\) −371622. 371622.i −0.354406 0.354406i
\(33\) 0 0
\(34\) −315436. + 315436.i −0.236045 + 0.236045i
\(35\) −604300. −0.402699
\(36\) 0 0
\(37\) 1.93961e6 1.93961e6i 1.03492 1.03492i 0.0355564 0.999368i \(-0.488680\pi\)
0.999368 0.0355564i \(-0.0113203\pi\)
\(38\) 207854.i 0.0996836i
\(39\) 0 0
\(40\) 1.24703e6 0.487121
\(41\) −253299. 253299.i −0.0896392 0.0896392i 0.660865 0.750505i \(-0.270189\pi\)
−0.750505 + 0.660865i \(0.770189\pi\)
\(42\) 0 0
\(43\) 5.09242e6i 1.48953i −0.667325 0.744766i \(-0.732561\pi\)
0.667325 0.744766i \(-0.267439\pi\)
\(44\) −195434. 195434.i −0.0521422 0.0521422i
\(45\) 0 0
\(46\) −589371. + 589371.i −0.131631 + 0.131631i
\(47\) 6.02802e6 6.02802e6i 1.23533 1.23533i 0.273442 0.961888i \(-0.411838\pi\)
0.961888 0.273442i \(-0.0881623\pi\)
\(48\) 0 0
\(49\) 1.13885e6i 0.197552i
\(50\) 3.03822e6 3.03822e6i 0.486115 0.486115i
\(51\) 0 0
\(52\) −1.88010e6 120486.i −0.257138 0.0164787i
\(53\) 1.10541e7 1.40094 0.700470 0.713682i \(-0.252974\pi\)
0.700470 + 0.713682i \(0.252974\pi\)
\(54\) 0 0
\(55\) 1.17726e6 0.128653
\(56\) 9.54609e6i 0.970674i
\(57\) 0 0
\(58\) 5.35430e6 + 5.35430e6i 0.473141 + 0.473141i
\(59\) −1.69750e6 + 1.69750e6i −0.140088 + 0.140088i −0.773673 0.633585i \(-0.781583\pi\)
0.633585 + 0.773673i \(0.281583\pi\)
\(60\) 0 0
\(61\) 1.11241e7 0.803423 0.401712 0.915766i \(-0.368415\pi\)
0.401712 + 0.915766i \(0.368415\pi\)
\(62\) 379185.i 0.0256616i
\(63\) 0 0
\(64\) 1.85854e7i 1.10778i
\(65\) 6.02555e6 5.29977e6i 0.337554 0.296896i
\(66\) 0 0
\(67\) 1.60890e7 + 1.60890e7i 0.798420 + 0.798420i 0.982846 0.184427i \(-0.0590428\pi\)
−0.184427 + 0.982846i \(0.559043\pi\)
\(68\) 2.13453e6 0.0998313
\(69\) 0 0
\(70\) −5.89057e6 5.89057e6i −0.245338 0.245338i
\(71\) −2.04642e7 2.04642e7i −0.805308 0.805308i 0.178612 0.983920i \(-0.442839\pi\)
−0.983920 + 0.178612i \(0.942839\pi\)
\(72\) 0 0
\(73\) −2.81599e7 + 2.81599e7i −0.991605 + 0.991605i −0.999965 0.00835960i \(-0.997339\pi\)
0.00835960 + 0.999965i \(0.497339\pi\)
\(74\) 3.78138e7 1.26102
\(75\) 0 0
\(76\) −703266. + 703266.i −0.0210798 + 0.0210798i
\(77\) 9.01196e6i 0.256364i
\(78\) 0 0
\(79\) 6.53546e6 0.167791 0.0838953 0.996475i \(-0.473264\pi\)
0.0838953 + 0.996475i \(0.473264\pi\)
\(80\) 8.80090e6 + 8.80090e6i 0.214866 + 0.214866i
\(81\) 0 0
\(82\) 4.93819e6i 0.109223i
\(83\) 3.82312e7 + 3.82312e7i 0.805574 + 0.805574i 0.983960 0.178387i \(-0.0570878\pi\)
−0.178387 + 0.983960i \(0.557088\pi\)
\(84\) 0 0
\(85\) −6.42900e6 + 6.42900e6i −0.123159 + 0.123159i
\(86\) 4.96396e7 4.96396e7i 0.907475 0.907475i
\(87\) 0 0
\(88\) 1.85970e7i 0.310108i
\(89\) 3.40081e7 3.40081e7i 0.542028 0.542028i −0.382095 0.924123i \(-0.624797\pi\)
0.924123 + 0.382095i \(0.124797\pi\)
\(90\) 0 0
\(91\) 4.05700e7 + 4.61259e7i 0.591616 + 0.672635i
\(92\) 3.98823e6 0.0556710
\(93\) 0 0
\(94\) 1.17519e8 1.50521
\(95\) 4.23634e6i 0.0520111i
\(96\) 0 0
\(97\) −1.29141e7 1.29141e7i −0.145873 0.145873i 0.630398 0.776272i \(-0.282892\pi\)
−0.776272 + 0.630398i \(0.782892\pi\)
\(98\) −1.11012e7 + 1.11012e7i −0.120356 + 0.120356i
\(99\) 0 0
\(100\) −2.05594e7 −0.205594
\(101\) 6.17366e7i 0.593276i 0.954990 + 0.296638i \(0.0958655\pi\)
−0.954990 + 0.296638i \(0.904134\pi\)
\(102\) 0 0
\(103\) 1.73240e8i 1.53922i −0.638515 0.769609i \(-0.720451\pi\)
0.638515 0.769609i \(-0.279549\pi\)
\(104\) −8.37201e7 9.51852e7i −0.715643 0.813647i
\(105\) 0 0
\(106\) 1.07753e8 + 1.07753e8i 0.853501 + 0.853501i
\(107\) −1.44603e8 −1.10317 −0.551583 0.834120i \(-0.685976\pi\)
−0.551583 + 0.834120i \(0.685976\pi\)
\(108\) 0 0
\(109\) −1.61023e8 1.61023e8i −1.14073 1.14073i −0.988317 0.152411i \(-0.951296\pi\)
−0.152411 0.988317i \(-0.548704\pi\)
\(110\) 1.14756e7 + 1.14756e7i 0.0783799 + 0.0783799i
\(111\) 0 0
\(112\) −6.73714e7 + 6.73714e7i −0.428157 + 0.428157i
\(113\) 3.08494e8 1.89205 0.946025 0.324094i \(-0.105059\pi\)
0.946025 + 0.324094i \(0.105059\pi\)
\(114\) 0 0
\(115\) −1.20122e7 + 1.20122e7i −0.0686799 + 0.0686799i
\(116\) 3.62322e7i 0.200107i
\(117\) 0 0
\(118\) −3.30937e7 −0.170694
\(119\) −4.92143e7 4.92143e7i −0.245416 0.245416i
\(120\) 0 0
\(121\) 1.96802e8i 0.918098i
\(122\) 1.08435e8 + 1.08435e8i 0.489473 + 0.489473i
\(123\) 0 0
\(124\) −1.28296e6 + 1.28296e6i −0.00542658 + 0.00542658i
\(125\) 1.39529e8 1.39529e8i 0.571512 0.571512i
\(126\) 0 0
\(127\) 2.77756e8i 1.06770i −0.845580 0.533849i \(-0.820745\pi\)
0.845580 0.533849i \(-0.179255\pi\)
\(128\) 8.60308e7 8.60308e7i 0.320490 0.320490i
\(129\) 0 0
\(130\) 1.10397e8 + 7.07475e6i 0.386529 + 0.0247707i
\(131\) −4.98211e8 −1.69172 −0.845860 0.533405i \(-0.820912\pi\)
−0.845860 + 0.533405i \(0.820912\pi\)
\(132\) 0 0
\(133\) 3.24294e7 0.103641
\(134\) 3.13664e8i 0.972850i
\(135\) 0 0
\(136\) 1.01558e8 + 1.01558e8i 0.296866 + 0.296866i
\(137\) −1.87596e8 + 1.87596e8i −0.532526 + 0.532526i −0.921323 0.388797i \(-0.872891\pi\)
0.388797 + 0.921323i \(0.372891\pi\)
\(138\) 0 0
\(139\) 1.29769e8 0.347625 0.173812 0.984779i \(-0.444391\pi\)
0.173812 + 0.984779i \(0.444391\pi\)
\(140\) 3.98611e7i 0.103762i
\(141\) 0 0
\(142\) 3.98961e8i 0.981243i
\(143\) −7.90357e7 8.98594e7i −0.189008 0.214891i
\(144\) 0 0
\(145\) 1.09128e8 + 1.09128e8i 0.246867 + 0.246867i
\(146\) −5.48991e8 −1.20824
\(147\) 0 0
\(148\) −1.27942e8 1.27942e8i −0.266664 0.266664i
\(149\) −2.22073e8 2.22073e8i −0.450559 0.450559i 0.444981 0.895540i \(-0.353210\pi\)
