Properties

Label 117.4.q.e.82.1
Level $117$
Weight $4$
Character 117.82
Analytic conductor $6.903$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,4,Mod(10,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.10"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 117.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.90322347067\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 70x^{8} + 1645x^{6} + 14700x^{4} + 44100x^{2} + 27648 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 82.1
Root \(-5.04537i\) of defining polynomial
Character \(\chi\) \(=\) 117.82
Dual form 117.4.q.e.10.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.36942 - 2.52268i) q^{2} +(8.72787 + 15.1171i) q^{4} +20.1174i q^{5} +(-13.3609 + 7.71395i) q^{7} -47.7076i q^{8} +(50.7498 - 87.9013i) q^{10} +(-23.3283 - 13.4686i) q^{11} +(-3.96071 - 46.7045i) q^{13} +77.8394 q^{14} +(-50.5283 + 87.5177i) q^{16} +(-11.6167 - 20.1207i) q^{17} +(-39.0399 + 22.5397i) q^{19} +(-304.117 + 175.582i) q^{20} +(67.9540 + 117.700i) q^{22} +(71.0050 - 122.984i) q^{23} -279.710 q^{25} +(-100.515 + 214.063i) q^{26} +(-233.225 - 134.653i) q^{28} +(1.14534 - 1.98379i) q^{29} -37.7740i q^{31} +(111.031 - 64.1035i) q^{32} +117.221i q^{34} +(-155.185 - 268.787i) q^{35} +(271.793 + 156.920i) q^{37} +227.442 q^{38} +959.753 q^{40} +(-5.08201 - 2.93410i) q^{41} +(-180.449 - 312.547i) q^{43} -470.209i q^{44} +(-620.501 + 358.246i) q^{46} -209.748i q^{47} +(-52.4900 + 90.9154i) q^{49} +(1222.17 + 705.619i) q^{50} +(671.469 - 467.505i) q^{52} -276.886 q^{53} +(270.953 - 469.305i) q^{55} +(368.014 + 637.419i) q^{56} +(-10.0089 + 5.77866i) q^{58} +(-470.415 + 271.594i) q^{59} +(-102.894 - 178.218i) q^{61} +(-95.2917 + 165.050i) q^{62} +161.602 q^{64} +(939.573 - 79.6791i) q^{65} +(-426.585 - 246.289i) q^{67} +(202.778 - 351.222i) q^{68} +1565.93i q^{70} +(-716.081 + 413.430i) q^{71} -66.1205i q^{73} +(-791.718 - 1371.30i) q^{74} +(-681.470 - 393.447i) q^{76} +415.584 q^{77} +317.642 q^{79} +(-1760.63 - 1016.50i) q^{80} +(14.8036 + 25.6406i) q^{82} -141.450i q^{83} +(404.777 - 233.698i) q^{85} +1820.86i q^{86} +(-642.555 + 1112.94i) q^{88} +(-555.399 - 320.660i) q^{89} +(413.195 + 593.464i) q^{91} +2478.89 q^{92} +(-529.129 + 916.478i) q^{94} +(-453.440 - 785.381i) q^{95} +(-965.551 + 557.461i) q^{97} +(458.702 - 264.832i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 30 q^{4} + 30 q^{7} + 40 q^{10} - 60 q^{11} + 25 q^{13} + 60 q^{14} - 250 q^{16} - 105 q^{17} + 180 q^{19} - 510 q^{20} - 290 q^{22} + 60 q^{23} - 960 q^{25} + 30 q^{26} + 150 q^{28} + 495 q^{29}+ \cdots - 180 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.36942 2.52268i −1.54482 0.891903i −0.998524 0.0543124i \(-0.982703\pi\)
−0.546298 0.837591i \(-0.683963\pi\)
\(3\) 0 0
\(4\) 8.72787 + 15.1171i 1.09098 + 1.88964i
\(5\) 20.1174i 1.79935i 0.436556 + 0.899677i \(0.356198\pi\)
−0.436556 + 0.899677i \(0.643802\pi\)
\(6\) 0 0
\(7\) −13.3609 + 7.71395i −0.721423 + 0.416514i −0.815276 0.579072i \(-0.803415\pi\)
0.0938530 + 0.995586i \(0.470082\pi\)
\(8\) 47.7076i 2.10840i
\(9\) 0 0
\(10\) 50.7498 87.9013i 1.60485 2.77968i
\(11\) −23.3283 13.4686i −0.639432 0.369176i 0.144964 0.989437i \(-0.453693\pi\)
−0.784396 + 0.620261i \(0.787027\pi\)
\(12\) 0 0
\(13\) −3.96071 46.7045i −0.0845002 0.996423i
\(14\) 77.8394 1.48596
\(15\) 0 0
\(16\) −50.5283 + 87.5177i −0.789505 + 1.36746i
\(17\) −11.6167 20.1207i −0.165733 0.287059i 0.771182 0.636615i \(-0.219666\pi\)
−0.936915 + 0.349556i \(0.886332\pi\)
\(18\) 0 0
\(19\) −39.0399 + 22.5397i −0.471388 + 0.272156i −0.716821 0.697258i \(-0.754403\pi\)
0.245433 + 0.969414i \(0.421070\pi\)
\(20\) −304.117 + 175.582i −3.40013 + 1.96307i
\(21\) 0 0
\(22\) 67.9540 + 117.700i 0.658539 + 1.14062i
\(23\) 71.0050 122.984i 0.643720 1.11496i −0.340875 0.940109i \(-0.610723\pi\)
0.984595 0.174848i \(-0.0559434\pi\)
\(24\) 0 0
\(25\) −279.710 −2.23768
\(26\) −100.515 + 214.063i −0.758176 + 1.61466i
\(27\) 0 0
\(28\) −233.225 134.653i −1.57412 0.908820i
\(29\) 1.14534 1.98379i 0.00733394 0.0127028i −0.862335 0.506338i \(-0.830999\pi\)
0.869669 + 0.493635i \(0.164332\pi\)
\(30\) 0 0
\(31\) 37.7740i 0.218852i −0.993995 0.109426i \(-0.965099\pi\)
0.993995 0.109426i \(-0.0349012\pi\)
\(32\) 111.031 64.1035i 0.613363 0.354125i
\(33\) 0 0
\(34\) 117.221i 0.591273i
\(35\) −155.185 268.787i −0.749456 1.29810i
\(36\) 0 0
\(37\) 271.793 + 156.920i 1.20764 + 0.697228i 0.962242 0.272195i \(-0.0877497\pi\)
0.245393 + 0.969424i \(0.421083\pi\)
\(38\) 227.442 0.970947
\(39\) 0 0
\(40\) 959.753 3.79376
\(41\) −5.08201 2.93410i −0.0193580 0.0111763i 0.490290 0.871559i \(-0.336891\pi\)
−0.509648 + 0.860383i \(0.670224\pi\)
\(42\) 0 0
\(43\) −180.449 312.547i −0.639958 1.10844i −0.985441 0.170015i \(-0.945618\pi\)
0.345483 0.938425i \(-0.387715\pi\)
\(44\) 470.209i 1.61106i
\(45\) 0 0
\(46\) −620.501 + 358.246i −1.98887 + 1.14827i
\(47\) 209.748i 0.650956i −0.945550 0.325478i \(-0.894475\pi\)
0.945550 0.325478i \(-0.105525\pi\)
\(48\) 0 0
\(49\) −52.4900 + 90.9154i −0.153032 + 0.265060i
\(50\) 1222.17 + 705.619i 3.45681 + 1.99579i
\(51\) 0 0
\(52\) 671.469 467.505i 1.79069 1.24676i
\(53\) −276.886 −0.717609 −0.358804 0.933413i \(-0.616815\pi\)
−0.358804 + 0.933413i \(0.616815\pi\)
\(54\) 0 0
\(55\) 270.953 469.305i 0.664278 1.15056i
\(56\) 368.014 + 637.419i 0.878178 + 1.52105i
\(57\) 0 0
\(58\) −10.0089 + 5.77866i −0.0226593 + 0.0130823i
\(59\) −470.415 + 271.594i −1.03801 + 0.599298i −0.919270 0.393627i \(-0.871220\pi\)
−0.118744 + 0.992925i \(0.537887\pi\)
\(60\) 0 0
\(61\) −102.894 178.218i −0.215971 0.374073i 0.737601 0.675236i \(-0.235958\pi\)
−0.953573 + 0.301163i \(0.902625\pi\)
\(62\) −95.2917 + 165.050i −0.195195 + 0.338087i
\(63\) 0 0
\(64\) 161.602 0.315629
\(65\) 939.573 79.6791i 1.79292 0.152046i
\(66\) 0 0
\(67\) −426.585 246.289i −0.777846 0.449090i 0.0578203 0.998327i \(-0.481585\pi\)
