Properties

Label 1156.2.a.f.1.3
Level $1156$
Weight $2$
Character 1156.1
Self dual yes
Analytic conductor $9.231$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1156,2,Mod(1,1156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1156.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1156, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,6,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{18})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.87939\) of defining polynomial
Character \(\chi\) \(=\) 1156.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.87939 q^{3} +1.65270 q^{5} -3.18479 q^{7} +5.29086 q^{9} +5.06418 q^{11} -1.41147 q^{13} +4.75877 q^{15} +8.10607 q^{19} -9.17024 q^{21} -6.35504 q^{23} -2.26857 q^{25} +6.59627 q^{27} -1.29086 q^{29} +0.426022 q^{31} +14.5817 q^{33} -5.26352 q^{35} +5.34730 q^{37} -4.06418 q^{39} +7.04189 q^{41} -0.283119 q^{43} +8.74422 q^{45} -4.90167 q^{47} +3.14290 q^{49} -5.06418 q^{53} +8.36959 q^{55} +23.3405 q^{57} -4.50980 q^{59} +4.55438 q^{61} -16.8503 q^{63} -2.33275 q^{65} -2.07873 q^{67} -18.2986 q^{69} +14.1334 q^{71} +4.77332 q^{73} -6.53209 q^{75} -16.1284 q^{77} -13.9067 q^{79} +3.12061 q^{81} -9.49794 q^{83} -3.71688 q^{87} -9.10607 q^{89} +4.49525 q^{91} +1.22668 q^{93} +13.3969 q^{95} -4.36959 q^{97} +26.7939 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 6 q^{5} - 6 q^{7} + 6 q^{11} + 6 q^{13} + 3 q^{15} + 12 q^{19} - 6 q^{21} + 6 q^{23} + 3 q^{25} + 6 q^{27} + 12 q^{29} + 9 q^{31} + 12 q^{33} - 21 q^{35} + 15 q^{37} - 3 q^{39} + 18 q^{41}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.87939 1.66241 0.831207 0.555963i \(-0.187650\pi\)
0.831207 + 0.555963i \(0.187650\pi\)
\(4\) 0 0
\(5\) 1.65270 0.739112 0.369556 0.929209i \(-0.379510\pi\)
0.369556 + 0.929209i \(0.379510\pi\)
\(6\) 0 0
\(7\) −3.18479 −1.20374 −0.601869 0.798595i \(-0.705577\pi\)
−0.601869 + 0.798595i \(0.705577\pi\)
\(8\) 0 0
\(9\) 5.29086 1.76362
\(10\) 0 0
\(11\) 5.06418 1.52691 0.763454 0.645863i \(-0.223502\pi\)
0.763454 + 0.645863i \(0.223502\pi\)
\(12\) 0 0
\(13\) −1.41147 −0.391472 −0.195736 0.980657i \(-0.562710\pi\)
−0.195736 + 0.980657i \(0.562710\pi\)
\(14\) 0 0
\(15\) 4.75877 1.22871
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 8.10607 1.85966 0.929830 0.367990i \(-0.119954\pi\)
0.929830 + 0.367990i \(0.119954\pi\)
\(20\) 0 0
\(21\) −9.17024 −2.00111
\(22\) 0 0
\(23\) −6.35504 −1.32512 −0.662558 0.749010i \(-0.730529\pi\)
−0.662558 + 0.749010i \(0.730529\pi\)
\(24\) 0 0
\(25\) −2.26857 −0.453714
\(26\) 0 0
\(27\) 6.59627 1.26945
\(28\) 0 0
\(29\) −1.29086 −0.239707 −0.119853 0.992792i \(-0.538242\pi\)
−0.119853 + 0.992792i \(0.538242\pi\)
\(30\) 0 0
\(31\) 0.426022 0.0765158 0.0382579 0.999268i \(-0.487819\pi\)
0.0382579 + 0.999268i \(0.487819\pi\)
\(32\) 0 0
\(33\) 14.5817 2.53835
\(34\) 0 0
\(35\) −5.26352 −0.889697
\(36\) 0 0
\(37\) 5.34730 0.879090 0.439545 0.898221i \(-0.355140\pi\)
0.439545 + 0.898221i \(0.355140\pi\)
\(38\) 0 0
\(39\) −4.06418 −0.650789
\(40\) 0 0
\(41\) 7.04189 1.09976 0.549879 0.835244i \(-0.314674\pi\)
0.549879 + 0.835244i \(0.314674\pi\)
\(42\) 0 0
\(43\) −0.283119 −0.0431752 −0.0215876 0.999767i \(-0.506872\pi\)
−0.0215876 + 0.999767i \(0.506872\pi\)
\(44\) 0 0
\(45\) 8.74422 1.30351
\(46\) 0 0
\(47\) −4.90167 −0.714983 −0.357491 0.933916i \(-0.616368\pi\)
−0.357491 + 0.933916i \(0.616368\pi\)
\(48\) 0 0
\(49\) 3.14290 0.448986
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.06418 −0.695618 −0.347809 0.937565i \(-0.613074\pi\)
−0.347809 + 0.937565i \(0.613074\pi\)
\(54\) 0 0
\(55\) 8.36959 1.12855
\(56\) 0 0
\(57\) 23.3405 3.09152
\(58\) 0 0
\(59\) −4.50980 −0.587126 −0.293563 0.955940i \(-0.594841\pi\)
−0.293563 + 0.955940i \(0.594841\pi\)
