Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,2,Mod(5,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([10, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.z (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.934249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −0.600405 | + | 2.24074i | 0.724368 | − | 1.57331i | −2.92839 | − | 1.69071i | 3.78248 | − | 1.01351i | 3.09046 | + | 2.56774i | −0.608850 | + | 2.27226i | 2.26599 | − | 2.26599i | −1.95058 | − | 2.27931i | 9.08409i | ||
5.2 | −0.535189 | + | 1.99735i | 1.67588 | + | 0.437507i | −1.97094 | − | 1.13792i | −2.39559 | + | 0.641897i | −1.77077 | + | 3.11318i | −0.185908 | + | 0.693817i | 0.403326 | − | 0.403326i | 2.61718 | + | 1.46642i | − | 5.12838i | |
5.3 | −0.337526 | + | 1.25966i | 0.425920 | + | 1.67887i | 0.259225 | + | 0.149663i | 2.31922 | − | 0.621434i | −2.25856 | − | 0.0301452i | 0.940006 | − | 3.50815i | −2.12029 | + | 2.12029i | −2.63718 | + | 1.43012i | 3.13119i | ||
5.4 | −0.267684 | + | 0.999012i | −1.73168 | − | 0.0358377i | 0.805681 | + | 0.465160i | 1.80337 | − | 0.483213i | 0.499346 | − | 1.72038i | −1.07064 | + | 3.99567i | −2.14302 | + | 2.14302i | 2.99743 | + | 0.124119i | 1.93094i | ||
5.5 | −0.126147 | + | 0.470787i | −0.933667 | + | 1.45886i | 1.52632 | + | 0.881223i | −3.78110 | + | 1.01314i | −0.569032 | − | 0.623589i | 0.139526 | − | 0.520717i | −1.29669 | + | 1.29669i | −1.25653 | − | 2.72417i | − | 1.90790i | |
5.6 | −0.120326 | + | 0.449064i | −0.453962 | − | 1.67150i | 1.54487 | + | 0.891932i | 0.207401 | − | 0.0555730i | 0.805235 | − | 0.00273231i | 0.845006 | − | 3.15361i | −1.24390 | + | 1.24390i | −2.58784 | + | 1.51760i | 0.0998232i | ||
5.7 | 0.0389963 | − | 0.145536i | 1.36970 | − | 1.06015i | 1.71239 | + | 0.988649i | −1.38592 | + | 0.371357i | −0.100877 | − | 0.240683i | −0.436407 | + | 1.62869i | 0.423741 | − | 0.423741i | 0.752165 | − | 2.90418i | 0.216183i | ||
5.8 | 0.359097 | − | 1.34017i | −0.694508 | + | 1.58671i | 0.0649546 | + | 0.0375016i | 1.79870 | − | 0.481960i | 1.87706 | + | 1.50054i | −0.653846 | + | 2.44019i | 2.03572 | − | 2.03572i | −2.03532 | − | 2.20397i | − | 2.58363i | |
5.9 | 0.407254 | − | 1.51989i | 1.33706 | + | 1.10103i | −0.412171 | − | 0.237967i | −1.74067 | + | 0.466411i | 2.21797 | − | 1.58380i | 0.556891 | − | 2.07835i | 1.69574 | − | 1.69574i | 0.575484 | + | 2.94429i | 2.83558i | ||
5.10 | 0.496218 | − | 1.85191i | −0.584991 | − | 1.63027i | −1.45130 | − | 0.837906i | 0.863788 | − | 0.231451i | −3.30940 | + | 0.274380i | −0.426917 | + | 1.59328i | 0.439499 | − | 0.439499i | −2.31557 | + | 1.90739i | − | 1.71451i | |
5.11 | 0.685712 | − | 2.55911i | −1.63413 | + | 0.574122i | −4.34680 | − | 2.50963i | −1.47168 | + | 0.394337i | 0.348700 | + | 4.57561i | 0.901137 | − | 3.36309i | −5.65626 | + | 5.65626i | 2.34077 | − | 1.87638i | 4.03661i | ||
47.1 | −0.600405 | − | 2.24074i | 0.724368 | + | 1.57331i | −2.92839 | + | 1.69071i | 3.78248 | + | 1.01351i | 3.09046 | − | 2.56774i | −0.608850 | − | 2.27226i | 2.26599 | + | 2.26599i | −1.95058 | + | 2.27931i | − | 9.08409i | |