−0.835666 + 0.549237i \(0.814918\pi\)
\(68\) 202.778 351.222i 0.361625 0.626352i
\(69\) 0 0
\(70\) 1565.93i 2.67377i
\(71\) −716.081 + 413.430i −1.19695 + 0.691057i −0.959873 0.280435i \(-0.909521\pi\)
−0.237073 + 0.971492i \(0.576188\pi\)
\(72\) 0 0
\(73\) 66.1205i 0.106011i −0.998594 0.0530056i \(-0.983120\pi\)
0.998594 0.0530056i \(-0.0168801\pi\)
\(74\) −791.718 1371.30i −1.24372 2.15419i
\(75\) 0 0
\(76\) −681.470 393.447i −1.02855 0.593835i
\(77\) 415.584 0.615068
\(78\) 0 0
\(79\) 317.642 0.452374 0.226187 0.974084i \(-0.427374\pi\)
0.226187 + 0.974084i \(0.427374\pi\)
\(80\) −1760.63 1016.50i −2.46055 1.42060i
\(81\) 0 0
\(82\) 14.8036 + 25.6406i 0.0199364 + 0.0345309i
\(83\) 141.450i 0.187063i −0.995616 0.0935313i \(-0.970184\pi\)
0.995616 0.0935313i \(-0.0298155\pi\)
\(84\) 0 0
\(85\) 404.777 233.698i 0.516520 0.298213i
\(86\) 1820.86i 2.28312i
\(87\) 0 0
\(88\) −642.555 + 1112.94i −0.778371 + 1.34818i
\(89\) −555.399 320.660i −0.661486 0.381909i 0.131357 0.991335i \(-0.458067\pi\)
−0.792843 + 0.609426i \(0.791400\pi\)
\(90\) 0 0
\(91\) 413.195 + 593.464i 0.475985 + 0.683648i
\(92\) 2478.89 2.80915
\(93\) 0 0
\(94\) −529.129 + 916.478i −0.580590 + 1.00561i
\(95\) −453.440 785.381i −0.489705 0.848194i
\(96\) 0 0
\(97\) −965.551 + 557.461i −1.01069 + 0.583522i −0.911394 0.411536i \(-0.864992\pi\)
−0.0992962 + 0.995058i \(0.531659\pi\)
\(98\) 458.702 264.832i 0.472815 0.272980i
\(99\) 0 0
\(100\) −2441.27 4228.40i −2.44127 4.22840i
\(101\) −794.953 + 1376.90i −0.783177 + 1.35650i 0.146906 + 0.989150i \(0.453069\pi\)
−0.930082 + 0.367351i \(0.880265\pi\)
\(102\) 0 0
\(103\) −527.502 −0.504625 −0.252312 0.967646i \(-0.581191\pi\)
−0.252312 + 0.967646i \(0.581191\pi\)
\(104\) −2228.16 + 188.956i −2.10086 + 0.178160i
\(105\) 0 0
\(106\) 1209.83 + 698.497i 1.10858 + 0.640038i
\(107\) 875.982 1517.25i 0.791443 1.37082i −0.133630 0.991031i \(-0.542663\pi\)
0.925073 0.379788i \(-0.124003\pi\)
\(108\) 0 0
\(109\) 967.122i 0.849848i 0.905229 + 0.424924i \(0.139699\pi\)
−0.905229 + 0.424924i \(0.860301\pi\)
\(110\) −2367.81 + 1367.06i −2.05238 + 1.18494i
\(111\) 0 0
\(112\) 1559.09i 1.31536i
\(113\) 955.487 + 1654.95i 0.795439 + 1.37774i 0.922560 + 0.385854i \(0.126093\pi\)
−0.127120 + 0.991887i \(0.540573\pi\)
\(114\) 0 0
\(115\) 2474.12 + 1428.44i 2.00620 + 1.15828i
\(116\) 39.9855 0.0320048
\(117\) 0 0
\(118\) 2740.59 2.13806
\(119\) 310.421 + 179.221i 0.239128 + 0.138061i
\(120\) 0 0
\(121\) −302.694 524.281i −0.227418 0.393900i
\(122\) 1038.28i 0.770501i
\(123\) 0 0
\(124\) 571.033 329.686i 0.413551 0.238764i
\(125\) 3112.35i 2.22702i
\(126\) 0 0
\(127\) 616.557 1067.91i 0.430792 0.746154i −0.566150 0.824302i \(-0.691568\pi\)
0.996942 + 0.0781488i \(0.0249009\pi\)
\(128\) −1594.35 920.499i −1.10095 0.635636i
\(129\) 0 0
\(130\) −4306.39 2022.10i −2.90535 1.36423i
\(131\) 1274.90 0.850292 0.425146 0.905125i \(-0.360223\pi\)
0.425146 + 0.905125i \(0.360223\pi\)
\(132\) 0 0
\(133\) 347.740 602.304i 0.226713 0.392679i
\(134\) 1242.62 + 2152.28i 0.801089 + 1.38753i
\(135\) 0 0
\(136\) −959.913 + 554.206i −0.605234 + 0.349432i
\(137\) 1759.18 1015.66i 1.09706 0.633385i 0.161609 0.986855i \(-0.448332\pi\)
0.935446 + 0.353470i \(0.114998\pi\)
\(138\) 0 0
\(139\) 722.832 + 1251.98i 0.441078 + 0.763969i 0.997770 0.0667498i \(-0.0212629\pi\)
−0.556692 + 0.830719i \(0.687930\pi\)
\(140\) 2708.86 4691.88i 1.63529 2.83240i
\(141\) 0 0
\(142\) 4171.81 2.46542
\(143\) −536.648 + 1142.88i −0.313824 + 0.668340i
\(144\) 0 0
\(145\) 39.9086 + 23.0413i 0.0228568 + 0.0131964i
\(146\) −166.801 + 288.908i −0.0945517 + 0.163768i
\(147\) 0 0
\(148\) 5478.30i 3.04266i
\(149\) −836.856 + 483.159i −0.460120 + 0.265650i −0.712095 0.702083i \(-0.752253\pi\)
0.251975 + 0.967734i \(0.418920\pi\)
\(150\) 0 0
\(151\) 1463.09i 0.788505i −0.919002 0.394252i \(-0.871004\pi\)
0.919002 0.394252i \(-0.128996\pi\)
\(152\) 1075.32 + 1862.50i 0.573813 + 0.993874i
\(153\) 0 0
\(154\) −1815.86 1048.39i −0.950170 0.548581i
\(155\) 759.914 0.393792
\(156\) 0 0
\(157\) −66.0424 −0.0335717 −0.0167859 0.999859i \(-0.505343\pi\)
−0.0167859 + 0.999859i \(0.505343\pi\)
\(158\) −1387.91 801.311i −0.698838 0.403474i
\(159\) 0 0
\(160\) 1289.60 + 2233.65i 0.637197 + 1.10366i
\(161\) 2190.92i 1.07247i
\(162\) 0 0
\(163\) −3052.95 + 1762.62i −1.46703 + 0.846988i −0.999319 0.0368953i \(-0.988253\pi\)
−0.467707 + 0.883883i \(0.654920\pi\)
\(164\) 102.434i 0.0487728i
\(165\) 0 0
\(166\) −356.834 + 618.055i −0.166842 + 0.288978i
\(167\) −225.731 130.326i −0.104596 0.0603887i 0.446789 0.894639i \(-0.352567\pi\)
−0.551386 + 0.834250i \(0.685901\pi\)
\(168\) 0 0
\(169\) −2165.63 + 369.966i −0.985719 + 0.168396i
\(170\) −2358.19 −1.06391
\(171\) 0 0
\(172\) 3149.87 5455.73i 1.39637 2.41858i
\(173\) −455.876 789.601i −0.200345 0.347007i 0.748295 0.663366i \(-0.230873\pi\)
−0.948640 + 0.316359i \(0.897540\pi\)
\(174\) 0 0
\(175\) 3737.18 2157.66i 1.61431 0.932023i
\(176\) 2357.48 1361.09i 1.00967 0.582933i
\(177\) 0 0
\(178\) 1617.85 + 2802.19i 0.681252 + 1.17996i
\(179\) −1345.24 + 2330.03i −0.561721 + 0.972930i 0.435625 + 0.900128i \(0.356527\pi\)
−0.997346 + 0.0728016i \(0.976806\pi\)
\(180\) 0 0
\(181\) −4773.85 −1.96043 −0.980213 0.197944i \(-0.936573\pi\)
−0.980213 + 0.197944i \(0.936573\pi\)
\(182\) −308.299 3635.45i −0.125564 1.48065i
\(183\) 0 0
\(184\) −5867.29 3387.48i −2.35077 1.35722i
\(185\) −3156.82 + 5467.77i −1.25456 + 2.17296i
\(186\) 0 0
\(187\) 625.844i 0.244739i
\(188\) 3170.79 1830.66i 1.23007 0.710182i
\(189\) 0 0
\(190\) 4575.54i 1.74708i
\(191\) −1028.74 1781.82i −0.389721 0.675017i 0.602691 0.797975i \(-0.294095\pi\)
−0.992412 + 0.122958i \(0.960762\pi\)
\(192\) 0 0
\(193\) 632.089 + 364.937i 0.235745 + 0.136107i 0.613219 0.789913i \(-0.289874\pi\)
−0.377475 + 0.926020i \(0.623207\pi\)
\(194\) 5625.20 2.08178
\(195\) 0 0
\(196\) −1832.50 −0.667822