\(60\) 0 0
\(61\) 4.55438 0.583128 0.291564 0.956551i \(-0.405824\pi\)
0.291564 + 0.956551i \(0.405824\pi\)
\(62\) 0 0
\(63\) −16.8503 −2.12294
\(64\) 0 0
\(65\) −2.33275 −0.289342
\(66\) 0 0
\(67\) −2.07873 −0.253957 −0.126978 0.991905i \(-0.540528\pi\)
−0.126978 + 0.991905i \(0.540528\pi\)
\(68\) 0 0
\(69\) −18.2986 −2.20289
\(70\) 0 0
\(71\) 14.1334 1.67733 0.838663 0.544650i \(-0.183337\pi\)
0.838663 + 0.544650i \(0.183337\pi\)
\(72\) 0 0
\(73\) 4.77332 0.558675 0.279337 0.960193i \(-0.409885\pi\)
0.279337 + 0.960193i \(0.409885\pi\)
\(74\) 0 0
\(75\) −6.53209 −0.754261
\(76\) 0 0
\(77\) −16.1284 −1.83800
\(78\) 0 0
\(79\) −13.9067 −1.56463 −0.782314 0.622884i \(-0.785961\pi\)
−0.782314 + 0.622884i \(0.785961\pi\)
\(80\) 0 0
\(81\) 3.12061 0.346735
\(82\) 0 0
\(83\) −9.49794 −1.04253 −0.521267 0.853394i \(-0.674541\pi\)
−0.521267 + 0.853394i \(0.674541\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.71688 −0.398492
\(88\) 0 0
\(89\) −9.10607 −0.965241 −0.482621 0.875830i \(-0.660315\pi\)
−0.482621 + 0.875830i \(0.660315\pi\)
\(90\) 0 0
\(91\) 4.49525 0.471230
\(92\) 0 0
\(93\) 1.22668 0.127201
\(94\) 0 0
\(95\) 13.3969 1.37450
\(96\) 0 0
\(97\) −4.36959 −0.443664 −0.221832 0.975085i \(-0.571204\pi\)
−0.221832 + 0.975085i \(0.571204\pi\)
\(98\) 0 0
\(99\) 26.7939 2.69288
\(100\) 0 0
\(101\) −8.43882 −0.839694 −0.419847 0.907595i \(-0.637916\pi\)
−0.419847 + 0.907595i \(0.637916\pi\)
\(102\) 0 0
\(103\) −9.49525 −0.935595 −0.467798 0.883836i \(-0.654952\pi\)
−0.467798 + 0.883836i \(0.654952\pi\)
\(104\) 0 0
\(105\) −15.1557 −1.47904
\(106\) 0 0
\(107\) −4.61587 −0.446233 −0.223116 0.974792i \(-0.571623\pi\)
−0.223116 + 0.974792i \(0.571623\pi\)
\(108\) 0 0
\(109\) 12.9067 1.23624 0.618120 0.786084i \(-0.287895\pi\)
0.618120 + 0.786084i \(0.287895\pi\)
\(110\) 0 0
\(111\) 15.3969 1.46141
\(112\) 0 0
\(113\) −8.11381 −0.763283 −0.381641 0.924310i \(-0.624641\pi\)
−0.381641 + 0.924310i \(0.624641\pi\)
\(114\) 0 0
\(115\) −10.5030 −0.979409
\(116\) 0 0
\(117\) −7.46791 −0.690409
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14.6459 1.33145
\(122\) 0 0
\(123\) 20.2763 1.82825
\(124\) 0 0
\(125\) −12.0128 −1.07446
\(126\) 0 0
\(127\) −2.55943 −0.227113 −0.113556 0.993532i \(-0.536224\pi\)
−0.113556 + 0.993532i \(0.536224\pi\)
\(128\) 0 0
\(129\) −0.815207 −0.0717750
\(130\) 0 0
\(131\) 3.98545 0.348211 0.174105 0.984727i \(-0.444297\pi\)
0.174105 + 0.984727i \(0.444297\pi\)
\(132\) 0 0
\(133\) −25.8161 −2.23854
\(134\) 0 0
\(135\) 10.9017 0.938267
\(136\) 0 0
\(137\) 6.16250 0.526498 0.263249 0.964728i \(-0.415206\pi\)
0.263249 + 0.964728i \(0.415206\pi\)
\(138\) 0 0
\(139\) −4.85710 −0.411974 −0.205987 0.978555i \(-0.566040\pi\)
−0.205987 + 0.978555i \(0.566040\pi\)
\(140\) 0 0
\(141\) −14.1138 −1.18860
\(142\) 0 0
\(143\) −7.14796 −0.597742
\(144\) 0 0
\(145\) −2.13341 −0.177170
\(146\) 0 0
\(147\) 9.04963 0.746401
\(148\) 0 0
\(149\) 12.2422 1.00292 0.501459 0.865182i \(-0.332797\pi\)
0.501459 + 0.865182i \(0.332797\pi\)
\(150\) 0 0
\(151\) 12.7023 1.03370 0.516851 0.856076i \(-0.327104\pi\)
0.516851 + 0.856076i \(0.327104\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.704088 0.0565537
\(156\) 0 0
\(157\) −8.16519 −0.651653 −0.325827 0.945430i \(-0.605643\pi\)
−0.325827 + 0.945430i \(0.605643\pi\)
\(158\) 0 0
\(159\) −14.5817 −1.15641
\(160\) 0 0
\(161\) 20.2395 1.59509
\(162\) 0 0
\(163\) −24.4270 −1.91327 −0.956633 0.291295i \(-0.905914\pi\)
−0.956633 + 0.291295i \(0.905914\pi\)
\(164\) 0 0
\(165\) 24.0993 1.87612
\(166\) 0 0
\(167\) −3.00681 −0.232674 −0.116337 0.993210i \(-0.537115\pi\)
−0.116337 + 0.993210i \(0.537115\pi\)
\(168\) 0 0
\(169\) −11.0077 −0.846749
\(170\) 0 0
\(171\) 42.8881 3.27973
\(172\) 0 0