47.2 | −0.535189 | − | 1.99735i | 1.67588 | − | 0.437507i | −1.97094 | + | 1.13792i | −2.39559 | − | 0.641897i | −1.77077 | − | 3.11318i | −0.185908 | − | 0.693817i | 0.403326 | + | 0.403326i | 2.61718 | − | 1.46642i | 5.12838i | ||
47.3 | −0.337526 | − | 1.25966i | 0.425920 | − | 1.67887i | 0.259225 | − | 0.149663i | 2.31922 | + | 0.621434i | −2.25856 | + | 0.0301452i | 0.940006 | + | 3.50815i | −2.12029 | − | 2.12029i | −2.63718 | − | 1.43012i | − | 3.13119i | |
47.4 | −0.267684 | − | 0.999012i | −1.73168 | + | 0.0358377i | 0.805681 | − | 0.465160i | 1.80337 | + | 0.483213i | 0.499346 | + | 1.72038i | −1.07064 | − | 3.99567i | −2.14302 | − | 2.14302i | 2.99743 | − | 0.124119i | − | 1.93094i | |
47.5 | −0.126147 | − | 0.470787i | −0.933667 | − | 1.45886i | 1.52632 | − | 0.881223i | −3.78110 | − | 1.01314i | −0.569032 | + | 0.623589i | 0.139526 | + | 0.520717i | −1.29669 | − | 1.29669i | −1.25653 | + | 2.72417i | 1.90790i | ||
47.6 | −0.120326 | − | 0.449064i | −0.453962 | + | 1.67150i | 1.54487 | − | 0.891932i | 0.207401 | + | 0.0555730i | 0.805235 | + | 0.00273231i | 0.845006 | + | 3.15361i | −1.24390 | − | 1.24390i | −2.58784 | − | 1.51760i | − | 0.0998232i | |
47.7 | 0.0389963 | + | 0.145536i | 1.36970 | + | 1.06015i | 1.71239 | − | 0.988649i | −1.38592 | − | 0.371357i | −0.100877 | + | 0.240683i | −0.436407 | − | 1.62869i | 0.423741 | + | 0.423741i | 0.752165 | + | 2.90418i | − | 0.216183i | |
47.8 | 0.359097 | + | 1.34017i | −0.694508 | − | 1.58671i | 0.0649546 | − | 0.0375016i | 1.79870 | + | 0.481960i | 1.87706 | − | 1.50054i | −0.653846 | − | 2.44019i | 2.03572 | + | 2.03572i | −2.03532 | + | 2.20397i | 2.58363i | ||
47.9 | 0.407254 | + | 1.51989i | 1.33706 | − | 1.10103i | −0.412171 | + | 0.237967i | −1.74067 | − | 0.466411i | 2.21797 | + | 1.58380i | 0.556891 | + | 2.07835i | 1.69574 | + | 1.69574i | 0.575484 | − | 2.94429i | − | 2.83558i | |
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
13.d | odd | 4 | 1 | inner |
117.z | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.2.z.b | ✓ | 44 |
3.b | odd | 2 | 1 | 351.2.bc.b | 44 | ||
9.c | even | 3 | 1 | 351.2.bc.b | 44 | ||
9.d | odd | 6 | 1 | inner | 117.2.z.b | ✓ | 44 |
13.d | odd | 4 | 1 | inner | 117.2.z.b | ✓ | 44 |
39.f | even | 4 | 1 | 351.2.bc.b | 44 | ||
117.y | odd | 12 | 1 | 351.2.bc.b | 44 | ||
117.z | even | 12 | 1 | inner | 117.2.z.b | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.2.z.b | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
117.2.z.b | ✓ | 44 | 9.d | odd | 6 | 1 | inner |
117.2.z.b | ✓ | 44 | 13.d | odd | 4 | 1 | inner |
117.2.z.b | ✓ | 44 | 117.z | even | 12 | 1 | inner |
351.2.bc.b | 44 | 3.b | odd | 2 | 1 | ||
351.2.bc.b | 44 | 9.c | even | 3 | 1 | ||
351.2.bc.b | 44 | 39.f | even | 4 | 1 | ||
351.2.bc.b | 44 | 117.y | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{44} - 62 T_{2}^{40} - 30 T_{2}^{39} + 180 T_{2}^{37} + 2883 T_{2}^{36} + 1860 T_{2}^{35} + \cdots + 36 \) acting on \(S_{2}^{\mathrm{new}}(117, [\chi])\).