\(197\) −1473.21 850.557i −0.532801 0.307613i 0.209355 0.977840i \(-0.432863\pi\)
−0.742156 + 0.670227i \(0.766197\pi\)
\(198\) 0 0
\(199\) −920.440 1594.25i −0.327881 0.567906i 0.654211 0.756312i \(-0.273001\pi\)
−0.982091 + 0.188407i \(0.939668\pi\)
\(200\) 13344.3i 4.71792i
\(201\) 0 0
\(202\) 6946.97 4010.83i 2.41974 1.39704i
\(203\) 35.3404i 0.0122188i
\(204\) 0 0
\(205\) 59.0265 102.237i 0.0201102 0.0348319i
\(206\) 2304.88 + 1330.72i 0.779555 + 0.450077i
\(207\) 0 0
\(208\) 4287.60 + 2013.27i 1.42929 + 0.671131i
\(209\) 1214.31 0.401894
\(210\) 0 0
\(211\) −71.4850 + 123.816i −0.0233234 + 0.0403972i −0.877452 0.479665i \(-0.840758\pi\)
0.854128 + 0.520063i \(0.174091\pi\)
\(212\) −2416.63 4185.72i −0.782899 1.35602i
\(213\) 0 0
\(214\) −7655.06 + 4419.65i −2.44528 + 1.41178i
\(215\) 6287.63 3630.16i 1.99448 1.15151i
\(216\) 0 0
\(217\) 291.386 + 504.696i 0.0911548 + 0.157885i
\(218\) 2439.74 4225.76i 0.757983 1.31286i
\(219\) 0 0
\(220\) 9459.37 2.89887
\(221\) −893.719 + 622.246i −0.272027 + 0.189397i
\(222\) 0 0
\(223\) −2025.39 1169.36i −0.608205 0.351148i 0.164057 0.986451i \(-0.447542\pi\)
−0.772263 + 0.635303i \(0.780875\pi\)
\(224\) −988.982 + 1712.97i −0.294996 + 0.510949i
\(225\) 0 0
\(226\) 9641.57i 2.83782i
\(227\) 2840.01 1639.68i 0.830388 0.479425i −0.0235973 0.999722i \(-0.507512\pi\)
0.853986 + 0.520297i \(0.174179\pi\)
\(228\) 0 0
\(229\) 1143.72i 0.330041i 0.986290 + 0.165021i \(0.0527690\pi\)
−0.986290 + 0.165021i \(0.947231\pi\)
\(230\) −7206.98 12482.9i −2.06615 3.57868i
\(231\) 0 0
\(232\) −94.6418 54.6415i −0.0267825 0.0154629i
\(233\) −4238.17 −1.19164 −0.595819 0.803118i \(-0.703173\pi\)
−0.595819 + 0.803118i \(0.703173\pi\)
\(234\) 0 0
\(235\) 4219.59 1.17130
\(236\) −8211.44 4740.88i −2.26491 1.30765i
\(237\) 0 0
\(238\) −904.238 1566.19i −0.246273 0.426558i
\(239\) 3310.03i 0.895849i −0.894072 0.447924i \(-0.852163\pi\)
0.894072 0.447924i \(-0.147837\pi\)
\(240\) 0 0
\(241\) 4938.82 2851.43i 1.32007 0.762145i 0.336333 0.941743i \(-0.390813\pi\)
0.983740 + 0.179598i \(0.0574798\pi\)
\(242\) 3054.40i 0.811340i
\(243\) 0 0
\(244\) 1796.09 3110.92i 0.471242 0.816214i
\(245\) −1828.98 1055.96i −0.476936 0.275359i
\(246\) 0 0
\(247\) 1207.33 + 1734.07i 0.311015 + 0.446705i
\(248\) −1802.11 −0.461427
\(249\) 0 0
\(250\) −7851.48 + 13599.2i −1.98629 + 3.44035i
\(251\) 1955.12 + 3386.36i 0.491657 + 0.851574i 0.999954 0.00960748i \(-0.00305820\pi\)
−0.508297 + 0.861182i \(0.669725\pi\)
\(252\) 0 0
\(253\) −3312.85 + 1912.68i −0.823230 + 0.475292i
\(254\) −5387.99 + 3110.76i −1.33099 + 0.768450i
\(255\) 0 0
\(256\) 3997.85 + 6924.47i 0.976037 + 1.69055i
\(257\) −3486.40 + 6038.63i −0.846209 + 1.46568i 0.0383576 + 0.999264i \(0.487787\pi\)
−0.884567 + 0.466413i \(0.845546\pi\)
\(258\) 0 0
\(259\) −4841.88 −1.16162
\(260\) 9404.99 + 13508.2i 2.24336 + 3.22209i
\(261\) 0 0
\(262\) −5570.56 3216.16i −1.31355 0.758378i
\(263\) 140.845 243.951i 0.0330224 0.0571965i −0.849042 0.528326i \(-0.822820\pi\)
0.882064 + 0.471129i \(0.156153\pi\)
\(264\) 0 0
\(265\) 5570.23i 1.29123i
\(266\) −3038.84 + 1754.48i −0.700464 + 0.404413i
\(267\) 0 0
\(268\) 8598.31i 1.95980i
\(269\) 2166.56 + 3752.60i 0.491070 + 0.850558i 0.999947 0.0102813i \(-0.00327270\pi\)
−0.508877 + 0.860839i \(0.669939\pi\)
\(270\) 0 0
\(271\) 371.175 + 214.298i 0.0832003 + 0.0480357i 0.541023 0.841008i \(-0.318037\pi\)
−0.457823 + 0.889044i \(0.651371\pi\)
\(272\) 2347.89 0.523390
\(273\) 0 0
\(274\) −10248.8 −2.25967
\(275\) 6525.15 + 3767.30i 1.43084 + 0.826096i
\(276\) 0 0
\(277\) 4469.37 + 7741.18i 0.969454 + 1.67914i 0.697140 + 0.716935i \(0.254455\pi\)
0.272313 + 0.962209i \(0.412211\pi\)
\(278\) 7293.91i 1.57360i
\(279\) 0 0
\(280\) −12823.2 + 7403.49i −2.73691 + 1.58015i
\(281\) 775.819i 0.164703i 0.996603 + 0.0823514i \(0.0262430\pi\)
−0.996603 + 0.0823514i \(0.973757\pi\)
\(282\) 0 0
\(283\) −2007.27 + 3476.69i −0.421624 + 0.730274i −0.996098 0.0882484i \(-0.971873\pi\)
0.574475 + 0.818522i \(0.305206\pi\)
\(284\) −12499.7 7216.71i −2.61170 1.50786i
\(285\) 0 0
\(286\) 5227.97 3639.94i 1.08090 0.752566i
\(287\) 90.5340 0.0186204
\(288\) 0 0
\(289\) 2186.60 3787.31i 0.445065 0.770875i
\(290\) −116.252 201.354i −0.0235398 0.0407721i
\(291\) 0 0
\(292\) 999.550 577.091i 0.200323 0.115656i
\(293\) −4292.21 + 2478.11i −0.855814 + 0.494104i −0.862608 0.505873i \(-0.831171\pi\)
0.00679458 + 0.999977i \(0.497837\pi\)
\(294\) 0 0
\(295\) −5463.77 9463.53i −1.07835 1.86776i
\(296\) 7486.27 12966.6i 1.47004 2.54618i
\(297\) 0 0
\(298\) 4875.43 0.947738
\(299\) −6025.15 2829.15i −1.16536 0.547204i
\(300\) 0 0
\(301\) 4821.94 + 2783.95i 0.923362 + 0.533103i
\(302\) −3690.90 + 6392.83i −0.703270 + 1.21810i
\(303\) 0 0
\(304\) 4555.58i 0.859474i
\(305\) 3585.28 2069.96i 0.673090 0.388608i
\(306\) 0 0
\(307\) 3894.90i 0.724084i 0.932162 + 0.362042i \(0.117920\pi\)
−0.932162 + 0.362042i \(0.882080\pi\)
\(308\) 3627.16 + 6282.43i 0.671029 + 1.16226i
\(309\) 0 0
\(310\) −3320.38 1917.02i −0.608338 0.351224i
\(311\) 3097.44 0.564758 0.282379 0.959303i \(-0.408876\pi\)
0.282379 + 0.959303i \(0.408876\pi\)
\(312\) 0 0
\(313\) 4487.36 0.810353 0.405177 0.914238i \(-0.367210\pi\)
0.405177 + 0.914238i \(0.367210\pi\)
\(314\) 288.567 + 166.604i 0.0518623 + 0.0299427i
\(315\) 0 0
\(316\) 2772.34 + 4801.83i 0.493533 + 0.854824i
\(317\) 6820.62i 1.20847i −0.796807 0.604233i \(-0.793479\pi\)
0.796807 0.604233i \(-0.206521\pi\)
\(318\) 0 0
\(319\) −53.4377 + 30.8523i −0.00937911 + 0.00541503i
\(320\) 3251.01i 0.567928i
\(321\) 0 0
\(322\) 5526.99 9573.02i 0.956543 1.65678i
\(323\) 907.031 + 523.675i 0.156249 + 0.0902106i
\(324\) 0 0
\(325\) 1107.85 + 13063.7i 0.189084 + 2.22967i
\(326\) 17786.1 3.02173
\(327\) 0 0
\(328\) −139.979 + 242.451i −0.0235642 + 0.0408143i
\(329\) 1617.99 + 2802.44i 0.271132 + 0.469615i
\(330\) 0 0