−0.895540 + 0.444981i \(0.853210\pi\)
\(150\) 0 0
\(151\) −3.57612e8 + 3.57612e8i −0.687868 + 0.687868i −0.961760 0.273893i \(-0.911689\pi\)
0.273893 + 0.961760i \(0.411689\pi\)
\(152\) −6.69211e7 −0.125369
\(153\) 0 0
\(154\) −8.78464e7 + 8.78464e7i −0.156186 + 0.156186i
\(155\) 7.72829e6i 0.0133893i
\(156\) 0 0
\(157\) −8.70825e8 −1.43328 −0.716642 0.697441i \(-0.754322\pi\)
−0.716642 + 0.697441i \(0.754322\pi\)
\(158\) 6.37061e7 + 6.37061e7i 0.102224 + 0.102224i
\(159\) 0 0
\(160\) 1.47662e8i 0.225314i
\(161\) −9.19538e7 9.19538e7i −0.136857 0.136857i
\(162\) 0 0
\(163\) −6.38819e7 + 6.38819e7i −0.0904955 + 0.0904955i −0.750905 0.660410i \(-0.770383\pi\)
0.660410 + 0.750905i \(0.270383\pi\)
\(164\) −1.67082e7 + 1.67082e7i −0.0230969 + 0.0230969i
\(165\) 0 0
\(166\) 7.45336e8i 0.981567i
\(167\) −7.63495e8 + 7.63495e8i −0.981613 + 0.981613i −0.999834 0.0182207i \(-0.994200\pi\)
0.0182207 + 0.999834i \(0.494200\pi\)
\(168\) 0 0
\(169\) −8.09058e8 1.04124e8i −0.991820 0.127646i
\(170\) −1.25337e8 −0.150066
\(171\) 0 0
\(172\) −3.35908e8 −0.383801
\(173\) 3.08494e8i 0.344399i 0.985062 + 0.172200i \(0.0550875\pi\)
−0.985062 + 0.172200i \(0.944913\pi\)
\(174\) 0 0
\(175\) 4.74023e8 + 4.74023e8i 0.505414 + 0.505414i
\(176\) 1.31248e8 1.31248e8i 0.136786 0.136786i
\(177\) 0 0
\(178\) 6.63005e8 0.660445
\(179\) 3.95895e8i 0.385627i 0.981235 + 0.192814i \(0.0617612\pi\)
−0.981235 + 0.192814i \(0.938239\pi\)
\(180\) 0 0
\(181\) 1.38347e9i 1.28901i 0.764601 + 0.644504i \(0.222936\pi\)
−0.764601 + 0.644504i \(0.777064\pi\)
\(182\) −5.41576e7 + 8.45092e8i −0.0493598 + 0.770226i
\(183\) 0 0
\(184\) 1.89755e8 + 1.89755e8i 0.165547 + 0.165547i
\(185\) 7.70695e8 0.657954
\(186\) 0 0
\(187\) 9.58759e7 + 9.58759e7i 0.0784049 + 0.0784049i
\(188\) −3.97623e8 3.97623e8i −0.318302 0.318302i
\(189\) 0 0
\(190\) 4.12948e7 4.12948e7i 0.0316870 0.0316870i
\(191\) −1.26344e9 −0.949338 −0.474669 0.880164i \(-0.657432\pi\)
−0.474669 + 0.880164i \(0.657432\pi\)
\(192\) 0 0
\(193\) 8.05420e8 8.05420e8i 0.580488 0.580488i −0.354549 0.935037i \(-0.615366\pi\)
0.935037 + 0.354549i \(0.115366\pi\)
\(194\) 2.51766e8i 0.177742i
\(195\) 0 0
\(196\) 7.51212e7 0.0509024
\(197\) 1.32900e9 + 1.32900e9i 0.882386 + 0.882386i 0.993777 0.111391i \(-0.0355305\pi\)
−0.111391 + 0.993777i \(0.535530\pi\)
\(198\) 0 0
\(199\) 8.97449e8i 0.572265i −0.958190 0.286133i \(-0.907630\pi\)
0.958190 0.286133i \(-0.0923698\pi\)
\(200\) −9.78192e8 9.78192e8i −0.611370 0.611370i
\(201\) 0 0
\(202\) −6.01793e8 + 6.01793e8i −0.361445 + 0.361445i
\(203\) −8.35379e8 + 8.35379e8i −0.491926 + 0.491926i
\(204\) 0 0
\(205\) 1.00647e8i 0.0569882i
\(206\) 1.68871e9 1.68871e9i 0.937746 0.937746i
\(207\) 0 0
\(208\) 8.09150e7 1.26262e9i 0.0432290 0.674559i
\(209\) −6.31767e7 −0.0331110
\(210\) 0 0
\(211\) −2.58040e9 −1.30184 −0.650919 0.759147i \(-0.725616\pi\)
−0.650919 + 0.759147i \(0.725616\pi\)
\(212\) 7.29154e8i 0.360974i
\(213\) 0 0
\(214\) −1.40955e9 1.40955e9i −0.672087 0.672087i
\(215\) 1.01172e9 1.01172e9i 0.473486 0.473486i
\(216\) 0 0
\(217\) 5.91605e7 0.0266804
\(218\) 3.13923e9i 1.38994i
\(219\) 0 0
\(220\) 7.76546e7i 0.0331495i
\(221\) 9.22336e8 + 5.91078e7i 0.386652 + 0.0247785i
\(222\) 0 0
\(223\) 2.48566e8 + 2.48566e8i 0.100513 + 0.100513i 0.755575 0.655062i \(-0.227358\pi\)
−0.655062 + 0.755575i \(0.727358\pi\)
\(224\) 1.13036e9 0.448977
\(225\) 0 0
\(226\) 3.00712e9 + 3.00712e9i 1.15270 + 1.15270i
\(227\) 3.09771e9 + 3.09771e9i 1.16664 + 1.16664i 0.982991 + 0.183651i \(0.0587917\pi\)
0.183651 + 0.982991i \(0.441208\pi\)
\(228\) 0 0
\(229\) 3.49571e9 3.49571e9i 1.27114 1.27114i 0.325650 0.945490i \(-0.394417\pi\)
0.945490 0.325650i \(-0.105583\pi\)
\(230\) −2.34183e8 −0.0836844
\(231\) 0 0
\(232\) 1.72388e9 1.72388e9i 0.595053 0.595053i
\(233\) 2.91410e9i 0.988736i −0.869253 0.494368i \(-0.835399\pi\)
0.869253 0.494368i \(-0.164601\pi\)
\(234\) 0 0
\(235\) 2.39520e9 0.785363
\(236\) 1.11971e8 + 1.11971e8i 0.0360960 + 0.0360960i
\(237\) 0 0
\(238\) 9.59459e8i 0.299033i
\(239\) 2.22243e9 + 2.22243e9i 0.681140 + 0.681140i 0.960257 0.279117i \(-0.0900417\pi\)
−0.279117 + 0.960257i \(0.590042\pi\)
\(240\) 0 0
\(241\) 1.19161e9 1.19161e9i 0.353237 0.353237i −0.508076 0.861312i \(-0.669643\pi\)
0.861312 + 0.508076i \(0.169643\pi\)
\(242\) −1.91838e9 + 1.91838e9i −0.559337 + 0.559337i
\(243\) 0 0
\(244\) 7.33770e8i 0.207015i
\(245\) −2.26258e8 + 2.26258e8i −0.0627970 + 0.0627970i
\(246\) 0 0
\(247\) −3.23358e8 + 2.84409e8i −0.0868751 + 0.0764109i
\(248\) −1.22083e8 −0.0322738
\(249\) 0 0
\(250\) 2.72020e9 0.696370
\(251\) 6.53718e9i 1.64701i −0.567312 0.823503i \(-0.692016\pi\)
0.567312 0.823503i \(-0.307984\pi\)
\(252\) 0 0
\(253\) 1.79138e8 + 1.79138e8i 0.0437225 + 0.0437225i
\(254\) 2.70750e9 2.70750e9i 0.650479 0.650479i
\(255\) 0 0
\(256\) −3.08065e9 −0.717269
\(257\) 2.65350e9i 0.608255i 0.952631 + 0.304128i \(0.0983649\pi\)
−0.952631 + 0.304128i \(0.901635\pi\)
\(258\) 0 0
\(259\) 5.89971e9i 1.31109i
\(260\) −3.49586e8 3.97460e8i −0.0764998 0.0869761i
\(261\) 0 0
\(262\) −4.85644e9 4.85644e9i −1.03065 1.03065i
\(263\) 5.80149e9 1.21260 0.606299 0.795237i \(-0.292653\pi\)
0.606299 + 0.795237i \(0.292653\pi\)
\(264\) 0 0
\(265\) 2.19614e9 + 2.19614e9i 0.445325 + 0.445325i
\(266\) 3.16114e8 + 3.16114e8i 0.0631418 + 0.0631418i
\(267\) 0 0
\(268\) 1.06127e9 1.06127e9i 0.205725 0.205725i