\(173\) 17.4757 1.32865 0.664325 0.747444i \(-0.268719\pi\)
0.664325 + 0.747444i \(0.268719\pi\)
\(174\) 0 0
\(175\) 7.22493 0.546153
\(176\) 0 0
\(177\) −12.9855 −0.976046
\(178\) 0 0
\(179\) −15.6604 −1.17052 −0.585258 0.810847i \(-0.699007\pi\)
−0.585258 + 0.810847i \(0.699007\pi\)
\(180\) 0 0
\(181\) 17.6655 1.31307 0.656533 0.754297i \(-0.272022\pi\)
0.656533 + 0.754297i \(0.272022\pi\)
\(182\) 0 0
\(183\) 13.1138 0.969401
\(184\) 0 0
\(185\) 8.83750 0.649746
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −21.0077 −1.52809
\(190\) 0 0
\(191\) −3.75608 −0.271781 −0.135890 0.990724i \(-0.543389\pi\)
−0.135890 + 0.990724i \(0.543389\pi\)
\(192\) 0 0
\(193\) 0.724622 0.0521594 0.0260797 0.999660i \(-0.491698\pi\)
0.0260797 + 0.999660i \(0.491698\pi\)
\(194\) 0 0
\(195\) −6.71688 −0.481006
\(196\) 0 0
\(197\) 1.06149 0.0756280 0.0378140 0.999285i \(-0.487961\pi\)
0.0378140 + 0.999285i \(0.487961\pi\)
\(198\) 0 0
\(199\) 12.9736 0.919674 0.459837 0.888003i \(-0.347908\pi\)
0.459837 + 0.888003i \(0.347908\pi\)
\(200\) 0 0
\(201\) −5.98545 −0.422181
\(202\) 0 0
\(203\) 4.11112 0.288544
\(204\) 0 0
\(205\) 11.6382 0.812844
\(206\) 0 0
\(207\) −33.6236 −2.33700
\(208\) 0 0
\(209\) 41.0506 2.83953
\(210\) 0 0
\(211\) −0.223993 −0.0154203 −0.00771017 0.999970i \(-0.502454\pi\)
−0.00771017 + 0.999970i \(0.502454\pi\)
\(212\) 0 0
\(213\) 40.6955 2.78841
\(214\) 0 0
\(215\) −0.467911 −0.0319113
\(216\) 0 0
\(217\) −1.35679 −0.0921050
\(218\) 0 0
\(219\) 13.7442 0.928748
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −11.7392 −0.786113 −0.393056 0.919514i \(-0.628582\pi\)
−0.393056 + 0.919514i \(0.628582\pi\)
\(224\) 0 0
\(225\) −12.0027 −0.800179
\(226\) 0 0
\(227\) −21.8229 −1.44844 −0.724220 0.689569i \(-0.757800\pi\)
−0.724220 + 0.689569i \(0.757800\pi\)
\(228\) 0 0
\(229\) −27.4861 −1.81633 −0.908166 0.418611i \(-0.862517\pi\)
−0.908166 + 0.418611i \(0.862517\pi\)
\(230\) 0 0
\(231\) −46.4397 −3.05551
\(232\) 0 0
\(233\) 24.5868 1.61073 0.805366 0.592777i \(-0.201969\pi\)
0.805366 + 0.592777i \(0.201969\pi\)
\(234\) 0 0
\(235\) −8.10101 −0.528452
\(236\) 0 0
\(237\) −40.0428 −2.60106
\(238\) 0 0
\(239\) 11.1010 0.718065 0.359032 0.933325i \(-0.383107\pi\)
0.359032 + 0.933325i \(0.383107\pi\)
\(240\) 0 0
\(241\) −2.99226 −0.192748 −0.0963742 0.995345i \(-0.530725\pi\)
−0.0963742 + 0.995345i \(0.530725\pi\)
\(242\) 0 0
\(243\) −10.8033 −0.693035
\(244\) 0 0
\(245\) 5.19429 0.331851
\(246\) 0 0
\(247\) −11.4415 −0.728005
\(248\) 0 0
\(249\) −27.3482 −1.73312
\(250\) 0 0
\(251\) −26.6013 −1.67906 −0.839530 0.543313i \(-0.817170\pi\)
−0.839530 + 0.543313i \(0.817170\pi\)
\(252\) 0 0
\(253\) −32.1830 −2.02333
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 15.6536 0.976447 0.488224 0.872719i \(-0.337645\pi\)
0.488224 + 0.872719i \(0.337645\pi\)
\(258\) 0 0
\(259\) −17.0300 −1.05819
\(260\) 0 0
\(261\) −6.82976 −0.422751
\(262\) 0 0
\(263\) 25.3037 1.56029 0.780145 0.625599i \(-0.215145\pi\)
0.780145 + 0.625599i \(0.215145\pi\)
\(264\) 0 0
\(265\) −8.36959 −0.514140
\(266\) 0 0
\(267\) −26.2199 −1.60463
\(268\) 0 0
\(269\) 21.4243 1.30626 0.653130 0.757246i \(-0.273455\pi\)
0.653130 + 0.757246i \(0.273455\pi\)
\(270\) 0 0
\(271\) 2.91622 0.177148 0.0885739 0.996070i \(-0.471769\pi\)
0.0885739 + 0.996070i \(0.471769\pi\)
\(272\) 0 0
\(273\) 12.9436 0.783380
\(274\) 0 0
\(275\) −11.4884 −0.692779
\(276\) 0 0
\(277\) −27.3037 −1.64052 −0.820259 0.571993i \(-0.806171\pi\)
−0.820259 + 0.571993i \(0.806171\pi\)
\(278\) 0 0
\(279\) 2.25402 0.134945
\(280\) 0 0
\(281\) −6.80335 −0.405854 −0.202927 0.979194i \(-0.565045\pi\)
−0.202927 + 0.979194i \(0.565045\pi\)
\(282\) 0 0
\(283\) −1.17024 −0.0695638 −0.0347819 0.999395i \(-0.511074\pi\)
−0.0347819 + 0.999395i \(0.511074\pi\)
\(284\) 0 0