\(331\) 4341.35 2506.48i 0.720913 0.416219i −0.0941759 0.995556i \(-0.530022\pi\)
0.815088 + 0.579337i \(0.196688\pi\)
\(332\) 2138.32 1234.56i 0.353481 0.204082i
\(333\) 0 0
\(334\) 657.542 + 1138.90i 0.107722 + 0.186580i
\(335\) 4954.70 8581.78i 0.808071 1.39962i
\(336\) 0 0
\(337\) −3220.79 −0.520616 −0.260308 0.965526i \(-0.583824\pi\)
−0.260308 + 0.965526i \(0.583824\pi\)
\(338\) 10395.8 + 3846.65i 1.67295 + 0.619025i
\(339\) 0 0
\(340\) 7065.68 + 4079.37i 1.12703 + 0.650691i
\(341\) −508.762 + 881.202i −0.0807948 + 0.139941i
\(342\) 0 0
\(343\) 6911.39i 1.08799i
\(344\) −14910.9 + 8608.79i −2.33703 + 1.34929i
\(345\) 0 0
\(346\) 4600.13i 0.714753i
\(347\) −1680.36 2910.46i −0.259960 0.450265i 0.706271 0.707942i \(-0.250376\pi\)
−0.966231 + 0.257677i \(0.917043\pi\)
\(348\) 0 0
\(349\) 3976.20 + 2295.66i 0.609859 + 0.352102i 0.772910 0.634515i \(-0.218800\pi\)
−0.163051 + 0.986618i \(0.552134\pi\)
\(350\) −21772.4 −3.32510
\(351\) 0 0
\(352\) −3453.54 −0.522938
\(353\) −1506.96 870.044i −0.227216 0.131183i 0.382071 0.924133i \(-0.375211\pi\)
−0.609287 + 0.792950i \(0.708544\pi\)
\(354\) 0 0
\(355\) −8317.12 14405.7i −1.24346 2.15373i
\(356\) 11194.7i 1.66662i
\(357\) 0 0
\(358\) 11755.8 6787.24i 1.73552 1.00200i
\(359\) 1425.49i 0.209567i −0.994495 0.104784i \(-0.966585\pi\)
0.994495 0.104784i \(-0.0334150\pi\)
\(360\) 0 0
\(361\) −2413.42 + 4180.17i −0.351862 + 0.609443i
\(362\) 20858.9 + 12042.9i 3.02851 + 1.74851i
\(363\) 0 0
\(364\) −5365.15 + 11426.0i −0.772555 + 1.64529i
\(365\) 1330.17 0.190752
\(366\) 0 0
\(367\) −5424.61 + 9395.69i −0.771559 + 1.33638i 0.165149 + 0.986269i \(0.447189\pi\)
−0.936708 + 0.350111i \(0.886144\pi\)
\(368\) 7175.53 + 12428.4i 1.01644 + 1.76053i
\(369\) 0 0
\(370\) 27586.9 15927.3i 3.87615 2.23789i
\(371\) 3699.46 2135.89i 0.517700 0.298894i
\(372\) 0 0
\(373\) 247.374 + 428.465i 0.0343393 + 0.0594774i 0.882684 0.469966i \(-0.155734\pi\)
−0.848345 + 0.529444i \(0.822401\pi\)
\(374\) 1578.81 2734.57i 0.218284 0.378078i
\(375\) 0 0
\(376\) −10006.6 −1.37248
\(377\) −97.1882 45.6354i −0.0132770 0.00623433i
\(378\) 0 0
\(379\) 10949.4 + 6321.66i 1.48400 + 0.856786i 0.999835 0.0181912i \(-0.00579076\pi\)
0.484163 + 0.874978i \(0.339124\pi\)
\(380\) 7915.13 13709.4i 1.06852 1.85073i
\(381\) 0 0
\(382\) 10380.7i 1.39037i
\(383\) −2010.48 + 1160.75i −0.268227 + 0.154861i −0.628082 0.778147i \(-0.716160\pi\)
0.359855 + 0.933008i \(0.382826\pi\)
\(384\) 0 0
\(385\) 8360.47i 1.10673i
\(386\) −1841.24 3189.12i −0.242789 0.420523i
\(387\) 0 0
\(388\) −16854.4 9730.90i −2.20529 1.27323i
\(389\) −10477.6 −1.36564 −0.682821 0.730586i \(-0.739247\pi\)
−0.682821 + 0.730586i \(0.739247\pi\)
\(390\) 0 0
\(391\) −3299.38 −0.426744
\(392\) 4337.36 + 2504.18i 0.558851 + 0.322653i
\(393\) 0 0
\(394\) 4291.37 + 7432.88i 0.548722 + 0.950414i
\(395\) 6390.14i 0.813982i
\(396\) 0 0
\(397\) 1530.14 883.424i 0.193439 0.111682i −0.400152 0.916449i \(-0.631043\pi\)
0.593592 + 0.804766i \(0.297709\pi\)
\(398\) 9287.91i 1.16975i
\(399\) 0 0
\(400\) 14133.3 24479.5i 1.76666 3.05994i
\(401\) 4331.55 + 2500.82i 0.539420 + 0.311434i 0.744844 0.667239i \(-0.232524\pi\)
−0.205424 + 0.978673i \(0.565857\pi\)
\(402\) 0 0
\(403\) −1764.21 + 149.612i −0.218069 + 0.0184930i
\(404\) −27753.0 −3.41773
\(405\) 0 0
\(406\) 89.1526 154.417i 0.0108980 0.0188758i
\(407\) −4226.98 7321.34i −0.514800 0.891660i
\(408\) 0 0
\(409\) −9706.92 + 5604.29i −1.17354 + 0.677541i −0.954510 0.298178i \(-0.903621\pi\)
−0.219025 + 0.975719i \(0.570288\pi\)
\(410\) −515.822 + 297.810i −0.0621333 + 0.0358727i
\(411\) 0 0
\(412\) −4603.97 7974.31i −0.550537 0.953558i
\(413\) 4190.13 7257.51i 0.499232 0.864695i
\(414\) 0 0
\(415\) 2845.61 0.336592
\(416\) −3433.68 4931.73i −0.404688 0.581246i
\(417\) 0 0
\(418\) −5305.84 3063.33i −0.620854 0.358450i
\(419\) 1642.59 2845.06i 0.191518 0.331719i −0.754236 0.656604i \(-0.771992\pi\)
0.945753 + 0.324885i \(0.105326\pi\)
\(420\) 0 0
\(421\) 13289.9i 1.53850i −0.638948 0.769250i \(-0.720630\pi\)
0.638948 0.769250i \(-0.279370\pi\)
\(422\) 624.695 360.668i 0.0720609 0.0416044i
\(423\) 0 0
\(424\) 13209.6i 1.51301i
\(425\) 3249.31 + 5627.96i 0.370858 + 0.642344i
\(426\) 0 0
\(427\) 2749.52 + 1587.44i 0.311613 + 0.179910i
\(428\) 30581.8 3.45380
\(429\) 0 0
\(430\) −36631.0 −4.10815
\(431\) −11857.8 6846.13i −1.32523 0.765119i −0.340668 0.940184i \(-0.610653\pi\)
−0.984557 + 0.175064i \(0.943987\pi\)
\(432\) 0 0
\(433\) −5001.26 8662.43i −0.555070 0.961409i −0.997898 0.0648023i \(-0.979358\pi\)
0.442829 0.896606i \(-0.353975\pi\)
\(434\) 2940.30i 0.325205i
\(435\) 0 0
\(436\) −14620.1 + 8440.91i −1.60591 + 0.927170i
\(437\) 6401.73i 0.700769i
\(438\) 0 0
\(439\) 2243.60 3886.04i 0.243921 0.422484i −0.717907 0.696139i \(-0.754900\pi\)
0.961828 + 0.273656i \(0.0882329\pi\)
\(440\) −22389.4 12926.5i −2.42585 1.40056i
\(441\) 0 0
\(442\) 5474.76 464.279i 0.589158 0.0499627i
\(443\) −2035.35 −0.218290 −0.109145 0.994026i \(-0.534811\pi\)
−0.109145 + 0.994026i \(0.534811\pi\)
\(444\) 0 0
\(445\) 6450.84 11173.2i 0.687190 1.19025i
\(446\) 5899.83 + 10218.8i 0.626379 + 1.08492i
\(447\) 0 0
\(448\) −2159.15 + 1246.59i −0.227702 + 0.131464i
\(449\) 3096.55 1787.79i 0.325468 0.187909i −0.328359 0.944553i \(-0.606496\pi\)
0.653827 + 0.756644i \(0.273162\pi\)
\(450\) 0 0
\(451\) 79.0365 + 136.895i 0.00825207 + 0.0142930i
\(452\) −16678.7 + 28888.4i −1.73562 + 3.00619i
\(453\) 0 0
\(454\) −16545.6 −1.71040
\(455\) −11939.0 + 8312.41i −1.23012 + 0.856465i
\(456\) 0 0
\(457\) −6978.95 4029.30i −0.714358 0.412435i 0.0983147 0.995155i \(-0.468655\pi\)
−0.812672 + 0.582721i \(0.801988\pi\)
\(458\) 2885.25 4997.41i 0.294365 0.509855i
\(459\) 0 0
\(460\) 49868.8i 5.05466i
\(461\) −10125.7 + 5846.07i −1.02300 + 0.590626i −0.914970 0.403522i \(-0.867786\pi\)
−0.108025 + 0.994148i \(0.534453\pi\)
\(462\) 0 0
\(463\) 1732.40i 0.173891i −0.996213 0.0869455i \(-0.972289\pi\)