\(269\) 8.58856e8 0.164026 0.0820128 0.996631i \(-0.473865\pi\)
0.0820128 + 0.996631i \(0.473865\pi\)
\(270\) 0 0
\(271\) −2.15727e9 + 2.15727e9i −0.399969 + 0.399969i −0.878222 0.478253i \(-0.841270\pi\)
0.478253 + 0.878222i \(0.341270\pi\)
\(272\) 1.43349e9i 0.261891i
\(273\) 0 0
\(274\) −3.65728e9 −0.648867
\(275\) −9.23459e8 9.23459e8i −0.161468 0.161468i
\(276\) 0 0
\(277\) 6.75310e8i 0.114705i 0.998354 + 0.0573527i \(0.0182660\pi\)
−0.998354 + 0.0573527i \(0.981734\pi\)
\(278\) 1.26495e9 + 1.26495e9i 0.211785 + 0.211785i
\(279\) 0 0
\(280\) −1.89654e9 + 1.89654e9i −0.308554 + 0.308554i
\(281\) −1.11588e9 + 1.11588e9i −0.178975 + 0.178975i −0.790909 0.611934i \(-0.790392\pi\)
0.611934 + 0.790909i \(0.290392\pi\)
\(282\) 0 0
\(283\) 2.25404e9i 0.351411i −0.984443 0.175706i \(-0.943779\pi\)
0.984443 0.175706i \(-0.0562207\pi\)
\(284\) −1.34987e9 + 1.34987e9i −0.207500 + 0.207500i
\(285\) 0 0
\(286\) 1.05506e8 1.64635e9i 0.0157693 0.246069i
\(287\) 7.70458e8 0.113559
\(288\) 0 0
\(289\) 5.92860e9 0.849886
\(290\) 2.12750e9i 0.300800i
\(291\) 0 0
\(292\) 1.85749e9 + 1.85749e9i 0.255503 + 0.255503i
\(293\) −6.60712e9 + 6.60712e9i −0.896482 + 0.896482i −0.995123 0.0986406i \(-0.968551\pi\)
0.0986406 + 0.995123i \(0.468551\pi\)
\(294\) 0 0
\(295\) −6.74494e8 −0.0890614
\(296\) 1.21746e10i 1.58595i
\(297\) 0 0
\(298\) 4.32944e9i 0.548992i
\(299\) 1.72333e9 + 1.10439e8i 0.215617 + 0.0138178i
\(300\) 0 0
\(301\) 7.74478e9 + 7.74478e9i 0.943503 + 0.943503i
\(302\) −6.97184e9 −0.838146
\(303\) 0 0
\(304\) −4.72295e8 4.72295e8i −0.0552992 0.0552992i
\(305\) 2.21004e9 + 2.21004e9i 0.255389 + 0.255389i
\(306\) 0 0
\(307\) −8.84782e9 + 8.84782e9i −0.996054 + 0.996054i −0.999992 0.00393808i \(-0.998746\pi\)
0.00393808 + 0.999992i \(0.498746\pi\)
\(308\) 5.94450e8 0.0660561
\(309\) 0 0
\(310\) 7.53335e7 7.53335e7i 0.00815721 0.00815721i
\(311\) 1.33001e10i 1.42172i 0.703336 + 0.710858i \(0.251693\pi\)
−0.703336 + 0.710858i \(0.748307\pi\)
\(312\) 0 0
\(313\) −2.77550e9 −0.289177 −0.144589 0.989492i \(-0.546186\pi\)
−0.144589 + 0.989492i \(0.546186\pi\)
\(314\) −8.48859e9 8.48859e9i −0.873206 0.873206i
\(315\) 0 0
\(316\) 4.31095e8i 0.0432339i
\(317\) 1.67710e9 + 1.67710e9i 0.166081 + 0.166081i 0.785254 0.619173i \(-0.212532\pi\)
−0.619173 + 0.785254i \(0.712532\pi\)
\(318\) 0 0
\(319\) 1.62743e9 1.62743e9i 0.157159 0.157159i
\(320\) 3.69240e9 3.69240e9i 0.352135 0.352135i
\(321\) 0 0
\(322\) 1.79269e9i 0.166756i
\(323\) 3.45008e8 3.45008e8i 0.0316971 0.0316971i
\(324\) 0 0
\(325\) −8.88377e9 5.69316e8i −0.796277 0.0510293i
\(326\) −1.24541e9 −0.110266
\(327\) 0 0
\(328\) −1.58991e9 −0.137366
\(329\) 1.83354e10i 1.56497i
\(330\) 0 0
\(331\) 5.86196e9 + 5.86196e9i 0.488349 + 0.488349i 0.907785 0.419436i \(-0.137772\pi\)
−0.419436 + 0.907785i \(0.637772\pi\)
\(332\) 2.52182e9 2.52182e9i 0.207569 0.207569i
\(333\) 0 0
\(334\) −1.48847e10 −1.19607
\(335\) 6.39290e9i 0.507596i
\(336\) 0 0
\(337\) 7.94739e9i 0.616176i 0.951358 + 0.308088i \(0.0996891\pi\)
−0.951358 + 0.308088i \(0.900311\pi\)
\(338\) −6.87152e9 8.90148e9i −0.526485 0.682017i
\(339\) 0 0
\(340\) 4.24072e8 + 4.24072e8i 0.0317339 + 0.0317339i
\(341\) −1.15252e8 −0.00852378
\(342\) 0 0
\(343\) −1.04994e10 1.04994e10i −0.758556 0.758556i
\(344\) −1.59821e10 1.59821e10i −1.14130 1.14130i
\(345\) 0 0
\(346\) −3.00713e9 + 3.00713e9i −0.209820 + 0.209820i
\(347\) −1.23874e10 −0.854401 −0.427201 0.904157i \(-0.640500\pi\)
−0.427201 + 0.904157i \(0.640500\pi\)
\(348\) 0 0
\(349\) −2.78130e8 + 2.78130e8i −0.0187476 + 0.0187476i −0.716418 0.697671i \(-0.754220\pi\)
0.697671 + 0.716418i \(0.254220\pi\)
\(350\) 9.24133e9i 0.615832i
\(351\) 0 0
\(352\) −2.20209e9 −0.143438
\(353\) −1.59300e9 1.59300e9i −0.102593 0.102593i 0.653947 0.756540i \(-0.273112\pi\)
−0.756540 + 0.653947i \(0.773112\pi\)
\(354\) 0 0
\(355\) 8.13135e9i 0.511975i
\(356\) −2.24325e9 2.24325e9i −0.139662 0.139662i
\(357\) 0 0
\(358\) −3.85908e9 + 3.85908e9i −0.234937 + 0.234937i
\(359\) 1.19822e10 1.19822e10i 0.721370 0.721370i −0.247514 0.968884i \(-0.579614\pi\)
0.968884 + 0.247514i \(0.0796136\pi\)
\(360\) 0 0
\(361\) 1.67562e10i 0.986614i
\(362\) −1.34857e10 + 1.34857e10i −0.785309 + 0.785309i
\(363\) 0 0
\(364\) 3.04258e9 2.67610e9i 0.173315 0.152439i
\(365\) −1.11892e10 −0.630415
\(366\) 0 0
\(367\) 3.46746e10 1.91138 0.955691 0.294372i \(-0.0951106\pi\)
0.955691 + 0.294372i \(0.0951106\pi\)
\(368\) 2.67839e9i 0.146044i
\(369\) 0 0
\(370\) 7.51255e9 + 7.51255e9i 0.400849 + 0.400849i
\(371\) −1.68116e10 + 1.68116e10i −0.887387 + 0.887387i
\(372\) 0 0
\(373\) 1.23140e9 0.0636157 0.0318078 0.999494i \(-0.489874\pi\)
0.0318078 + 0.999494i \(0.489874\pi\)
\(374\) 1.86915e9i 0.0955340i
\(375\) 0 0
\(376\) 3.78368e10i 1.89305i
\(377\) 1.00331e9 1.56560e10i 0.0496674 0.775025i
\(378\) 0 0
\(379\) 2.31134e10 + 2.31134e10i 1.12023 + 1.12023i 0.991707 + 0.128523i \(0.0410236\pi\)
0.128523 + 0.991707i \(0.458976\pi\)
\(380\) −2.79439e8 −0.0134015
\(381\) 0 0
\(382\) −1.23157e10 1.23157e10i −0.578370 0.578370i
\(383\) 2.23472e10 + 2.23472e10i 1.03855 + 1.03855i 0.999227 + 0.0393232i \(0.0125202\pi\)
0.0393232 + 0.999227i \(0.487480\pi\)
\(384\) 0 0
\(385\) −1.79043e9 + 1.79043e9i −0.0814917 + 0.0814917i
\(386\) 1.57021e10 0.707307
\(387\) 0 0
\(388\) −8.51843e8 + 8.51843e8i −0.0375866 + 0.0375866i
\(389\) 1.17421e10i 0.512801i −0.966571 0.256401i \(-0.917463\pi\)