\(285\) 38.5749 2.28498
\(286\) 0 0
\(287\) −22.4270 −1.32382
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −12.5817 −0.737553
\(292\) 0 0
\(293\) 28.8384 1.68476 0.842380 0.538885i \(-0.181154\pi\)
0.842380 + 0.538885i \(0.181154\pi\)
\(294\) 0 0
\(295\) −7.45336 −0.433952
\(296\) 0 0
\(297\) 33.4047 1.93834
\(298\) 0 0
\(299\) 8.96997 0.518747
\(300\) 0 0
\(301\) 0.901674 0.0519716
\(302\) 0 0
\(303\) −24.2986 −1.39592
\(304\) 0 0
\(305\) 7.52704 0.430997
\(306\) 0 0
\(307\) −14.3105 −0.816741 −0.408371 0.912816i \(-0.633903\pi\)
−0.408371 + 0.912816i \(0.633903\pi\)
\(308\) 0 0
\(309\) −27.3405 −1.55535
\(310\) 0 0
\(311\) 21.1857 1.20133 0.600666 0.799500i \(-0.294902\pi\)
0.600666 + 0.799500i \(0.294902\pi\)
\(312\) 0 0
\(313\) 0.389185 0.0219981 0.0109990 0.999940i \(-0.496499\pi\)
0.0109990 + 0.999940i \(0.496499\pi\)
\(314\) 0 0
\(315\) −27.8485 −1.56909
\(316\) 0 0
\(317\) −14.9932 −0.842102 −0.421051 0.907037i \(-0.638339\pi\)
−0.421051 + 0.907037i \(0.638339\pi\)
\(318\) 0 0
\(319\) −6.53714 −0.366010
\(320\) 0 0
\(321\) −13.2909 −0.741823
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 3.20203 0.177617
\(326\) 0 0
\(327\) 37.1634 2.05514
\(328\) 0 0
\(329\) 15.6108 0.860652
\(330\) 0 0
\(331\) −6.48246 −0.356308 −0.178154 0.984003i \(-0.557013\pi\)
−0.178154 + 0.984003i \(0.557013\pi\)
\(332\) 0 0
\(333\) 28.2918 1.55038
\(334\) 0 0
\(335\) −3.43552 −0.187702
\(336\) 0 0
\(337\) 5.23442 0.285137 0.142569 0.989785i \(-0.454464\pi\)
0.142569 + 0.989785i \(0.454464\pi\)
\(338\) 0 0
\(339\) −23.3628 −1.26889
\(340\) 0 0
\(341\) 2.15745 0.116833
\(342\) 0 0
\(343\) 12.2841 0.663276
\(344\) 0 0
\(345\) −30.2422 −1.62818
\(346\) 0 0
\(347\) 20.4492 1.09777 0.548886 0.835897i \(-0.315052\pi\)
0.548886 + 0.835897i \(0.315052\pi\)
\(348\) 0 0
\(349\) 6.73917 0.360740 0.180370 0.983599i \(-0.442271\pi\)
0.180370 + 0.983599i \(0.442271\pi\)
\(350\) 0 0
\(351\) −9.31046 −0.496956
\(352\) 0 0
\(353\) 5.18748 0.276102 0.138051 0.990425i \(-0.455916\pi\)
0.138051 + 0.990425i \(0.455916\pi\)
\(354\) 0 0
\(355\) 23.3583 1.23973
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.9495 −1.42234 −0.711171 0.703019i \(-0.751835\pi\)
−0.711171 + 0.703019i \(0.751835\pi\)
\(360\) 0 0
\(361\) 46.7083 2.45833
\(362\) 0 0
\(363\) 42.1712 2.21341
\(364\) 0 0
\(365\) 7.88888 0.412923
\(366\) 0 0
\(367\) −13.6450 −0.712261 −0.356131 0.934436i \(-0.615904\pi\)
−0.356131 + 0.934436i \(0.615904\pi\)
\(368\) 0 0
\(369\) 37.2576 1.93956
\(370\) 0 0
\(371\) 16.1284 0.837342
\(372\) 0 0
\(373\) −17.6955 −0.916240 −0.458120 0.888890i \(-0.651477\pi\)
−0.458120 + 0.888890i \(0.651477\pi\)
\(374\) 0 0
\(375\) −34.5895 −1.78619
\(376\) 0 0
\(377\) 1.82201 0.0938385
\(378\) 0 0
\(379\) −20.1293 −1.03397 −0.516986 0.855994i \(-0.672946\pi\)
−0.516986 + 0.855994i \(0.672946\pi\)
\(380\) 0 0
\(381\) −7.36959 −0.377555
\(382\) 0 0
\(383\) −37.8753 −1.93534 −0.967668 0.252228i \(-0.918837\pi\)
−0.967668 + 0.252228i \(0.918837\pi\)
\(384\) 0 0
\(385\) −26.6554 −1.35848
\(386\) 0 0
\(387\) −1.49794 −0.0761446
\(388\) 0 0
\(389\) 18.9162 0.959091 0.479545 0.877517i \(-0.340802\pi\)
0.479545 + 0.877517i \(0.340802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 11.4757 0.578870
\(394\) 0 0
\(395\) −22.9837 −1.15644
\(396\) 0 0
\(397\) 11.2344 0.563839 0.281920 0.959438i \(-0.409029\pi\)
0.281920 + 0.959438i \(0.409029\pi\)
\(398\) 0 0
\(399\) −74.3346 −3.72139
\(400\) 0 0
\(401\) 30.4047 1.51834 0.759168 0.650894i \(-0.225606\pi\)
0.759168 + 0.650894i \(0.225606\pi\)
\(402\) 0 0
\(403\) −0.601319 −0.0299538
\(404\) 0 0
\(405\) 5.15745 0.256276
\(406\) 0 0
\(407\) 27.0797 1.34229
\(408\) 0 0
\(409\) −29.5895 −1.46310 −0.731552 0.681785i \(-0.761204\pi\)
−0.731552 + 0.681785i \(0.761204\pi\)