0.996213 0.0869455i \(-0.0277106\pi\)
\(464\) 115.744 + 200.475i 0.0115804 + 0.0200578i
\(465\) 0 0
\(466\) 18518.3 + 10691.6i 1.84087 + 1.06283i
\(467\) 10769.9 1.06718 0.533588 0.845745i \(-0.320843\pi\)
0.533588 + 0.845745i \(0.320843\pi\)
\(468\) 0 0
\(469\) 7599.44 0.748208
\(470\) −18437.1 10644.7i −1.80945 1.04469i
\(471\) 0 0
\(472\) 12957.1 + 22442.4i 1.26356 + 2.18855i
\(473\) 9721.58i 0.945029i
\(474\) 0 0
\(475\) 10919.8 6304.57i 1.05481 0.608997i
\(476\) 6256.88i 0.602487i
\(477\) 0 0
\(478\) −8350.15 + 14462.9i −0.799010 + 1.38393i
\(479\) −6851.68 3955.82i −0.653572 0.377340i 0.136251 0.990674i \(-0.456495\pi\)
−0.789824 + 0.613334i \(0.789828\pi\)
\(480\) 0 0
\(481\) 6252.37 13315.5i 0.592689 1.26223i
\(482\) −28773.0 −2.71904
\(483\) 0 0
\(484\) 5283.74 9151.70i 0.496219 0.859476i
\(485\) −11214.7 19424.4i −1.04996 1.81859i
\(486\) 0 0
\(487\) −9495.78 + 5482.39i −0.883562 + 0.510125i −0.871831 0.489806i \(-0.837067\pi\)
−0.0117307 + 0.999931i \(0.503734\pi\)
\(488\) −8502.35 + 4908.83i −0.788695 + 0.455353i
\(489\) 0 0
\(490\) 5327.72 + 9227.88i 0.491188 + 0.850762i
\(491\) 4569.69 7914.93i 0.420014 0.727486i −0.575926 0.817502i \(-0.695358\pi\)
0.995940 + 0.0900157i \(0.0286917\pi\)
\(492\) 0 0
\(493\) −53.2204 −0.00486192
\(494\) −900.832 10622.6i −0.0820452 0.967474i
\(495\) 0 0
\(496\) 3305.89 + 1908.66i 0.299272 + 0.172785i
\(497\) 6378.35 11047.6i 0.575670 0.997090i
\(498\) 0 0
\(499\) 12577.5i 1.12835i −0.825655 0.564175i \(-0.809194\pi\)
0.825655 0.564175i \(-0.190806\pi\)
\(500\) 47049.8 27164.2i 4.20826 2.42964i
\(501\) 0 0
\(502\) 19728.6i 1.75404i
\(503\) 6607.30 + 11444.2i 0.585696 + 1.01446i 0.994788 + 0.101962i \(0.0325120\pi\)
−0.409092 + 0.912493i \(0.634155\pi\)
\(504\) 0 0
\(505\) −27699.6 15992.4i −2.44083 1.40921i
\(506\) 19300.3 1.69566
\(507\) 0 0
\(508\) 21524.9 1.87995
\(509\) 18809.9 + 10859.9i 1.63798 + 0.945689i 0.981527 + 0.191323i \(0.0612779\pi\)
0.656454 + 0.754366i \(0.272055\pi\)
\(510\) 0 0
\(511\) 510.050 + 883.432i 0.0441551 + 0.0764789i
\(512\) 25613.2i 2.21085i
\(513\) 0 0
\(514\) 30467.1 17590.2i 2.61449 1.50947i
\(515\) 10612.0i 0.907999i
\(516\) 0 0
\(517\) −2825.02 + 4893.07i −0.240317 + 0.416242i
\(518\) 21156.2 + 12214.5i 1.79450 + 1.03605i
\(519\) 0 0
\(520\) −3801.30 44824.8i −0.320573 3.78019i
\(521\) 4627.05 0.389088 0.194544 0.980894i \(-0.437677\pi\)
0.194544 + 0.980894i \(0.437677\pi\)
\(522\) 0 0
\(523\) −6891.98 + 11937.3i −0.576224 + 0.998049i 0.419683 + 0.907671i \(0.362141\pi\)
−0.995907 + 0.0903788i \(0.971192\pi\)
\(524\) 11127.1 + 19272.8i 0.927654 + 1.60674i
\(525\) 0 0
\(526\) −1230.82 + 710.617i −0.102028 + 0.0589056i
\(527\) −760.040 + 438.809i −0.0628233 + 0.0362710i
\(528\) 0 0
\(529\) −3999.93 6928.07i −0.328752 0.569415i
\(530\) −14051.9 + 24338.7i −1.15165 + 1.99472i
\(531\) 0 0
\(532\) 12140.1 0.989362
\(533\) −116.907 + 248.974i −0.00950061 + 0.0202331i
\(534\) 0 0
\(535\) 30523.0 + 17622.5i 2.46659 + 1.42409i
\(536\) −11749.9 + 20351.4i −0.946860 + 1.64001i
\(537\) 0 0
\(538\) 21862.2i 1.75195i
\(539\) 2449.01 1413.93i 0.195707 0.112992i
\(540\) 0 0
\(541\) 454.638i 0.0361302i −0.999837 0.0180651i \(-0.994249\pi\)
0.999837 0.0180651i \(-0.00575061\pi\)
\(542\) −1081.21 1872.72i −0.0856865 0.148413i
\(543\) 0 0
\(544\) −2579.62 1489.34i −0.203309 0.117381i
\(545\) −19456.0 −1.52918
\(546\) 0 0
\(547\) 11611.4 0.907621 0.453810 0.891098i \(-0.350064\pi\)
0.453810 + 0.891098i \(0.350064\pi\)
\(548\) 30707.7 + 17729.1i 2.39374 + 1.38202i
\(549\) 0 0
\(550\) −19007.4 32921.8i −1.47360 2.55234i
\(551\) 103.263i 0.00798390i
\(552\) 0 0
\(553\) −4244.00 + 2450.28i −0.326353 + 0.188420i
\(554\) 45099.3i 3.45864i
\(555\) 0 0
\(556\) −12617.6 + 21854.3i −0.962417 + 1.66696i
\(557\) −4229.61 2441.97i −0.321749 0.185762i 0.330423 0.943833i \(-0.392809\pi\)
−0.652172 + 0.758071i \(0.726142\pi\)
\(558\) 0 0
\(559\) −13882.6 + 9665.69i −1.05040 + 0.731333i
\(560\) 31364.9 2.36680
\(561\) 0 0
\(562\) 1957.14 3389.87i 0.146899 0.254436i
\(563\) −9808.67 16989.1i −0.734256 1.27177i −0.955049 0.296448i \(-0.904198\pi\)
0.220793 0.975321i \(-0.429136\pi\)
\(564\) 0 0
\(565\) −33293.3 + 19221.9i −2.47905 + 1.43128i
\(566\) 17541.2 10127.4i 1.30267 0.752095i
\(567\) 0 0
\(568\) 19723.7 + 34162.5i 1.45702 + 2.52364i
\(569\) −3737.59 + 6473.70i −0.275374 + 0.476963i −0.970230 0.242187i \(-0.922135\pi\)
0.694855 + 0.719150i \(0.255469\pi\)
\(570\) 0 0
\(571\) 7799.56 0.571631 0.285816 0.958285i \(-0.407735\pi\)
0.285816 + 0.958285i \(0.407735\pi\)
\(572\) −21960.9 + 1862.36i −1.60530 + 0.136135i
\(573\) 0 0
\(574\) −395.581 228.389i −0.0287652 0.0166076i
\(575\) −19860.8 + 34399.9i −1.44044 + 2.49491i
\(576\) 0 0
\(577\) 13136.1i 0.947771i 0.880587 + 0.473885i \(0.157149\pi\)
−0.880587 + 0.473885i \(0.842851\pi\)
\(578\) −19108.4 + 11032.2i −1.37509 + 0.793910i
\(579\) 0 0
\(580\) 804.404i 0.0575880i
\(581\) 1091.14 + 1889.91i 0.0779142 + 0.134951i
\(582\) 0 0
\(583\) 6459.29 + 3729.27i 0.458862 + 0.264924i
\(584\) −3154.45 −0.223514
\(585\) 0 0
\(586\) 25005.9 1.76277
\(587\) 19183.1 + 11075.3i 1.34884 + 0.778754i 0.988085 0.153907i \(-0.0491855\pi\)
0.360756 + 0.932660i \(0.382519\pi\)
\(588\) 0 0
\(589\) 851.414 + 1474.69i 0.0595618 + 0.103164i
\(590\) 55133.4i 3.84713i
\(591\) 0 0
\(592\) −27466.5 + 15857.8i −1.90687 + 1.10093i
\(593\) 22770.3i 1.57684i −0.615138 0.788419i \(-0.710900\pi\)
0.615138 0.788419i \(-0.289100\pi\)
\(594\) 0 0
\(595\) −3605.47 + 6244.86i −0.248420 + 0.430276i
\(596\) −14607.9 8433.89i −1.00397 0.579640i
\(597\) 0 0
\(598\) 19189.4 + 27561.3i 1.31223 + 1.88472i
\(599\) 7214.11 0.492088 0.246044 0.969259i \(-0.420869\pi\)
0.246044 + 0.969259i \(0.420869\pi\)
\(600\) 0 0
\(601\) −13638.4 + 23622.4i −0.925658 + 1.60329i −0.135160 + 0.990824i \(0.543155\pi\)
−0.790499 + 0.612464i \(0.790179\pi\)