0.966571 0.256401i \(-0.0825366\pi\)
\(390\) 0 0
\(391\) −1.95655e9 −0.0837111
\(392\) 3.57418e9 + 3.57418e9i 0.151367 + 0.151367i
\(393\) 0 0
\(394\) 2.59095e10i 1.07516i
\(395\) 1.29841e9 + 1.29841e9i 0.0533366 + 0.0533366i
\(396\) 0 0
\(397\) −1.81552e10 + 1.81552e10i −0.730868 + 0.730868i −0.970792 0.239924i \(-0.922878\pi\)
0.239924 + 0.970792i \(0.422878\pi\)
\(398\) 8.74812e9 8.74812e9i 0.348644 0.348644i
\(399\) 0 0
\(400\) 1.38071e10i 0.539342i
\(401\) 1.78247e10 1.78247e10i 0.689358 0.689358i −0.272732 0.962090i \(-0.587927\pi\)
0.962090 + 0.272732i \(0.0879272\pi\)
\(402\) 0 0
\(403\) −5.89897e8 + 5.18843e8i −0.0223643 + 0.0196705i
\(404\) 4.07229e9 0.152867
\(405\) 0 0
\(406\) −1.62861e10 −0.599396
\(407\) 1.14934e10i 0.418862i
\(408\) 0 0
\(409\) −2.43214e10 2.43214e10i −0.869153 0.869153i 0.123226 0.992379i \(-0.460676\pi\)
−0.992379 + 0.123226i \(0.960676\pi\)
\(410\) 9.81082e8 9.81082e8i 0.0347192 0.0347192i
\(411\) 0 0
\(412\) −1.14274e10 −0.396604
\(413\) 5.16328e9i 0.177470i
\(414\) 0 0
\(415\) 1.51910e10i 0.512145i
\(416\) −1.12710e10 + 9.91336e9i −0.376346 + 0.331015i
\(417\) 0 0
\(418\) −6.15831e8 6.15831e8i −0.0201724 0.0201724i
\(419\) −2.20449e10 −0.715241 −0.357620 0.933867i \(-0.616412\pi\)
−0.357620 + 0.933867i \(0.616412\pi\)
\(420\) 0 0
\(421\) 4.70295e9 + 4.70295e9i 0.149707 + 0.149707i 0.777987 0.628280i \(-0.216241\pi\)
−0.628280 + 0.777987i \(0.716241\pi\)
\(422\) −2.51531e10 2.51531e10i −0.793125 0.793125i
\(423\) 0 0
\(424\) 3.46923e10 3.46923e10i 1.07342 1.07342i
\(425\) 1.00860e10 0.309146
\(426\) 0 0
\(427\) −1.69180e10 + 1.69180e10i −0.508906 + 0.508906i
\(428\) 9.53833e9i 0.284248i
\(429\) 0 0
\(430\) 1.97240e10 0.576929
\(431\) 3.01796e10 + 3.01796e10i 0.874590 + 0.874590i 0.992969 0.118379i \(-0.0377697\pi\)
−0.118379 + 0.992969i \(0.537770\pi\)
\(432\) 0 0
\(433\) 2.98973e10i 0.850510i 0.905073 + 0.425255i \(0.139816\pi\)
−0.905073 + 0.425255i \(0.860184\pi\)
\(434\) 5.76682e8 + 5.76682e8i 0.0162547 + 0.0162547i
\(435\) 0 0
\(436\) −1.06215e10 + 1.06215e10i −0.293927 + 0.293927i
\(437\) 6.44625e8 6.44625e8i 0.0176759 0.0176759i
\(438\) 0 0
\(439\) 5.11771e10i 1.37790i −0.724809 0.688950i \(-0.758072\pi\)
0.724809 0.688950i \(-0.241928\pi\)
\(440\) 3.69471e9 3.69471e9i 0.0985758 0.0985758i
\(441\) 0 0
\(442\) 8.41454e9 + 9.56688e9i 0.220466 + 0.250658i
\(443\) −4.25669e10 −1.10524 −0.552621 0.833433i \(-0.686372\pi\)
−0.552621 + 0.833433i \(0.686372\pi\)
\(444\) 0 0
\(445\) 1.35129e10 0.344595
\(446\) 4.84593e9i 0.122472i
\(447\) 0 0
\(448\) 2.82655e10 + 2.82655e10i 0.701690 + 0.701690i
\(449\) 1.54120e10 1.54120e10i 0.379204 0.379204i −0.491611 0.870815i \(-0.663592\pi\)
0.870815 + 0.491611i \(0.163592\pi\)
\(450\) 0 0
\(451\) −1.50095e9 −0.0362794
\(452\) 2.03490e10i 0.487516i
\(453\) 0 0
\(454\) 6.03915e10i 1.42152i
\(455\) −1.10380e9 + 1.72241e10i −0.0257541 + 0.401875i
\(456\) 0 0
\(457\) 2.33572e10 + 2.33572e10i 0.535495 + 0.535495i 0.922203 0.386707i \(-0.126388\pi\)
−0.386707 + 0.922203i \(0.626388\pi\)
\(458\) 6.81507e10 1.54885
\(459\) 0 0
\(460\) 7.92351e8 + 7.92351e8i 0.0176965 + 0.0176965i
\(461\) 5.81609e10 + 5.81609e10i 1.28774 + 1.28774i 0.936158 + 0.351579i \(0.114355\pi\)
0.351579 + 0.936158i \(0.385645\pi\)
\(462\) 0 0
\(463\) 2.79753e10 2.79753e10i 0.608766 0.608766i −0.333857 0.942624i \(-0.608350\pi\)
0.942624 + 0.333857i \(0.108350\pi\)
\(464\) 2.43326e10 0.524948
\(465\) 0 0
\(466\) 2.84059e10 2.84059e10i 0.602373 0.602373i
\(467\) 4.29922e10i 0.903903i −0.892042 0.451952i \(-0.850728\pi\)
0.892042 0.451952i \(-0.149272\pi\)
\(468\) 0 0
\(469\) −4.89380e10 −1.01147
\(470\) 2.33478e10 + 2.33478e10i 0.478471 + 0.478471i
\(471\) 0 0
\(472\) 1.06549e10i 0.214675i
\(473\) −1.50879e10 1.50879e10i −0.301427 0.301427i
\(474\) 0 0
\(475\) −3.32305e9 + 3.32305e9i −0.0652774 + 0.0652774i
\(476\) −3.24630e9 + 3.24630e9i −0.0632354 + 0.0632354i
\(477\) 0 0
\(478\) 4.33274e10i 0.829949i
\(479\) −1.00892e10 + 1.00892e10i −0.191653 + 0.191653i −0.796410 0.604757i \(-0.793270\pi\)
0.604757 + 0.796410i \(0.293270\pi\)
\(480\) 0 0
\(481\) −5.17411e10 5.88268e10i −0.966618 1.09899i
\(482\) 2.32310e10 0.430408
\(483\) 0 0
\(484\) 1.29816e10 0.236562
\(485\) 5.13133e9i 0.0927392i
\(486\) 0 0
\(487\) −4.63051e10 4.63051e10i −0.823214 0.823214i 0.163353 0.986568i \(-0.447769\pi\)
−0.986568 + 0.163353i \(0.947769\pi\)
\(488\) 3.49119e10 3.49119e10i 0.615594 0.615594i
\(489\) 0 0
\(490\) −4.41101e9 −0.0765163
\(491\) 3.75763e10i 0.646530i −0.946309 0.323265i \(-0.895220\pi\)
0.946309 0.323265i \(-0.104780\pi\)
\(492\) 0 0
\(493\) 1.77748e10i 0.300896i
\(494\) −5.92436e9 3.79662e8i −0.0994795 0.00637514i
\(495\) 0 0
\(496\) −8.61601e8 8.61601e8i −0.0142357 0.0142357i
\(497\) 6.22459e10 1.02020
\(498\) 0 0
\(499\) 6.17259e10 + 6.17259e10i 0.995555 + 0.995555i 0.999990 0.00443528i \(-0.00141180\pi\)
−0.00443528 + 0.999990i \(0.501412\pi\)
\(500\) −9.20369e9 9.20369e9i −0.147259 0.147259i
\(501\) 0 0
\(502\) 6.37228e10 6.37228e10i 1.00341 1.00341i
\(503\) −7.87518e10 −1.23024 −0.615118 0.788435i \(-0.710892\pi\)
−0.615118 + 0.788435i \(0.710892\pi\)
\(504\) 0 0
\(505\) −1.22653e10 + 1.22653e10i −0.188588 + 0.188588i
\(506\) 3.49239e9i 0.0532746i
\(507\) 0 0
\(508\) −1.83215e10 −0.275109
\(509\) 4.37746e9 + 4.37746e9i 0.0652155 + 0.0652155i 0.738962 0.673747i \(-0.235316\pi\)