\(410\) 0 0
\(411\) 17.7442 0.875258
\(412\) 0 0
\(413\) 14.3628 0.706746
\(414\) 0 0
\(415\) −15.6973 −0.770549
\(416\) 0 0
\(417\) −13.9855 −0.684871
\(418\) 0 0
\(419\) −18.5604 −0.906733 −0.453367 0.891324i \(-0.649777\pi\)
−0.453367 + 0.891324i \(0.649777\pi\)
\(420\) 0 0
\(421\) 12.2412 0.596601 0.298301 0.954472i \(-0.403580\pi\)
0.298301 + 0.954472i \(0.403580\pi\)
\(422\) 0 0
\(423\) −25.9341 −1.26096
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14.5047 −0.701934
\(428\) 0 0
\(429\) −20.5817 −0.993695
\(430\) 0 0
\(431\) −17.6682 −0.851047 −0.425523 0.904947i \(-0.639910\pi\)
−0.425523 + 0.904947i \(0.639910\pi\)
\(432\) 0 0
\(433\) 26.3114 1.26444 0.632222 0.774787i \(-0.282143\pi\)
0.632222 + 0.774787i \(0.282143\pi\)
\(434\) 0 0
\(435\) −6.14290 −0.294530
\(436\) 0 0
\(437\) −51.5144 −2.46427
\(438\) 0 0
\(439\) 19.6604 0.938342 0.469171 0.883107i \(-0.344553\pi\)
0.469171 + 0.883107i \(0.344553\pi\)
\(440\) 0 0
\(441\) 16.6287 0.791841
\(442\) 0 0
\(443\) 38.8631 1.84644 0.923220 0.384271i \(-0.125547\pi\)
0.923220 + 0.384271i \(0.125547\pi\)
\(444\) 0 0
\(445\) −15.0496 −0.713421
\(446\) 0 0
\(447\) 35.2499 1.66726
\(448\) 0 0
\(449\) −10.7452 −0.507095 −0.253548 0.967323i \(-0.581597\pi\)
−0.253548 + 0.967323i \(0.581597\pi\)
\(450\) 0 0
\(451\) 35.6614 1.67923
\(452\) 0 0
\(453\) 36.5749 1.71844
\(454\) 0 0
\(455\) 7.42932 0.348292
\(456\) 0 0
\(457\) 15.9145 0.744447 0.372224 0.928143i \(-0.378595\pi\)
0.372224 + 0.928143i \(0.378595\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.0172363 −0.000802773 0 −0.000401386 1.00000i \(-0.500128\pi\)
−0.000401386 1.00000i \(0.500128\pi\)
\(462\) 0 0
\(463\) −6.68180 −0.310530 −0.155265 0.987873i \(-0.549623\pi\)
−0.155265 + 0.987873i \(0.549623\pi\)
\(464\) 0 0
\(465\) 2.02734 0.0940157
\(466\) 0 0
\(467\) 38.1935 1.76738 0.883691 0.468070i \(-0.155050\pi\)
0.883691 + 0.468070i \(0.155050\pi\)
\(468\) 0 0
\(469\) 6.62031 0.305698
\(470\) 0 0
\(471\) −23.5107 −1.08332
\(472\) 0 0
\(473\) −1.43376 −0.0659245
\(474\) 0 0
\(475\) −18.3892 −0.843754
\(476\) 0 0
\(477\) −26.7939 −1.22681
\(478\) 0 0
\(479\) −5.96080 −0.272356 −0.136178 0.990684i \(-0.543482\pi\)
−0.136178 + 0.990684i \(0.543482\pi\)
\(480\) 0 0
\(481\) −7.54757 −0.344140
\(482\) 0 0
\(483\) 58.2772 2.65171
\(484\) 0 0
\(485\) −7.22163 −0.327917
\(486\) 0 0
\(487\) 40.9454 1.85541 0.927707 0.373308i \(-0.121777\pi\)
0.927707 + 0.373308i \(0.121777\pi\)
\(488\) 0 0
\(489\) −70.3346 −3.18064
\(490\) 0 0
\(491\) −30.6100 −1.38141 −0.690705 0.723137i \(-0.742700\pi\)
−0.690705 + 0.723137i \(0.742700\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 44.2823 1.99034
\(496\) 0 0
\(497\) −45.0120 −2.01906
\(498\) 0 0
\(499\) −5.35504 −0.239724 −0.119862 0.992791i \(-0.538245\pi\)
−0.119862 + 0.992791i \(0.538245\pi\)
\(500\) 0 0
\(501\) −8.65776 −0.386800
\(502\) 0 0
\(503\) 3.48515 0.155395 0.0776975 0.996977i \(-0.475243\pi\)
0.0776975 + 0.996977i \(0.475243\pi\)
\(504\) 0 0
\(505\) −13.9469 −0.620627
\(506\) 0 0
\(507\) −31.6955 −1.40765
\(508\) 0 0
\(509\) 26.1198 1.15774 0.578870 0.815420i \(-0.303494\pi\)
0.578870 + 0.815420i \(0.303494\pi\)
\(510\) 0 0
\(511\) −15.2020 −0.672498
\(512\) 0 0
\(513\) 53.4698 2.36075
\(514\) 0 0
\(515\) −15.6928 −0.691509
\(516\) 0 0
\(517\) −24.8229 −1.09171
\(518\) 0 0
\(519\) 50.3191 2.20876
\(520\) 0 0
\(521\) 19.1088 0.837170 0.418585 0.908178i \(-0.362526\pi\)
0.418585 + 0.908178i \(0.362526\pi\)
\(522\) 0 0
\(523\) −14.5699 −0.637095 −0.318548 0.947907i \(-0.603195\pi\)
−0.318548 + 0.947907i \(0.603195\pi\)
\(524\) 0 0
\(525\) 20.8033 0.907933
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 17.3865 0.755935
\(530\) 0 0
\(531\) −23.8607 −1.03547
\(532\) 0 0