\(602\) −14046.0 24328.4i −0.950953 1.64710i
\(603\) 0 0
\(604\) 22117.6 12769.6i 1.48999 0.860245i
\(605\) 10547.2 6089.41i 0.708765 0.409206i
\(606\) 0 0
\(607\) −5783.08 10016.6i −0.386701 0.669787i 0.605302 0.795996i \(-0.293052\pi\)
−0.992004 + 0.126209i \(0.959719\pi\)
\(608\) −2889.75 + 5005.19i −0.192755 + 0.333861i
\(609\) 0 0
\(610\) −20887.4 −1.38640
\(611\) −9796.20 + 830.752i −0.648628 + 0.0550059i
\(612\) 0 0
\(613\) −21197.3 12238.3i −1.39666 0.806362i −0.402619 0.915368i \(-0.631900\pi\)
−0.994041 + 0.109006i \(0.965233\pi\)
\(614\) 9825.61 17018.5i 0.645813 1.11858i
\(615\) 0 0
\(616\) 19826.5i 1.29681i
\(617\) −2098.62 + 1211.64i −0.136933 + 0.0790581i −0.566901 0.823786i \(-0.691858\pi\)
0.429969 + 0.902844i \(0.358525\pi\)
\(618\) 0 0
\(619\) 17223.4i 1.11836i −0.829045 0.559182i \(-0.811115\pi\)
0.829045 0.559182i \(-0.188885\pi\)
\(620\) 6632.42 + 11487.7i 0.429620 + 0.744124i
\(621\) 0 0
\(622\) −13534.0 7813.86i −0.872450 0.503709i
\(623\) 9894.22 0.636282
\(624\) 0 0
\(625\) 27648.7 1.76952
\(626\) −19607.1 11320.2i −1.25185 0.722757i
\(627\) 0 0
\(628\) −576.409 998.370i −0.0366262 0.0634384i
\(629\) 7291.57i 0.462216i
\(630\) 0 0
\(631\) −8004.31 + 4621.29i −0.504987 + 0.291554i −0.730771 0.682623i \(-0.760839\pi\)
0.225784 + 0.974177i \(0.427506\pi\)
\(632\) 15154.0i 0.953786i
\(633\) 0 0
\(634\) −17206.3 + 29802.1i −1.07784 + 1.86687i
\(635\) 21483.5 + 12403.5i 1.34259 + 0.775147i
\(636\) 0 0
\(637\) 4454.06 + 2091.43i 0.277043 + 0.130087i
\(638\) 311.322 0.0193187
\(639\) 0 0
\(640\) 18518.0 32074.2i 1.14373 1.98100i
\(641\) 5799.42 + 10044.9i 0.357353 + 0.618953i 0.987518 0.157508i \(-0.0503461\pi\)
−0.630165 + 0.776461i \(0.717013\pi\)
\(642\) 0 0
\(643\) 21965.8 12682.0i 1.34720 0.777804i 0.359345 0.933205i \(-0.383000\pi\)
0.987852 + 0.155401i \(0.0496669\pi\)
\(644\) −33120.3 + 19122.0i −2.02659 + 1.17005i
\(645\) 0 0
\(646\) −2642.13 4576.31i −0.160918 0.278719i
\(647\) 3295.05 5707.19i 0.200219 0.346789i −0.748380 0.663270i \(-0.769168\pi\)
0.948599 + 0.316481i \(0.102501\pi\)
\(648\) 0 0
\(649\) 14632.0 0.884985
\(650\) 28114.9 59875.5i 1.69655 3.61309i
\(651\) 0 0
\(652\) −53291.4 30767.8i −3.20100 1.84810i
\(653\) 7849.12 13595.1i 0.470382 0.814726i −0.529044 0.848594i \(-0.677449\pi\)
0.999426 + 0.0338683i \(0.0107827\pi\)
\(654\) 0 0
\(655\) 25647.6i 1.52998i
\(656\) 513.571 296.511i 0.0305664 0.0176475i
\(657\) 0 0
\(658\) 16326.7i 0.967295i
\(659\) 1420.41 + 2460.22i 0.0839624 + 0.145427i 0.904949 0.425521i \(-0.139909\pi\)
−0.820986 + 0.570948i \(0.806576\pi\)
\(660\) 0 0
\(661\) 18029.9 + 10409.5i 1.06094 + 0.612533i 0.925692 0.378279i \(-0.123484\pi\)
0.135247 + 0.990812i \(0.456817\pi\)
\(662\) −25292.2 −1.48491
\(663\) 0 0
\(664\) −6748.26 −0.394403
\(665\) 12116.8 + 6995.63i 0.706569 + 0.407938i
\(666\) 0 0
\(667\) −162.650 281.718i −0.00944202 0.0163541i
\(668\) 4549.87i 0.263532i
\(669\) 0 0
\(670\) −43298.3 + 24998.3i −2.49665 + 1.44144i
\(671\) 5543.36i 0.318925i
\(672\) 0 0
\(673\) 15632.3 27075.9i 0.895364 1.55082i 0.0620102 0.998076i \(-0.480249\pi\)
0.833354 0.552740i \(-0.186418\pi\)
\(674\) 14073.0 + 8125.04i 0.804260 + 0.464340i
\(675\) 0 0
\(676\) −24494.1 29509.0i −1.39361 1.67894i
\(677\) 27953.2 1.58689 0.793447 0.608639i \(-0.208284\pi\)
0.793447 + 0.608639i \(0.208284\pi\)
\(678\) 0 0
\(679\) 8600.46 14896.4i 0.486090 0.841933i
\(680\) −11149.2 19310.9i −0.628752 1.08903i
\(681\) 0 0
\(682\) 4445.99 2566.89i 0.249627 0.144122i
\(683\) −30059.7 + 17354.9i −1.68404 + 0.972282i −0.725116 + 0.688627i \(0.758214\pi\)
−0.958926 + 0.283655i \(0.908453\pi\)
\(684\) 0 0
\(685\) 20432.4 + 35390.0i 1.13968 + 1.97399i
\(686\) −17435.2 + 30198.7i −0.970380 + 1.68075i
\(687\) 0 0
\(688\) 36471.1 2.02100
\(689\) 1096.67 + 12931.8i 0.0606381 + 0.715042i
\(690\) 0 0
\(691\) 10271.7 + 5930.39i 0.565492 + 0.326487i 0.755347 0.655325i \(-0.227468\pi\)
−0.189855 + 0.981812i \(0.560802\pi\)
\(692\) 7957.66 13783.1i 0.437146 0.757158i
\(693\) 0 0
\(694\) 16956.0i 0.927438i
\(695\) −25186.6 + 14541.5i −1.37465 + 0.793655i
\(696\) 0 0
\(697\) 136.338i 0.00740916i
\(698\) −11582.4 20061.4i −0.628083 1.08787i
\(699\) 0 0
\(700\) 65235.3 + 37663.6i 3.52237 + 2.03364i
\(701\) 16100.5 0.867486 0.433743 0.901037i \(-0.357193\pi\)
0.433743 + 0.901037i \(0.357193\pi\)
\(702\) 0 0
\(703\) −14147.7 −0.759019
\(704\) −3769.90 2176.55i −0.201823 0.116523i
\(705\) 0 0
\(706\) 4389.69 + 7603.17i 0.234006 + 0.405310i
\(707\) 24528.9i 1.30482i
\(708\) 0 0
\(709\) 24651.8 14232.7i 1.30581 0.753910i 0.324416 0.945915i \(-0.394832\pi\)
0.981394 + 0.192005i \(0.0614990\pi\)
\(710\) 83925.9i 4.43617i
\(711\) 0 0
\(712\) −15297.9 + 26496.8i −0.805217 + 1.39468i
\(713\) −4645.60 2682.14i −0.244010 0.140879i
\(714\) 0 0
\(715\) −22991.8 10796.0i −1.20258 0.564680i
\(716\) −46964.4 −2.45131
\(717\) 0 0
\(718\) −3596.07 + 6228.57i −0.186914 + 0.323744i
\(719\) 13911.0 + 24094.6i 0.721550 + 1.24976i 0.960378 + 0.278699i \(0.0899033\pi\)
−0.238829 + 0.971062i \(0.576763\pi\)
\(720\) 0 0
\(721\) 7047.93 4069.13i 0.364048 0.210183i
\(722\) 21090.5 12176.6i 1.08713 0.627654i
\(723\) 0 0
\(724\) −41665.5 72166.7i −2.13879 3.70450i
\(725\) −320.363 + 554.884i −0.0164110 + 0.0284247i
\(726\) 0 0
\(727\) −866.153 −0.0441869 −0.0220934 0.999756i \(-0.507033\pi\)
−0.0220934 + 0.999756i \(0.507033\pi\)
\(728\) 28312.8 19712.6i 1.44140 1.00357i
\(729\) 0 0
\(730\) −5812.07 3355.60i −0.294677 0.170132i
\(731\) −4192.45 + 7261.53i −0.212125 + 0.367411i
\(732\) 0 0
\(733\) 23120.1i 1.16502i −0.812823 0.582511i \(-0.802070\pi\)
0.812823 0.582511i \(-0.197930\pi\)
\(734\) 47404.7 27369.1i 2.38384 1.37631i
\(735\) 0 0
\(736\) 18206.7i 0.911831i
\(737\) 6634.34 + 11491.0i 0.331586 + 0.574324i
\(738\) 0 0
\(739\) 17983.1 + 10382.6i 0.895156 + 0.516819i 0.875626 0.482990i \(-0.160449\pi\)
0.0195308 + 0.999809i \(0.493783\pi\)