−0.673747 + 0.738962i \(0.735316\pi\)
\(510\) 0 0
\(511\) 8.56537e10i 1.25621i
\(512\) −5.20533e10 5.20533e10i −0.757475 0.757475i
\(513\) 0 0
\(514\) −2.58656e10 + 2.58656e10i −0.370570 + 0.370570i
\(515\) 3.44181e10 3.44181e10i 0.489280 0.489280i
\(516\) 0 0
\(517\) 3.57197e10i 0.499972i
\(518\) −5.75090e10 + 5.75090e10i −0.798761 + 0.798761i
\(519\) 0 0
\(520\) 2.27780e9 3.55435e10i 0.0311532 0.486124i
\(521\) −5.45813e10 −0.740786 −0.370393 0.928875i \(-0.620777\pi\)
−0.370393 + 0.928875i \(0.620777\pi\)
\(522\) 0 0
\(523\) 2.48896e10 0.332668 0.166334 0.986069i \(-0.446807\pi\)
0.166334 + 0.986069i \(0.446807\pi\)
\(524\) 3.28632e10i 0.435898i
\(525\) 0 0
\(526\) 5.65516e10 + 5.65516e10i 0.738757 + 0.738757i
\(527\) 6.29393e8 6.29393e8i 0.00815980 0.00815980i
\(528\) 0 0
\(529\) 7.46553e10 0.953318
\(530\) 4.28149e10i 0.542615i
\(531\) 0 0
\(532\) 2.13912e9i 0.0267048i
\(533\) −7.68233e9 + 6.75699e9i −0.0951884 + 0.0837229i
\(534\) 0 0
\(535\) −2.87285e10 2.87285e10i −0.350670 0.350670i
\(536\) 1.00988e11 1.22352
\(537\) 0 0
\(538\) 8.37192e9 + 8.37192e9i 0.0999301 + 0.0999301i
\(539\) 3.37419e9 + 3.37419e9i 0.0399774 + 0.0399774i
\(540\) 0 0
\(541\) −4.97594e9 + 4.97594e9i −0.0580880 + 0.0580880i −0.735554 0.677466i \(-0.763078\pi\)
0.677466 + 0.735554i \(0.263078\pi\)
\(542\) −4.20570e10 −0.487350
\(543\) 0 0
\(544\) 1.20256e10 1.20256e10i 0.137313 0.137313i
\(545\) 6.39817e10i 0.725220i
\(546\) 0 0
\(547\) −4.15465e10 −0.464072 −0.232036 0.972707i \(-0.574539\pi\)
−0.232036 + 0.972707i \(0.574539\pi\)
\(548\) 1.23743e10 + 1.23743e10i 0.137214 + 0.137214i
\(549\) 0 0
\(550\) 1.80033e10i 0.196744i
\(551\) −5.85627e9 5.85627e9i −0.0635353 0.0635353i
\(552\) 0 0
\(553\) −9.93944e9 + 9.93944e9i −0.106282 + 0.106282i
\(554\) −6.58276e9 + 6.58276e9i −0.0698825 + 0.0698825i
\(555\) 0 0
\(556\) 8.55985e9i 0.0895709i
\(557\) 1.92737e10 1.92737e10i 0.200237 0.200237i −0.599865 0.800102i \(-0.704779\pi\)
0.800102 + 0.599865i \(0.204779\pi\)
\(558\) 0 0
\(559\) −1.45147e11 9.30171e9i −1.48648 0.0952611i
\(560\) −2.67697e10 −0.272202
\(561\) 0 0
\(562\) −2.17547e10 −0.218076
\(563\) 2.18965e10i 0.217942i −0.994045 0.108971i \(-0.965244\pi\)
0.994045 0.108971i \(-0.0347555\pi\)
\(564\) 0 0
\(565\) 6.12892e10 + 6.12892e10i 0.601437 + 0.601437i
\(566\) 2.19718e10 2.19718e10i 0.214092 0.214092i
\(567\) 0 0
\(568\) −1.28450e11 −1.23408
\(569\) 2.89805e10i 0.276475i −0.990399 0.138238i \(-0.955856\pi\)
0.990399 0.138238i \(-0.0441438\pi\)
\(570\) 0 0
\(571\) 8.79447e10i 0.827304i 0.910435 + 0.413652i \(0.135747\pi\)
−0.910435 + 0.413652i \(0.864253\pi\)
\(572\) −5.92734e9 + 5.21339e9i −0.0553701 + 0.0487008i
\(573\) 0 0
\(574\) 7.51024e9 + 7.51024e9i 0.0691841 + 0.0691841i
\(575\) 1.88451e10 0.172396
\(576\) 0 0
\(577\) −3.21868e10 3.21868e10i −0.290385 0.290385i 0.546847 0.837232i \(-0.315828\pi\)
−0.837232 + 0.546847i \(0.815828\pi\)
\(578\) 5.77906e10 + 5.77906e10i 0.517780 + 0.517780i
\(579\) 0 0
\(580\) 7.19833e9 7.19833e9i 0.0636092 0.0636092i
\(581\) −1.16288e11 −1.02054
\(582\) 0 0
\(583\) 3.27511e10 3.27511e10i 0.283499 0.283499i
\(584\) 1.76754e11i 1.51956i
\(585\) 0 0
\(586\) −1.28809e11 −1.09234
\(587\) −1.17900e11 1.17900e11i −0.993028 0.993028i 0.00694814 0.999976i \(-0.497788\pi\)
−0.999976 + 0.00694814i \(0.997788\pi\)
\(588\) 0 0
\(589\) 4.14734e8i 0.00344595i
\(590\) −6.57480e9 6.57480e9i −0.0542593 0.0542593i
\(591\) 0 0
\(592\) 8.59222e10 8.59222e10i 0.699549 0.699549i
\(593\) −6.24190e10 + 6.24190e10i −0.504775 + 0.504775i −0.912918 0.408143i \(-0.866177\pi\)
0.408143 + 0.912918i \(0.366177\pi\)
\(594\) 0 0
\(595\) 1.95550e10i 0.156024i
\(596\) −1.46485e10 + 1.46485e10i −0.116094 + 0.116094i
\(597\) 0 0
\(598\) 1.57220e10 + 1.78751e10i 0.122943 + 0.139780i
\(599\) −6.50863e10 −0.505572 −0.252786 0.967522i \(-0.581347\pi\)
−0.252786 + 0.967522i \(0.581347\pi\)
\(600\) 0 0
\(601\) 2.21879e11 1.70067 0.850333 0.526245i \(-0.176401\pi\)
0.850333 + 0.526245i \(0.176401\pi\)
\(602\) 1.50989e11i 1.14963i
\(603\) 0 0
\(604\) 2.35890e10 + 2.35890e10i 0.177240 + 0.177240i
\(605\) −3.90992e10 + 3.90992e10i −0.291841 + 0.291841i
\(606\) 0 0
\(607\) −1.43440e11 −1.05662 −0.528308 0.849053i \(-0.677173\pi\)
−0.528308 + 0.849053i \(0.677173\pi\)
\(608\) 7.92418e9i 0.0579882i
\(609\) 0 0
\(610\) 4.30860e10i 0.311183i
\(611\) −1.60803e11 1.82824e11i −1.15380 1.31181i
\(612\) 0 0
\(613\) −1.14293e10 1.14293e10i −0.0809424 0.0809424i 0.665476 0.746419i \(-0.268228\pi\)
−0.746419 + 0.665476i \(0.768228\pi\)
\(614\) −1.72493e11 −1.21366
\(615\) 0 0
\(616\) 2.82832e10 + 2.82832e10i 0.196429 + 0.196429i
\(617\) 5.19557e10 + 5.19557e10i 0.358503 + 0.358503i 0.863261 0.504758i \(-0.168418\pi\)
−0.504758 + 0.863261i \(0.668418\pi\)
\(618\) 0 0
\(619\) −2.55973e10 + 2.55973e10i −0.174354 + 0.174354i −0.788889 0.614535i \(-0.789344\pi\)
0.614535 + 0.788889i \(0.289344\pi\)
\(620\) −5.09777e8 −0.00344995
\(621\) 0 0
\(622\) −1.29646e11 + 1.29646e11i −0.866159 + 0.866159i
\(623\) 1.03442e11i 0.686666i
\(624\) 0 0
\(625\) −6.63102e10 −0.434571
\(626\) −2.70549e10 2.70549e10i −0.176177 0.176177i
\(627\) 0 0
\(628\) 5.74417e10i 0.369308i
\(629\) 6.27655e10 + 6.27655e10i 0.400976 + 0.400976i
\(630\) 0 0
\(631\) −8.19590e10 + 8.19590e10i −0.516986 + 0.516986i −0.916658 0.399672i \(-0.869124\pi\)
0.399672 + 0.916658i \(0.369124\pi\)