\(533\) −9.93944 −0.430525
\(534\) 0 0
\(535\) −7.62866 −0.329816
\(536\) 0 0
\(537\) −45.0925 −1.94588
\(538\) 0 0
\(539\) 15.9162 0.685560
\(540\) 0 0
\(541\) −28.2003 −1.21242 −0.606212 0.795303i \(-0.707312\pi\)
−0.606212 + 0.795303i \(0.707312\pi\)
\(542\) 0 0
\(543\) 50.8658 2.18286
\(544\) 0 0
\(545\) 21.3310 0.913719
\(546\) 0 0
\(547\) 13.0692 0.558800 0.279400 0.960175i \(-0.409864\pi\)
0.279400 + 0.960175i \(0.409864\pi\)
\(548\) 0 0
\(549\) 24.0966 1.02842
\(550\) 0 0
\(551\) −10.4638 −0.445773
\(552\) 0 0
\(553\) 44.2900 1.88340
\(554\) 0 0
\(555\) 25.4466 1.08015
\(556\) 0 0
\(557\) 34.1043 1.44505 0.722523 0.691347i \(-0.242982\pi\)
0.722523 + 0.691347i \(0.242982\pi\)
\(558\) 0 0
\(559\) 0.399615 0.0169019
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.99319 −0.126148 −0.0630740 0.998009i \(-0.520090\pi\)
−0.0630740 + 0.998009i \(0.520090\pi\)
\(564\) 0 0
\(565\) −13.4097 −0.564151
\(566\) 0 0
\(567\) −9.93851 −0.417378
\(568\) 0 0
\(569\) −34.9709 −1.46606 −0.733028 0.680198i \(-0.761894\pi\)
−0.733028 + 0.680198i \(0.761894\pi\)
\(570\) 0 0
\(571\) 31.9914 1.33880 0.669400 0.742902i \(-0.266551\pi\)
0.669400 + 0.742902i \(0.266551\pi\)
\(572\) 0 0
\(573\) −10.8152 −0.451812
\(574\) 0 0
\(575\) 14.4169 0.601224
\(576\) 0 0
\(577\) 18.8452 0.784537 0.392269 0.919851i \(-0.371690\pi\)
0.392269 + 0.919851i \(0.371690\pi\)
\(578\) 0 0
\(579\) 2.08647 0.0867106
\(580\) 0 0
\(581\) 30.2490 1.25494
\(582\) 0 0
\(583\) −25.6459 −1.06214
\(584\) 0 0
\(585\) −12.3422 −0.510289
\(586\) 0 0
\(587\) 11.2175 0.462996 0.231498 0.972835i \(-0.425637\pi\)
0.231498 + 0.972835i \(0.425637\pi\)
\(588\) 0 0
\(589\) 3.45336 0.142293
\(590\) 0 0
\(591\) 3.05644 0.125725
\(592\) 0 0
\(593\) 16.5422 0.679306 0.339653 0.940551i \(-0.389690\pi\)
0.339653 + 0.940551i \(0.389690\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 37.3560 1.52888
\(598\) 0 0
\(599\) −14.5585 −0.594844 −0.297422 0.954746i \(-0.596127\pi\)
−0.297422 + 0.954746i \(0.596127\pi\)
\(600\) 0 0
\(601\) 11.7460 0.479128 0.239564 0.970881i \(-0.422995\pi\)
0.239564 + 0.970881i \(0.422995\pi\)
\(602\) 0 0
\(603\) −10.9982 −0.447883
\(604\) 0 0
\(605\) 24.2053 0.984086
\(606\) 0 0
\(607\) 34.2249 1.38915 0.694573 0.719422i \(-0.255593\pi\)
0.694573 + 0.719422i \(0.255593\pi\)
\(608\) 0 0
\(609\) 11.8375 0.479680
\(610\) 0 0
\(611\) 6.91859 0.279896
\(612\) 0 0
\(613\) 37.0205 1.49525 0.747623 0.664124i \(-0.231195\pi\)
0.747623 + 0.664124i \(0.231195\pi\)
\(614\) 0 0
\(615\) 33.5107 1.35128
\(616\) 0 0
\(617\) 39.5280 1.59134 0.795668 0.605733i \(-0.207120\pi\)
0.795668 + 0.605733i \(0.207120\pi\)
\(618\) 0 0
\(619\) −22.7547 −0.914587 −0.457293 0.889316i \(-0.651181\pi\)
−0.457293 + 0.889316i \(0.651181\pi\)
\(620\) 0 0
\(621\) −41.9195 −1.68217
\(622\) 0 0
\(623\) 29.0009 1.16190
\(624\) 0 0
\(625\) −8.51073 −0.340429
\(626\) 0 0
\(627\) 118.200 4.72047
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −8.36009 −0.332810 −0.166405 0.986057i \(-0.553216\pi\)
−0.166405 + 0.986057i \(0.553216\pi\)
\(632\) 0 0
\(633\) −0.644963 −0.0256350
\(634\) 0 0
\(635\) −4.22998 −0.167862
\(636\) 0 0
\(637\) −4.43613 −0.175766
\(638\) 0 0
\(639\) 74.7779 2.95817
\(640\) 0 0
\(641\) 9.28817 0.366861 0.183430 0.983033i \(-0.441280\pi\)
0.183430 + 0.983033i \(0.441280\pi\)
\(642\) 0 0
\(643\) 45.8871 1.80961 0.904806 0.425824i \(-0.140016\pi\)
0.904806 + 0.425824i \(0.140016\pi\)
\(644\) 0 0
\(645\) −1.34730 −0.0530497
\(646\) 0 0
\(647\) −26.8411 −1.05523 −0.527617 0.849483i \(-0.676914\pi\)
−0.527617 + 0.849483i \(0.676914\pi\)
\(648\) 0 0
\(649\) −22.8384 −0.896487
\(650\) 0 0
\(651\) −3.90673 −0.153117
\(652\) 0 0
\(653\) 24.1317 0.944345 0.472172 0.881506i \(-0.343470\pi\)
0.472172 + 0.881506i \(0.343470\pi\)
