L(s) = 1 | + (9.74 + 9.74i)2-s − 65.9i·4-s + (198. + 198. i)5-s + (−1.52e3 + 1.52e3i)7-s + (3.13e3 − 3.13e3i)8-s + 3.87e3i·10-s + (2.96e3 − 2.96e3i)11-s + (1.82e3 − 2.85e4i)13-s − 2.96e4·14-s + 4.42e4·16-s + 3.23e4i·17-s + (−1.06e4 − 1.06e4i)19-s + (1.31e4 − 1.31e4i)20-s + 5.77e4·22-s + 6.04e4i·23-s + ⋯ |
L(s) = 1 | + (0.609 + 0.609i)2-s − 0.257i·4-s + (0.317 + 0.317i)5-s + (−0.633 + 0.633i)7-s + (0.766 − 0.766i)8-s + 0.387i·10-s + (0.202 − 0.202i)11-s + (0.0639 − 0.997i)13-s − 0.771·14-s + 0.675·16-s + 0.387i·17-s + (−0.0818 − 0.0818i)19-s + (0.0819 − 0.0819i)20-s + 0.246·22-s + 0.216i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.936 + 0.350i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 117 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.936 + 0.350i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{9}{2})\) |
\(\approx\) |
\(2.842773431\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.842773431\) |
\(L(5)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 13 | \( 1 + (-1.82e3 + 2.85e4i)T \) |
good | 2 | \( 1 + (-9.74 - 9.74i)T + 256iT^{2} \) |
| 5 | \( 1 + (-198. - 198. i)T + 3.90e5iT^{2} \) |
| 7 | \( 1 + (1.52e3 - 1.52e3i)T - 5.76e6iT^{2} \) |
| 11 | \( 1 + (-2.96e3 + 2.96e3i)T - 2.14e8iT^{2} \) |
| 17 | \( 1 - 3.23e4iT - 6.97e9T^{2} \) |
| 19 | \( 1 + (1.06e4 + 1.06e4i)T + 1.69e10iT^{2} \) |
| 23 | \( 1 - 6.04e4iT - 7.83e10T^{2} \) |
| 29 | \( 1 - 5.49e5T + 5.00e11T^{2} \) |
| 31 | \( 1 + (1.94e4 + 1.94e4i)T + 8.52e11iT^{2} \) |
| 37 | \( 1 + (-1.93e6 + 1.93e6i)T - 3.51e12iT^{2} \) |
| 41 | \( 1 + (2.53e5 + 2.53e5i)T + 7.98e12iT^{2} \) |
| 43 | \( 1 + 5.09e6iT - 1.16e13T^{2} \) |
| 47 | \( 1 + (-6.02e6 + 6.02e6i)T - 2.38e13iT^{2} \) |
| 53 | \( 1 - 1.10e7T + 6.22e13T^{2} \) |
| 59 | \( 1 + (1.69e6 - 1.69e6i)T - 1.46e14iT^{2} \) |
| 61 | \( 1 - 1.11e7T + 1.91e14T^{2} \) |
| 67 | \( 1 + (-1.60e7 - 1.60e7i)T + 4.06e14iT^{2} \) |
| 71 | \( 1 + (2.04e7 + 2.04e7i)T + 6.45e14iT^{2} \) |
| 73 | \( 1 + (2.81e7 - 2.81e7i)T - 8.06e14iT^{2} \) |
| 79 | \( 1 - 6.53e6T + 1.51e15T^{2} \) |
| 83 | \( 1 + (-3.82e7 - 3.82e7i)T + 2.25e15iT^{2} \) |
| 89 | \( 1 + (-3.40e7 + 3.40e7i)T - 3.93e15iT^{2} \) |
| 97 | \( 1 + (1.29e7 + 1.29e7i)T + 7.83e15iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18755222053546856815319764562, −10.66042151639703654659911405516, −9.922021120463436073128581784377, −8.637422298433608603413154862012, −7.17595866995885241284314127328, −6.10584620687934191677784799196, −5.46394254359760408589060037725, −3.92322467375532554299083678142, −2.45766465846004593220971280874, −0.68492145879161777890058205507,
1.22987290657104600619493512721, 2.63733329750449461241367568262, 3.89177800301688616168857265785, 4.83026651078843193695043791044, 6.44075610318301640935882106756, 7.59918842168244942713898679768, 8.975886942737026211014681247998, 10.03455436336177809045614996843, 11.22563357788263613710102719270, 12.09042657678840820073332253870