\(632\) 2.05110e10 2.05110e10i 0.128564 0.128564i
\(633\) 0 0
\(634\) 3.26958e10i 0.202365i
\(635\) 5.51825e10 5.51825e10i 0.339396 0.339396i
\(636\) 0 0
\(637\) 3.24601e10 + 2.08020e9i 0.197148 + 0.0126342i
\(638\) 3.17275e10 0.191493
\(639\) 0 0
\(640\) 3.41839e10 0.203752
\(641\) 9.79403e10i 0.580135i −0.957006 0.290068i \(-0.906322\pi\)
0.957006 0.290068i \(-0.0936778\pi\)
\(642\) 0 0
\(643\) 1.79267e10 + 1.79267e10i 0.104871 + 0.104871i 0.757596 0.652724i \(-0.226374\pi\)
−0.652724 + 0.757596i \(0.726374\pi\)
\(644\) −6.06549e9 + 6.06549e9i −0.0352633 + 0.0352633i
\(645\) 0 0
\(646\) 6.72611e9 0.0386219
\(647\) 2.17508e11i 1.24125i 0.784108 + 0.620624i \(0.213121\pi\)
−0.784108 + 0.620624i \(0.786879\pi\)
\(648\) 0 0
\(649\) 1.00588e10i 0.0566977i
\(650\) −8.10473e10 9.21464e10i −0.454031 0.516208i
\(651\) 0 0
\(652\) 4.21380e9 + 4.21380e9i 0.0233176 + 0.0233176i
\(653\) 5.11592e10 0.281366 0.140683 0.990055i \(-0.455070\pi\)
0.140683 + 0.990055i \(0.455070\pi\)
\(654\) 0 0
\(655\) −9.89808e10 9.89808e10i −0.537757 0.537757i
\(656\) −1.12208e10 1.12208e10i −0.0605910 0.0605910i
\(657\) 0 0
\(658\) −1.78729e11 + 1.78729e11i −0.953436 + 0.953436i
\(659\) 3.05213e11 1.61831 0.809153 0.587598i \(-0.199926\pi\)
0.809153 + 0.587598i \(0.199926\pi\)
\(660\) 0 0
\(661\) 1.86671e10 1.86671e10i 0.0977848 0.0977848i −0.656522 0.754307i \(-0.727973\pi\)
0.754307 + 0.656522i \(0.227973\pi\)
\(662\) 1.14282e11i 0.595039i
\(663\) 0 0
\(664\) 2.39970e11 1.23448
\(665\) 6.44282e9 + 6.44282e9i 0.0329450 + 0.0329450i
\(666\) 0 0
\(667\) 3.32110e10i 0.167795i
\(668\) 5.03620e10 + 5.03620e10i 0.252928 + 0.252928i
\(669\) 0 0
\(670\) −6.23164e10 + 6.23164e10i −0.309245 + 0.309245i
\(671\) 3.29585e10 3.29585e10i 0.162584 0.162584i
\(672\) 0 0
\(673\) 2.79274e11i 1.36135i −0.732585 0.680675i \(-0.761687\pi\)
0.732585 0.680675i \(-0.238313\pi\)
\(674\) −7.74692e10 + 7.74692e10i −0.375396 + 0.375396i
\(675\) 0 0
\(676\) −6.86830e9 + 5.33674e10i −0.0328899 + 0.255558i
\(677\) −1.55893e11 −0.742118 −0.371059 0.928609i \(-0.621005\pi\)
−0.371059 + 0.928609i \(0.621005\pi\)
\(678\) 0 0
\(679\) 3.92806e10 0.184799
\(680\) 4.03537e10i 0.188733i
\(681\) 0 0
\(682\) −1.12345e9 1.12345e9i −0.00519299 0.00519299i
\(683\) 2.79459e10 2.79459e10i 0.128421 0.128421i −0.639975 0.768396i \(-0.721055\pi\)
0.768396 + 0.639975i \(0.221055\pi\)
\(684\) 0 0
\(685\) −7.45401e10 −0.338554
\(686\) 2.04691e11i 0.924278i
\(687\) 0 0
\(688\) 2.25587e11i 1.00684i
\(689\) 2.01912e10 3.15069e11i 0.0895953 1.39807i
\(690\) 0 0
\(691\) 2.61253e11 + 2.61253e11i 1.14591 + 1.14591i 0.987350 + 0.158557i \(0.0506840\pi\)
0.158557 + 0.987350i \(0.449316\pi\)
\(692\) 2.03490e10 0.0887399
\(693\) 0 0
\(694\) −1.20749e11 1.20749e11i −0.520531 0.520531i
\(695\) 2.57814e10 + 2.57814e10i 0.110501 + 0.110501i
\(696\) 0 0
\(697\) 8.19670e9 8.19670e9i 0.0347303 0.0347303i
\(698\) −5.42228e9 −0.0228434
\(699\) 0 0
\(700\) 3.12677e10 3.12677e10i 0.130228 0.130228i
\(701\) 1.43737e11i 0.595245i 0.954684 + 0.297623i \(0.0961937\pi\)
−0.954684 + 0.297623i \(0.903806\pi\)
\(702\) 0 0
\(703\) −4.13589e10 −0.169335
\(704\) −5.50650e10 5.50650e10i −0.224174 0.224174i
\(705\) 0 0
\(706\) 3.10564e10i 0.125006i
\(707\) −9.38919e10 9.38919e10i −0.375794 0.375794i
\(708\) 0 0
\(709\) 2.16872e11 2.16872e11i 0.858260 0.858260i −0.132873 0.991133i \(-0.542420\pi\)
0.991133 + 0.132873i \(0.0424201\pi\)
\(710\) 7.92624e10 7.92624e10i 0.311913 0.311913i
\(711\) 0 0
\(712\) 2.13463e11i 0.830619i
\(713\) 1.17598e9 1.17598e9i 0.00455032 0.00455032i
\(714\) 0 0
\(715\) 2.15035e9 3.35548e10i 0.00822784 0.128390i
\(716\) 2.61142e10 0.0993628
\(717\) 0 0
\(718\) 2.33599e11 0.878968
\(719\) 7.13407e10i 0.266945i 0.991053 + 0.133472i \(0.0426128\pi\)
−0.991053 + 0.133472i \(0.957387\pi\)
\(720\) 0 0
\(721\) 2.63472e11 + 2.63472e11i 0.974975 + 0.974975i
\(722\) 1.63336e11 1.63336e11i 0.601080 0.601080i
\(723\) 0 0
\(724\) 9.12570e10 0.332133
\(725\) 1.71203e11i 0.619669i
\(726\) 0 0
\(727\) 3.07369e11i 1.10033i −0.835056 0.550164i \(-0.814565\pi\)
0.835056 0.550164i \(-0.185435\pi\)
\(728\) 2.72088e11 + 1.74367e10i 0.968687 + 0.0620782i
\(729\) 0 0
\(730\) −1.09069e11 1.09069e11i −0.384071 0.384071i
\(731\) 1.64790e11 0.577112
\(732\) 0 0
\(733\) 1.09412e11 + 1.09412e11i 0.379009 + 0.379009i 0.870745 0.491736i \(-0.163637\pi\)
−0.491736 + 0.870745i \(0.663637\pi\)
\(734\) 3.38000e11 + 3.38000e11i 1.16448 + 1.16448i
\(735\) 0 0
\(736\) 2.24691e10 2.24691e10i 0.0765726 0.0765726i
\(737\) 9.53375e10 0.323142
\(738\) 0 0
\(739\) −5.54700e10 + 5.54700e10i −0.185986 + 0.185986i −0.793958 0.607972i \(-0.791983\pi\)
0.607972 + 0.793958i \(0.291983\pi\)
\(740\) 5.08369e10i 0.169532i
\(741\) 0 0
\(742\) −3.27750e11 −1.08125
\(743\) −1.03488e11 1.03488e11i −0.339573 0.339573i 0.516634 0.856207i \(-0.327185\pi\)
−0.856207 + 0.516634i \(0.827185\pi\)
\(744\) 0 0
\(745\) 8.82397e10i 0.286443i
\(746\) 1.20034e10 + 1.20034e10i 0.0387569 + 0.0387569i
\(747\) 0 0
\(748\) 6.32421e9 6.32421e9i 0.0202022 0.0202022i
\(749\) 2.19918e11 2.19918e11i 0.698770 0.698770i
\(750\) 0 0
\(751\) 1.33830e11i 0.420721i 0.977624 + 0.210360i \(0.0674637\pi\)
−0.977624 + 0.210360i \(0.932536\pi\)
\(752\) 2.67033e11 2.67033e11i 0.835013 0.835013i
\(753\) 0 0
\(754\) 1.62391e11 1.42831e11i 0.502432 0.441913i
\(755\) −1.42095e11 −0.437313
\(756\) 0 0