\(740\) −110209. −5.47482
\(741\) 0 0
\(742\) −21552.7 −1.06634
\(743\) −32039.3 18497.9i −1.58198 0.913354i −0.994571 0.104061i \(-0.966816\pi\)
−0.587405 0.809293i \(-0.699850\pi\)
\(744\) 0 0
\(745\) −9719.90 16835.4i −0.477999 0.827919i
\(746\) 2496.19i 0.122509i
\(747\) 0 0
\(748\) −9460.95 + 5462.28i −0.462468 + 0.267006i
\(749\) 27029.1i 1.31859i
\(750\) 0 0
\(751\) −17214.6 + 29816.5i −0.836443 + 1.44876i 0.0564080 + 0.998408i \(0.482035\pi\)
−0.892851 + 0.450353i \(0.851298\pi\)
\(752\) 18356.7 + 10598.2i 0.890159 + 0.513933i
\(753\) 0 0
\(754\) 309.532 + 444.575i 0.0149503 + 0.0214728i
\(755\) 29433.5 1.41880
\(756\) 0 0
\(757\) −2134.44 + 3696.96i −0.102480 + 0.177501i −0.912706 0.408617i \(-0.866011\pi\)
0.810226 + 0.586118i \(0.199345\pi\)
\(758\) −31895.1 55244.0i −1.52834 2.64717i
\(759\) 0 0
\(760\) −37468.7 + 21632.6i −1.78833 + 1.03249i
\(761\) −6358.45 + 3671.05i −0.302883 + 0.174869i −0.643737 0.765247i \(-0.722617\pi\)
0.340854 + 0.940116i \(0.389284\pi\)
\(762\) 0 0
\(763\) −7460.33 12921.7i −0.353974 0.613100i
\(764\) 17957.3 31103.0i 0.850359 1.47286i
\(765\) 0 0
\(766\) 11712.9 0.552484
\(767\) 14547.9 + 20894.8i 0.684867 + 0.983661i
\(768\) 0 0
\(769\) 12755.2 + 7364.23i 0.598134 + 0.345333i 0.768307 0.640081i \(-0.221099\pi\)
−0.170173 + 0.985414i \(0.554433\pi\)
\(770\) 21090.8 36530.4i 0.987092 1.70969i
\(771\) 0 0
\(772\) 12740.5i 0.593963i
\(773\) −8606.05 + 4968.71i −0.400437 + 0.231193i −0.686673 0.726967i \(-0.740929\pi\)
0.286235 + 0.958159i \(0.407596\pi\)
\(774\) 0 0
\(775\) 10565.7i 0.489719i
\(776\) 26595.2 + 46064.2i 1.23030 + 2.13094i
\(777\) 0 0
\(778\) 45780.9 + 26431.6i 2.10967 + 1.21802i
\(779\) 264.535 0.0121668
\(780\) 0 0
\(781\) 22273.3 1.02049
\(782\) 14416.4 + 8323.29i 0.659243 + 0.380614i
\(783\) 0 0
\(784\) −5304.47 9187.61i −0.241639 0.418532i
\(785\) 1328.60i 0.0604074i
\(786\) 0 0
\(787\) −31441.1 + 18152.5i −1.42408 + 0.822194i −0.996645 0.0818508i \(-0.973917\pi\)
−0.427437 + 0.904045i \(0.640584\pi\)
\(788\) 29694.2i 1.34240i
\(789\) 0 0
\(790\) 16120.3 27921.2i 0.725993 1.25746i
\(791\) −25532.4 14741.2i −1.14770 0.662623i
\(792\) 0 0
\(793\) −7916.04 + 5511.49i −0.354485 + 0.246808i
\(794\) −8914.40 −0.398439
\(795\) 0 0
\(796\) 16066.9 27828.8i 0.715424 1.23915i
\(797\) 4575.37 + 7924.77i 0.203347 + 0.352208i 0.949605 0.313449i \(-0.101485\pi\)
−0.746258 + 0.665657i \(0.768151\pi\)
\(798\) 0 0
\(799\) −4220.29 + 2436.59i −0.186863 + 0.107885i
\(800\) −31056.3 + 17930.4i −1.37251 + 0.792418i
\(801\) 0 0
\(802\) −12617.6 21854.3i −0.555539 0.962221i
\(803\) −890.550 + 1542.48i −0.0391368 + 0.0677869i
\(804\) 0 0
\(805\) −44075.5 −1.92976
\(806\) 8086.01 + 3796.84i 0.353372 + 0.165928i
\(807\) 0 0
\(808\) 65688.6 + 37925.4i 2.86005 + 1.65125i
\(809\) 15174.9 26283.8i 0.659484 1.14226i −0.321265 0.946989i \(-0.604108\pi\)
0.980749 0.195271i \(-0.0625585\pi\)
\(810\) 0 0
\(811\) 4238.72i 0.183529i −0.995781 0.0917643i \(-0.970749\pi\)
0.995781 0.0917643i \(-0.0292506\pi\)
\(812\) −534.244 + 308.446i −0.0230890 + 0.0133305i
\(813\) 0 0
\(814\) 42653.3i 1.83661i
\(815\) −35459.3 61417.3i −1.52403 2.63970i
\(816\) 0 0
\(817\) 14089.4 + 8134.53i 0.603337 + 0.348337i
\(818\) 56551.4 2.41721
\(819\) 0 0
\(820\) 2060.70 0.0877595
\(821\) 5139.41 + 2967.24i 0.218473 + 0.126136i 0.605243 0.796041i \(-0.293076\pi\)
−0.386770 + 0.922176i \(0.626409\pi\)
\(822\) 0 0
\(823\) −11229.8 19450.6i −0.475633 0.823820i 0.523978 0.851732i \(-0.324448\pi\)
−0.999610 + 0.0279120i \(0.991114\pi\)
\(824\) 25165.9i 1.06395i
\(825\) 0 0
\(826\) −36616.8 + 21140.7i −1.54245 + 0.890533i
\(827\) 20138.4i 0.846772i 0.905949 + 0.423386i \(0.139159\pi\)
−0.905949 + 0.423386i \(0.860841\pi\)
\(828\) 0 0
\(829\) 2922.85 5062.53i 0.122455 0.212098i −0.798281 0.602286i \(-0.794257\pi\)
0.920735 + 0.390188i \(0.127590\pi\)
\(830\) −12433.7 7178.58i −0.519974 0.300207i
\(831\) 0 0
\(832\) −640.058 7547.54i −0.0266707 0.314500i
\(833\) 2439.05 0.101450
\(834\) 0 0
\(835\) 2621.82 4541.12i 0.108661 0.188206i
\(836\) 10598.4 + 18356.9i 0.438459 + 0.759434i
\(837\) 0 0
\(838\) −14354.4 + 8287.49i −0.591722 + 0.341631i
\(839\) −24058.1 + 13889.9i −0.989961 + 0.571554i −0.905263 0.424852i \(-0.860326\pi\)
−0.0846986 + 0.996407i \(0.526993\pi\)
\(840\) 0 0
\(841\) 12191.9 + 21116.9i 0.499892 + 0.865839i
\(842\) −33526.1 + 58069.0i −1.37219 + 2.37671i
\(843\) 0 0
\(844\) −2495.65 −0.101782
\(845\) −7442.75 43566.7i −0.303004 1.77366i
\(846\) 0 0
\(847\) 8088.55 + 4669.92i 0.328130 + 0.189446i
\(848\) 13990.6 24232.4i 0.566556 0.981304i
\(849\) 0 0
\(850\) 32787.9i 1.32308i
\(851\) 38597.3 22284.2i 1.55476 0.897640i
\(852\) 0 0
\(853\) 16480.5i 0.661526i −0.943714 0.330763i \(-0.892694\pi\)
0.943714 0.330763i \(-0.107306\pi\)
\(854\) −8009.21 13872.4i −0.320925 0.555858i
\(855\) 0 0
\(856\) −72384.2 41791.0i −2.89024 1.66868i
\(857\) −45445.2 −1.81141 −0.905704 0.423910i \(-0.860657\pi\)
−0.905704 + 0.423910i \(0.860657\pi\)
\(858\) 0 0
\(859\) −28243.1 −1.12182 −0.560909 0.827877i \(-0.689548\pi\)
−0.560909 + 0.827877i \(0.689548\pi\)
\(860\) 109755. + 63367.1i 4.35188 + 2.51256i
\(861\) 0 0
\(862\) 34541.2 + 59827.2i 1.36482 + 2.36395i
\(863\) 328.319i 0.0129503i 0.999979 + 0.00647514i \(0.00206112\pi\)
−0.999979 + 0.00647514i \(0.997939\pi\)
\(864\) 0 0
\(865\) 15884.7 9171.05i 0.624389 0.360491i
\(866\) 50466.4i 1.98027i
\(867\) 0 0
\(868\) −5086.36 + 8809.84i −0.198897 + 0.344499i
\(869\) −7410.06 4278.20i −0.289262 0.167006i
\(870\) 0 0
\(871\) −9813.24 + 20898.9i −0.381755 + 0.813012i
\(872\) 46139.1 1.79182
\(873\) 0 0
\(874\) 16149.5 27971.8i 0.625018 1.08256i
\(875\) 24008.5 + 41584.0i 0.927584 + 1.60662i
\(876\) 0 0
\(877\) 36788.7 21240.0i 1.41650 0.817815i 0.420507 0.907289i \(-0.361852\pi\)
0.995989 + 0.0894746i \(0.0285188\pi\)
\(878\) −19606.5 + 11319.8i −0.753629 + 0.435108i
\(879\) 0 0