\(654\) 0 0
\(655\) 6.58677 0.257366
\(656\) 0 0
\(657\) 25.2550 0.985290
\(658\) 0 0
\(659\) 34.3381 1.33762 0.668812 0.743432i \(-0.266803\pi\)
0.668812 + 0.743432i \(0.266803\pi\)
\(660\) 0 0
\(661\) −0.213888 −0.00831929 −0.00415965 0.999991i \(-0.501324\pi\)
−0.00415965 + 0.999991i \(0.501324\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −42.6664 −1.65453
\(666\) 0 0
\(667\) 8.20346 0.317639
\(668\) 0 0
\(669\) −33.8016 −1.30685
\(670\) 0 0
\(671\) 23.0642 0.890383
\(672\) 0 0
\(673\) −25.4584 −0.981350 −0.490675 0.871343i \(-0.663250\pi\)
−0.490675 + 0.871343i \(0.663250\pi\)
\(674\) 0 0
\(675\) −14.9641 −0.575968
\(676\) 0 0
\(677\) 3.82058 0.146837 0.0734185 0.997301i \(-0.476609\pi\)
0.0734185 + 0.997301i \(0.476609\pi\)
\(678\) 0 0
\(679\) 13.9162 0.534056
\(680\) 0 0
\(681\) −62.8367 −2.40791
\(682\) 0 0
\(683\) 7.87164 0.301200 0.150600 0.988595i \(-0.451879\pi\)
0.150600 + 0.988595i \(0.451879\pi\)
\(684\) 0 0
\(685\) 10.1848 0.389141
\(686\) 0 0
\(687\) −79.1430 −3.01949
\(688\) 0 0
\(689\) 7.14796 0.272315
\(690\) 0 0
\(691\) 0.166623 0.00633862 0.00316931 0.999995i \(-0.498991\pi\)
0.00316931 + 0.999995i \(0.498991\pi\)
\(692\) 0 0
\(693\) −85.3329 −3.24153
\(694\) 0 0
\(695\) −8.02734 −0.304494
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 70.7948 2.67770
\(700\) 0 0
\(701\) 28.2841 1.06827 0.534137 0.845398i \(-0.320637\pi\)
0.534137 + 0.845398i \(0.320637\pi\)
\(702\) 0 0
\(703\) 43.3455 1.63481
\(704\) 0 0
\(705\) −23.3259 −0.878506
\(706\) 0 0
\(707\) 26.8759 1.01077
\(708\) 0 0
\(709\) −3.31727 −0.124583 −0.0622913 0.998058i \(-0.519841\pi\)
−0.0622913 + 0.998058i \(0.519841\pi\)
\(710\) 0 0
\(711\) −73.5785 −2.75941
\(712\) 0 0
\(713\) −2.70739 −0.101392
\(714\) 0 0
\(715\) −11.8135 −0.441798
\(716\) 0 0
\(717\) 31.9641 1.19372
\(718\) 0 0
\(719\) −9.18573 −0.342570 −0.171285 0.985222i \(-0.554792\pi\)
−0.171285 + 0.985222i \(0.554792\pi\)
\(720\) 0 0
\(721\) 30.2404 1.12621
\(722\) 0 0
\(723\) −8.61587 −0.320428
\(724\) 0 0
\(725\) 2.92841 0.108758
\(726\) 0 0
\(727\) 45.7151 1.69548 0.847740 0.530412i \(-0.177963\pi\)
0.847740 + 0.530412i \(0.177963\pi\)
\(728\) 0 0
\(729\) −40.4688 −1.49885
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 14.6996 0.542944 0.271472 0.962446i \(-0.412490\pi\)
0.271472 + 0.962446i \(0.412490\pi\)
\(734\) 0 0
\(735\) 14.9564 0.551674
\(736\) 0 0
\(737\) −10.5270 −0.387768
\(738\) 0 0
\(739\) 13.2695 0.488127 0.244063 0.969759i \(-0.421520\pi\)
0.244063 + 0.969759i \(0.421520\pi\)
\(740\) 0 0
\(741\) −32.9445 −1.21025
\(742\) 0 0
\(743\) −21.3054 −0.781620 −0.390810 0.920471i \(-0.627805\pi\)
−0.390810 + 0.920471i \(0.627805\pi\)
\(744\) 0 0
\(745\) 20.2327 0.741268
\(746\) 0 0
\(747\) −50.2523 −1.83863
\(748\) 0 0
\(749\) 14.7006 0.537147
\(750\) 0 0
\(751\) −29.9614 −1.09331 −0.546654 0.837359i \(-0.684099\pi\)
−0.546654 + 0.837359i \(0.684099\pi\)
\(752\) 0 0
\(753\) −76.5954 −2.79129
\(754\) 0 0
\(755\) 20.9932 0.764021
\(756\) 0 0
\(757\) −0.956356 −0.0347594 −0.0173797 0.999849i \(-0.505532\pi\)
−0.0173797 + 0.999849i \(0.505532\pi\)
\(758\) 0 0
\(759\) −92.6674 −3.36361
\(760\) 0 0
\(761\) 27.1317 0.983522 0.491761 0.870730i \(-0.336353\pi\)
0.491761 + 0.870730i \(0.336353\pi\)
\(762\) 0 0
\(763\) −41.1052 −1.48811
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.36547 0.229844
\(768\) 0 0
\(769\) −25.9982 −0.937521 −0.468760 0.883325i \(-0.655299\pi\)
−0.468760 + 0.883325i \(0.655299\pi\)
\(770\) 0 0
\(771\) 45.0729 1.62326
\(772\) 0 0
\(773\) −12.0564 −0.433640 −0.216820 0.976212i \(-0.569568\pi\)
−0.216820 + 0.976212i \(0.569568\pi\)
\(774\) 0 0
\(775\) −0.966461 −0.0347163
\(776\) 0 0
\(777\) −49.0360 −1.75916
\(778\) 0 0
\(779\) 57.0820 2.04518
\(780\) 0 0