\(757\) −2.85512e11 −0.869442 −0.434721 0.900565i \(-0.643153\pi\)
−0.434721 + 0.900565i \(0.643153\pi\)
\(758\) 4.50608e11i 1.36497i
\(759\) 0 0
\(760\) −1.32954e10 1.32954e10i −0.0398516 0.0398516i
\(761\) 4.60437e11 4.60437e11i 1.37288 1.37288i 0.516728 0.856149i \(-0.327150\pi\)
0.856149 0.516728i \(-0.172850\pi\)
\(762\) 0 0
\(763\) 4.89783e11 1.44513
\(764\) 8.33395e10i 0.244612i
\(765\) 0 0
\(766\) 4.35669e11i 1.26544i
\(767\) 4.52825e10 + 5.14837e10i 0.130843 + 0.148761i
\(768\) 0 0
\(769\) −1.98615e11 1.98615e11i −0.567946 0.567946i 0.363607 0.931552i \(-0.381545\pi\)
−0.931552 + 0.363607i \(0.881545\pi\)
\(770\) −3.49053e10 −0.0992952
\(771\) 0 0
\(772\) −5.31274e10 5.31274e10i −0.149572 0.149572i
\(773\) −1.36661e11 1.36661e11i −0.382759 0.382759i 0.489336 0.872095i \(-0.337239\pi\)
−0.872095 + 0.489336i \(0.837239\pi\)
\(774\) 0 0
\(775\) −6.06220e9 + 6.06220e9i −0.0168044 + 0.0168044i
\(776\) −8.10593e10 −0.223540
\(777\) 0 0
\(778\) 1.14460e11 1.14460e11i 0.312416 0.312416i
\(779\) 5.40116e9i 0.0146669i
\(780\) 0 0
\(781\) −1.21263e11 −0.325930
\(782\) −1.90719e10 1.90719e10i −0.0509997 0.0509997i
\(783\) 0 0
\(784\) 5.04494e10i 0.133534i
\(785\) −1.73009e11 1.73009e11i −0.455606 0.455606i
\(786\) 0 0
\(787\) 1.21616e11 1.21616e11i 0.317023 0.317023i −0.530600 0.847623i \(-0.678033\pi\)
0.847623 + 0.530600i \(0.178033\pi\)
\(788\) 8.76637e10 8.76637e10i 0.227361 0.227361i
\(789\) 0 0
\(790\) 2.53133e10i 0.0649890i
\(791\) −4.69172e11 + 4.69172e11i −1.19847 + 1.19847i
\(792\) 0 0
\(793\) 2.03190e10 3.17064e11i 0.0513819 0.801778i
\(794\) −3.53945e11 −0.890541
\(795\) 0 0
\(796\) −5.91979e10 −0.147453
\(797\) 3.79315e11i 0.940085i 0.882644 + 0.470043i \(0.155761\pi\)
−0.882644 + 0.470043i \(0.844239\pi\)
\(798\) 0 0
\(799\) 1.95066e11 + 1.95066e11i 0.478623 + 0.478623i
\(800\) −1.15828e11 + 1.15828e11i −0.282784 + 0.282784i
\(801\) 0 0
\(802\) 3.47502e11 0.839962
\(803\) 1.66864e11i 0.401330i
\(804\) 0 0
\(805\) 3.65373e10i 0.0870068i
\(806\) −1.08077e10 6.92612e8i −0.0256091 0.00164116i
\(807\) 0 0
\(808\) 1.93755e11 + 1.93755e11i 0.454577 + 0.454577i
\(809\) 6.12456e11 1.42982 0.714909 0.699217i \(-0.246468\pi\)
0.714909 + 0.699217i \(0.246468\pi\)
\(810\) 0 0
\(811\) −2.94473e11 2.94473e11i −0.680710 0.680710i 0.279450 0.960160i \(-0.409848\pi\)
−0.960160 + 0.279450i \(0.909848\pi\)
\(812\) 5.51036e10 + 5.51036e10i 0.126752 + 0.126752i
\(813\) 0 0
\(814\) 1.12035e11 1.12035e11i 0.255186 0.255186i
\(815\) −2.53831e10 −0.0575327
\(816\) 0 0
\(817\) −5.42934e10 + 5.42934e10i −0.121859 + 0.121859i
\(818\) 4.74159e11i 1.05904i
\(819\) 0 0
\(820\) −6.63891e9 −0.0146839
\(821\) 3.09941e11 + 3.09941e11i 0.682193 + 0.682193i 0.960494 0.278301i \(-0.0897714\pi\)
−0.278301 + 0.960494i \(0.589771\pi\)
\(822\) 0 0
\(823\) 7.50104e11i 1.63502i 0.575918 + 0.817508i \(0.304645\pi\)
−0.575918 + 0.817508i \(0.695355\pi\)
\(824\) −5.43700e11 5.43700e11i −1.17937 1.17937i
\(825\) 0 0
\(826\) 5.03304e10 5.03304e10i 0.108121 0.108121i
\(827\) −4.09857e11 + 4.09857e11i −0.876214 + 0.876214i −0.993141 0.116926i \(-0.962696\pi\)
0.116926 + 0.993141i \(0.462696\pi\)
\(828\) 0 0
\(829\) 8.73555e11i 1.84958i 0.380483 + 0.924788i \(0.375758\pi\)
−0.380483 + 0.924788i \(0.624242\pi\)
\(830\) −1.48078e11 + 1.48078e11i −0.312016 + 0.312016i
\(831\) 0 0
\(832\) −5.29731e11 3.39477e10i −1.10551 0.0708463i
\(833\) −3.68529e10 −0.0765406
\(834\) 0 0
\(835\) −3.03371e11 −0.624062
\(836\) 4.16729e9i 0.00853156i
\(837\) 0 0
\(838\) −2.14889e11 2.14889e11i −0.435750 0.435750i
\(839\) 3.17828e11 3.17828e11i 0.641424 0.641424i −0.309482 0.950905i \(-0.600156\pi\)
0.950905 + 0.309482i \(0.100156\pi\)
\(840\) 0 0
\(841\) −1.98532e11 −0.396869
\(842\) 9.16864e10i 0.182413i
\(843\) 0 0
\(844\) 1.70209e11i 0.335439i
\(845\) −1.40051e11 1.81424e11i −0.274700 0.355851i
\(846\) 0 0
\(847\) −2.99306e11 2.99306e11i −0.581544 0.581544i
\(848\) 4.89680e11 0.946955
\(849\) 0 0
\(850\) 9.83161e10 + 9.83161e10i 0.188343 + 0.188343i
\(851\) 1.17273e11 + 1.17273e11i 0.223605 + 0.223605i
\(852\) 0 0
\(853\) 4.21575e11 4.21575e11i 0.796304 0.796304i −0.186207 0.982511i \(-0.559619\pi\)
0.982511 + 0.186207i \(0.0596195\pi\)
\(854\) −3.29825e11 −0.620087
\(855\) 0 0
\(856\) −4.53822e11 + 4.53822e11i −0.845261 + 0.845261i
\(857\) 6.32523e10i 0.117261i 0.998280 + 0.0586305i \(0.0186734\pi\)
−0.998280 + 0.0586305i \(0.981327\pi\)
\(858\) 0 0
\(859\) −3.83127e11 −0.703671 −0.351836 0.936062i \(-0.614442\pi\)
−0.351836 + 0.936062i \(0.614442\pi\)
\(860\) −6.67356e10 6.67356e10i −0.122001 0.122001i
\(861\) 0 0
\(862\) 5.88367e11i 1.06566i
\(863\) −1.74780e11 1.74780e11i −0.315100 0.315100i 0.531781 0.846882i \(-0.321523\pi\)
−0.846882 + 0.531781i \(0.821523\pi\)
\(864\) 0 0
\(865\) −6.12892e10 + 6.12892e10i −0.109476 + 0.109476i
\(866\) −2.91431e11 + 2.91431e11i −0.518161 + 0.518161i
\(867\) 0 0
\(868\) 3.90237e9i 0.00687463i
\(869\) 1.93633e10 1.93633e10i 0.0339548 0.0339548i
\(870\) 0 0
\(871\) 4.87967e11 4.29191e11i 0.847847 0.745723i
\(872\) −1.01071e12 −1.74808
\(873\) 0 0
\(874\) 1.25673e10 0.0215376
\(875\) 4.24405e11i 0.724017i
\(876\) 0 0
\(877\) −4.24104e11 4.24104e11i −0.716926 0.716926i 0.251049 0.967974i \(-0.419225\pi\)
−0.967974 + 0.251049i \(0.919225\pi\)
\(878\) 4.98862e11 4.98862e11i 0.839465 0.839465i
\(879\) 0 0
\(880\) 5.21508e10 0.0869621
\(881\) 7.73052e11i 1.28323i 0.767026 + 0.641616i \(0.221736\pi\)