\(880\) 27381.6 + 47426.4i 1.04890 + 1.81675i
\(881\) 2610.47 4521.47i 0.0998287 0.172908i −0.811785 0.583956i \(-0.801504\pi\)
0.911614 + 0.411048i \(0.134837\pi\)
\(882\) 0 0
\(883\) −11790.3 −0.449349 −0.224674 0.974434i \(-0.572132\pi\)
−0.224674 + 0.974434i \(0.572132\pi\)
\(884\) −17206.8 8079.57i −0.654670 0.307404i
\(885\) 0 0
\(886\) 8893.30 + 5134.55i 0.337219 + 0.194694i
\(887\) −24676.2 + 42740.4i −0.934097 + 1.61790i −0.157861 + 0.987461i \(0.550460\pi\)
−0.776236 + 0.630443i \(0.782873\pi\)
\(888\) 0 0
\(889\) 19024.4i 0.717724i
\(890\) −56372.8 + 32546.9i −2.12317 + 1.22581i
\(891\) 0 0
\(892\) 40823.9i 1.53238i
\(893\) 4727.67 + 8188.56i 0.177162 + 0.306853i
\(894\) 0 0
\(895\) −46874.1 27062.8i −1.75065 1.01074i
\(896\) 28402.7 1.05900
\(897\) 0 0
\(898\) −18040.1 −0.670386
\(899\) −74.9355 43.2640i −0.00278002 0.00160505i
\(900\) 0 0
\(901\) 3216.51 + 5571.16i 0.118932 + 0.205996i
\(902\) 797.536i 0.0294402i
\(903\) 0 0
\(904\) 78953.9 45584.0i 2.90483 1.67710i
\(905\) 96037.3i 3.52750i
\(906\) 0 0
\(907\) 3044.47 5273.17i 0.111455 0.193046i −0.804902 0.593408i \(-0.797782\pi\)
0.916357 + 0.400362i \(0.131116\pi\)
\(908\) 49574.5 + 28621.8i 1.81188 + 1.04609i
\(909\) 0 0
\(910\) 73135.8 6202.17i 2.66421 0.225934i
\(911\) 30301.7 1.10202 0.551010 0.834499i \(-0.314243\pi\)
0.551010 + 0.834499i \(0.314243\pi\)
\(912\) 0 0
\(913\) −1905.14 + 3299.80i −0.0690590 + 0.119614i
\(914\) 20329.3 + 35211.4i 0.735704 + 1.27428i
\(915\) 0 0
\(916\) −17289.8 + 9982.27i −0.623658 + 0.360069i
\(917\) −17033.8 + 9834.49i −0.613421 + 0.354159i
\(918\) 0 0
\(919\) −17347.9 30047.4i −0.622692 1.07853i −0.988982 0.148034i \(-0.952705\pi\)
0.366290 0.930501i \(-0.380628\pi\)
\(920\) 68147.3 118035.i 2.44212 4.22988i
\(921\) 0 0
\(922\) 58991.2 2.10713
\(923\) 22145.2 + 31806.7i 0.789728 + 1.13427i
\(924\) 0 0
\(925\) −76023.1 43892.0i −2.70230 1.56017i
\(926\) −4370.30 + 7569.59i −0.155094 + 0.268631i
\(927\) 0 0
\(928\) 293.681i 0.0103885i
\(929\) 14714.5 8495.40i 0.519662 0.300027i −0.217134 0.976142i \(-0.569671\pi\)
0.736796 + 0.676115i \(0.236338\pi\)
\(930\) 0 0
\(931\) 4732.44i 0.166594i
\(932\) −36990.2 64068.9i −1.30006 2.25177i
\(933\) 0 0
\(934\) −47058.1 27169.0i −1.64860 0.951817i
\(935\) −12590.3 −0.440372
\(936\) 0 0
\(937\) 9307.86 0.324519 0.162260 0.986748i \(-0.448122\pi\)
0.162260 + 0.986748i \(0.448122\pi\)
\(938\) −33205.1 19171.0i −1.15585 0.667330i
\(939\) 0 0
\(940\) 36828.0 + 63788.0i 1.27787 + 2.21334i
\(941\) 52285.3i 1.81132i −0.424006 0.905659i \(-0.639377\pi\)
0.424006 0.905659i \(-0.360623\pi\)
\(942\) 0 0
\(943\) −721.697 + 416.672i −0.0249222 + 0.0143889i
\(944\) 54892.8i 1.89260i
\(945\) 0 0
\(946\) 24524.5 42477.6i 0.842874 1.45990i
\(947\) −10694.1 6174.26i −0.366962 0.211865i 0.305169 0.952298i \(-0.401287\pi\)
−0.672130 + 0.740433i \(0.734621\pi\)
\(948\) 0 0
\(949\) −3088.13 + 261.884i −0.105632 + 0.00895797i
\(950\) −63617.7 −2.17267
\(951\) 0 0
\(952\) 8550.23 14809.4i 0.291087 0.504177i
\(953\) 12815.5 + 22197.1i 0.435609 + 0.754497i 0.997345 0.0728193i \(-0.0231997\pi\)
−0.561736 + 0.827317i \(0.689866\pi\)
\(954\) 0 0
\(955\) 35845.7 20695.5i 1.21459 0.701247i
\(956\) 50038.0 28889.5i 1.69283 0.977356i
\(957\) 0 0
\(958\) 19958.6 + 34569.2i 0.673102 + 1.16585i
\(959\) −15669.5 + 27140.4i −0.527627 + 0.913878i
\(960\) 0 0
\(961\) 28364.1 0.952104
\(962\) −60909.9 + 42408.1i −2.04139 + 1.42130i
\(963\) 0 0
\(964\) 86210.8 + 49773.8i 2.88036 + 1.66297i
\(965\) −7341.57 + 12716.0i −0.244905 + 0.424188i
\(966\) 0 0
\(967\) 11185.6i 0.371981i −0.982552 0.185991i \(-0.940451\pi\)
0.982552 0.185991i \(-0.0595494\pi\)
\(968\) −25012.2 + 14440.8i −0.830498 + 0.479488i
\(969\) 0 0
\(970\) 113164.i 3.74586i
\(971\) −11770.6 20387.3i −0.389019 0.673801i 0.603299 0.797515i \(-0.293853\pi\)
−0.992318 + 0.123714i \(0.960519\pi\)
\(972\) 0 0
\(973\) −19315.4 11151.8i −0.636408 0.367430i
\(974\) 55321.3 1.81993
\(975\) 0 0
\(976\) 20796.3 0.682041
\(977\) 20956.8 + 12099.4i 0.686251 + 0.396207i 0.802206 0.597047i \(-0.203659\pi\)
−0.115955 + 0.993254i \(0.536993\pi\)
\(978\) 0 0
\(979\) 8637.68 + 14960.9i 0.281983 + 0.488409i
\(980\) 36865.2i 1.20165i
\(981\) 0 0
\(982\) −39933.7 + 23055.7i −1.29769 + 0.749224i
\(983\) 33757.4i 1.09532i −0.836702 0.547658i \(-0.815520\pi\)
0.836702 0.547658i \(-0.184480\pi\)
\(984\) 0 0
\(985\) 17111.0 29637.1i 0.553504 0.958697i
\(986\) 232.542 + 134.258i 0.00751080 + 0.00433636i
\(987\) 0 0
\(988\) −15676.6 + 33386.1i −0.504798 + 1.07505i
\(989\) −51251.1 −1.64782
\(990\) 0 0
\(991\) −12649.3 + 21909.2i −0.405466 + 0.702288i −0.994376 0.105911i \(-0.966224\pi\)
0.588909 + 0.808199i \(0.299558\pi\)
\(992\) −2421.44 4194.06i −0.0775009 0.134236i
\(993\) 0 0
\(994\) −55739.3 + 32181.1i −1.77862 + 1.02688i
\(995\) 32072.1 18516.8i 1.02186 0.589973i
\(996\) 0 0
\(997\) 14383.0 + 24912.2i 0.456886 + 0.791350i 0.998794 0.0490874i \(-0.0156313\pi\)
−0.541908 + 0.840438i \(0.682298\pi\)
\(998\) −31729.1 + 54956.4i −1.00638 + 1.74310i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.4.q.e.82.1 10
3.2 odd 2 39.4.j.c.4.5 10
12.11 even 2 624.4.bv.h.433.1 10
13.6 odd 12 1521.4.a.bk.1.9 10
13.7 odd 12 1521.4.a.bk.1.2 10
13.10 even 6 inner 117.4.q.e.10.1 10
39.17 odd 6 507.4.b.i.337.9 10
39.20 even 12 507.4.a.r.1.9 10
39.23 odd 6 39.4.j.c.10.5 yes 10
39.32 even 12 507.4.a.r.1.2 10
39.35 odd 6 507.4.b.i.337.2 10
156.23 even 6 624.4.bv.h.49.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.4.j.c.4.5 10 3.2 odd 2
39.4.j.c.10.5 yes 10 39.23 odd 6
117.4.q.e.10.1 10 13.10 even 6 inner
117.4.q.e.82.1 10 1.1 even 1 trivial
507.4.a.r.1.2 10 39.32 even 12
507.4.a.r.1.9 10 39.20 even 12
507.4.b.i.337.2 10 39.35 odd 6
507.4.b.i.337.9 10 39.17 odd 6
624.4.bv.h.49.5 10 156.23 even 6
624.4.bv.h.433.1 10 12.11 even 2
1521.4.a.bk.1.2 10 13.7 odd 12
1521.4.a.bk.1.9 10 13.6 odd 12