−0.767026 + 0.641616i \(0.778264\pi\)
\(882\) 0 0
\(883\) 4.46632e10i 0.0734694i 0.999325 + 0.0367347i \(0.0116957\pi\)
−0.999325 + 0.0367347i \(0.988304\pi\)
\(884\) 3.89889e9 6.08395e10i 0.00638458 0.0996269i
\(885\) 0 0
\(886\) −4.14932e11 4.14932e11i −0.673352 0.673352i
\(887\) −5.99299e11 −0.968164 −0.484082 0.875023i \(-0.660846\pi\)
−0.484082 + 0.875023i \(0.660846\pi\)
\(888\) 0 0
\(889\) 4.22425e11 + 4.22425e11i 0.676304 + 0.676304i
\(890\) 1.31721e11 + 1.31721e11i 0.209939 + 0.209939i
\(891\) 0 0
\(892\) 1.63960e10 1.63960e10i 0.0258988 0.0258988i
\(893\) −1.28537e11 −0.202126
\(894\) 0 0
\(895\) −7.86533e10 + 7.86533e10i −0.122581 + 0.122581i
\(896\) 2.61679e11i 0.406011i
\(897\) 0 0
\(898\) 3.00464e11 0.462048
\(899\) −1.06835e10 1.06835e10i −0.0163559 0.0163559i
\(900\) 0 0
\(901\) 3.57708e11i 0.542787i
\(902\) −1.46309e10 1.46309e10i −0.0221027 0.0221027i
\(903\) 0 0
\(904\) 9.68180e11 9.68180e11i 1.44971 1.44971i
\(905\) −2.74857e11 + 2.74857e11i −0.409744 + 0.409744i
\(906\) 0 0
\(907\) 7.40058e11i 1.09354i 0.837281 + 0.546772i \(0.184144\pi\)
−0.837281 + 0.546772i \(0.815856\pi\)
\(908\) 2.04333e11 2.04333e11i 0.300604 0.300604i
\(909\) 0 0
\(910\) −1.78656e11 + 1.57137e11i −0.260526 + 0.229146i
\(911\) −1.00029e12 −1.45228 −0.726142 0.687545i \(-0.758688\pi\)
−0.726142 + 0.687545i \(0.758688\pi\)
\(912\) 0 0
\(913\) 2.26543e11 0.326038
\(914\) 4.55361e11i 0.652485i
\(915\) 0 0
\(916\) −2.30585e11 2.30585e11i −0.327529 0.327529i
\(917\) 7.57703e11 7.57703e11i 1.07157 1.07157i
\(918\) 0 0
\(919\) −8.17593e11 −1.14624 −0.573120 0.819472i \(-0.694267\pi\)
−0.573120 + 0.819472i \(0.694267\pi\)
\(920\) 7.53982e10i 0.105247i
\(921\) 0 0
\(922\) 1.13388e12i 1.56907i
\(923\) −6.20662e11 + 5.45902e11i −0.855161 + 0.752157i
\(924\) 0 0
\(925\) −6.04546e11 6.04546e11i −0.825776 0.825776i
\(926\) 5.45393e11 0.741763
\(927\) 0 0
\(928\) −2.04126e11 2.04126e11i −0.275237 0.275237i
\(929\) 2.63479e11 + 2.63479e11i 0.353739 + 0.353739i 0.861499 0.507760i \(-0.169526\pi\)
−0.507760 + 0.861499i \(0.669526\pi\)
\(930\) 0 0
\(931\) 1.21420e10 1.21420e10i 0.0161618 0.0161618i
\(932\) −1.92221e11 −0.254763
\(933\) 0 0
\(934\) 4.19077e11 4.19077e11i 0.550689 0.550689i
\(935\) 3.80958e10i 0.0498460i
\(936\) 0 0
\(937\) −3.72371e11 −0.483079 −0.241539 0.970391i \(-0.577652\pi\)
−0.241539 + 0.970391i \(0.577652\pi\)
\(938\) −4.77035e11 4.77035e11i −0.616225 0.616225i
\(939\) 0 0
\(940\) 1.57993e11i 0.202361i
\(941\) −9.59317e10 9.59317e10i −0.122350 0.122350i 0.643281 0.765630i \(-0.277573\pi\)
−0.765630 + 0.643281i \(0.777573\pi\)
\(942\) 0 0
\(943\) 1.53150e10 1.53150e10i 0.0193674 0.0193674i
\(944\) −7.51970e10 + 7.51970e10i −0.0946918 + 0.0946918i
\(945\) 0 0
\(946\) 2.94145e11i 0.367280i
\(947\) −4.53656e11 + 4.53656e11i −0.564062 + 0.564062i −0.930459 0.366397i \(-0.880591\pi\)
0.366397 + 0.930459i \(0.380591\pi\)
\(948\) 0 0
\(949\) 7.51191e11 + 8.54063e11i 0.926159 + 1.05299i
\(950\) −6.47847e10 −0.0795386
\(951\) 0 0
\(952\) −3.08910e11 −0.376083
\(953\) 1.13945e11i 0.138141i 0.997612 + 0.0690706i \(0.0220034\pi\)
−0.997612 + 0.0690706i \(0.977997\pi\)
\(954\) 0 0
\(955\) −2.51010e11 2.51010e11i −0.301771 0.301771i
\(956\) 1.46597e11 1.46597e11i 0.175506 0.175506i
\(957\) 0 0
\(958\) −1.96695e11 −0.233523
\(959\) 5.70609e11i 0.674627i
\(960\) 0 0
\(961\) 8.52134e11i 0.999113i
\(962\) 6.90700e10 1.07779e12i 0.0806471 1.25844i
\(963\) 0 0
\(964\) −7.86014e10 7.86014e10i −0.0910169 0.0910169i
\(965\) 3.20029e11 0.369046
\(966\) 0 0
\(967\) −1.21100e11 1.21100e11i −0.138497 0.138497i 0.634459 0.772956i \(-0.281223\pi\)
−0.772956 + 0.634459i \(0.781223\pi\)
\(968\) 6.17647e11 + 6.17647e11i 0.703459 + 0.703459i
\(969\) 0 0
\(970\) 5.00190e10 5.00190e10i 0.0565000 0.0565000i
\(971\) 7.06062e11 0.794266 0.397133 0.917761i \(-0.370005\pi\)
0.397133 + 0.917761i \(0.370005\pi\)
\(972\) 0 0
\(973\) −1.97358e11 + 1.97358e11i −0.220193 + 0.220193i
\(974\) 9.02742e11i 1.00306i
\(975\) 0 0
\(976\) 4.92781e11 0.543068
\(977\) −6.78732e11 6.78732e11i −0.744938 0.744938i 0.228585 0.973524i \(-0.426590\pi\)
−0.973524 + 0.228585i \(0.926590\pi\)
\(978\) 0 0
\(979\) 2.01519e11i 0.219374i
\(980\) 1.49245e10 + 1.49245e10i 0.0161806 + 0.0161806i
\(981\) 0 0
\(982\) 3.66285e11 3.66285e11i 0.393888 0.393888i
\(983\) 4.75495e11 4.75495e11i 0.509251 0.509251i −0.405046 0.914296i \(-0.632744\pi\)
0.914296 + 0.405046i \(0.132744\pi\)
\(984\) 0 0
\(985\) 5.28069e11i 0.560978i
\(986\) −1.73264e11 + 1.73264e11i −0.183316 + 0.183316i
\(987\) 0 0
\(988\) 1.87603e10 + 2.13294e10i 0.0196885 + 0.0223847i
\(989\) 3.07899e11 0.321827
\(990\) 0 0
\(991\) 7.81292e10 0.0810063 0.0405031 0.999179i \(-0.487104\pi\)
0.0405031 + 0.999179i \(0.487104\pi\)
\(992\) 1.44560e10i 0.0149280i
\(993\) 0 0
\(994\) 6.06758e11 + 6.06758e11i 0.621541 + 0.621541i
\(995\) 1.78298e11 1.78298e11i 0.181909 0.181909i
\(996\) 0 0
\(997\) 9.95206e11 1.00724 0.503619 0.863926i \(-0.332001\pi\)
0.503619 + 0.863926i \(0.332001\pi\)
\(998\) 1.20338e12i 1.21305i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.9.j.a.73.7 18
3.2 odd 2 13.9.d.a.8.3 yes 18
13.5 odd 4 inner 117.9.j.a.109.7 18
39.5 even 4 13.9.d.a.5.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.9.d.a.5.3 18 39.5 even 4
13.9.d.a.8.3 yes 18 3.2 odd 2
117.9.j.a.73.7 18 1.1 even 1 trivial
117.9.j.a.109.7 18 13.5 odd 4 inner