\(781\) 71.5741 2.56112
\(782\) 0 0
\(783\) −8.51485 −0.304296
\(784\) 0 0
\(785\) −13.4946 −0.481644
\(786\) 0 0
\(787\) −5.86215 −0.208963 −0.104482 0.994527i \(-0.533318\pi\)
−0.104482 + 0.994527i \(0.533318\pi\)
\(788\) 0 0
\(789\) 72.8590 2.59385
\(790\) 0 0
\(791\) 25.8408 0.918793
\(792\) 0 0
\(793\) −6.42839 −0.228279
\(794\) 0 0
\(795\) −24.0993 −0.854713
\(796\) 0 0
\(797\) −40.9986 −1.45224 −0.726122 0.687566i \(-0.758679\pi\)
−0.726122 + 0.687566i \(0.758679\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −48.1789 −1.70232
\(802\) 0 0
\(803\) 24.1729 0.853044
\(804\) 0 0
\(805\) 33.4499 1.17895
\(806\) 0 0
\(807\) 61.6887 2.17155
\(808\) 0 0
\(809\) 40.1976 1.41327 0.706636 0.707577i \(-0.250212\pi\)
0.706636 + 0.707577i \(0.250212\pi\)
\(810\) 0 0
\(811\) −27.4029 −0.962246 −0.481123 0.876653i \(-0.659771\pi\)
−0.481123 + 0.876653i \(0.659771\pi\)
\(812\) 0 0
\(813\) 8.39693 0.294493
\(814\) 0 0
\(815\) −40.3705 −1.41412
\(816\) 0 0
\(817\) −2.29498 −0.0802911
\(818\) 0 0
\(819\) 23.7837 0.831071
\(820\) 0 0
\(821\) 7.39693 0.258155 0.129077 0.991635i \(-0.458798\pi\)
0.129077 + 0.991635i \(0.458798\pi\)
\(822\) 0 0
\(823\) 9.53890 0.332505 0.166253 0.986083i \(-0.446833\pi\)
0.166253 + 0.986083i \(0.446833\pi\)
\(824\) 0 0
\(825\) −33.0797 −1.15169
\(826\) 0 0
\(827\) 31.6979 1.10224 0.551122 0.834425i \(-0.314200\pi\)
0.551122 + 0.834425i \(0.314200\pi\)
\(828\) 0 0
\(829\) −28.1257 −0.976845 −0.488422 0.872607i \(-0.662427\pi\)
−0.488422 + 0.872607i \(0.662427\pi\)
\(830\) 0 0
\(831\) −78.6177 −2.72722
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.96936 −0.171972
\(836\) 0 0
\(837\) 2.81016 0.0971332
\(838\) 0 0
\(839\) −17.7442 −0.612599 −0.306299 0.951935i \(-0.599091\pi\)
−0.306299 + 0.951935i \(0.599091\pi\)
\(840\) 0 0
\(841\) −27.3337 −0.942541
\(842\) 0 0
\(843\) −19.5895 −0.674697
\(844\) 0 0
\(845\) −18.1925 −0.625842
\(846\) 0 0
\(847\) −46.6441 −1.60271
\(848\) 0 0
\(849\) −3.36959 −0.115644
\(850\) 0 0
\(851\) −33.9823 −1.16490
\(852\) 0 0
\(853\) −18.3277 −0.627528 −0.313764 0.949501i \(-0.601590\pi\)
−0.313764 + 0.949501i \(0.601590\pi\)
\(854\) 0 0
\(855\) 70.8813 2.42409
\(856\) 0 0
\(857\) −20.7098 −0.707432 −0.353716 0.935353i \(-0.615082\pi\)
−0.353716 + 0.935353i \(0.615082\pi\)
\(858\) 0 0
\(859\) −20.8212 −0.710410 −0.355205 0.934788i \(-0.615589\pi\)
−0.355205 + 0.934788i \(0.615589\pi\)
\(860\) 0 0
\(861\) −64.5758 −2.20074
\(862\) 0 0
\(863\) −13.6031 −0.463054 −0.231527 0.972828i \(-0.574372\pi\)
−0.231527 + 0.972828i \(0.574372\pi\)
\(864\) 0 0
\(865\) 28.8821 0.982020
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −70.4261 −2.38904
\(870\) 0 0
\(871\) 2.93407 0.0994171
\(872\) 0 0
\(873\) −23.1189 −0.782455
\(874\) 0 0
\(875\) 38.2583 1.29337
\(876\) 0 0
\(877\) −33.0591 −1.11633 −0.558164 0.829731i \(-0.688494\pi\)
−0.558164 + 0.829731i \(0.688494\pi\)
\(878\) 0 0
\(879\) 83.0369 2.80077
\(880\) 0 0
\(881\) 18.5107 0.623642 0.311821 0.950141i \(-0.399061\pi\)
0.311821 + 0.950141i \(0.399061\pi\)
\(882\) 0 0
\(883\) −36.3432 −1.22305 −0.611523 0.791227i \(-0.709443\pi\)
−0.611523 + 0.791227i \(0.709443\pi\)
\(884\) 0 0
\(885\) −21.4611 −0.721407
\(886\) 0 0
\(887\) −44.9968 −1.51085 −0.755423 0.655238i \(-0.772568\pi\)
−0.755423 + 0.655238i \(0.772568\pi\)
\(888\) 0 0
\(889\) 8.15125 0.273384
\(890\) 0 0
\(891\) 15.8033 0.529432
\(892\) 0 0
\(893\) −39.7333 −1.32962
\(894\) 0 0
\(895\) −25.8821 −0.865142
\(896\) 0 0
\(897\) 25.8280 0.862372
\(898\) 0 0
\(899\) −0.549935 −0.0183413
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 2.59627 0.0863983
\(904\) 0 0
\(905\) 29.1958 0.970502
\(906\) 0 0
\(907\) 28.8522 0.958020 0.479010 0.877809i \(-0.340996\pi\)
0.479010 + 0.877809i \(0.340996\pi\)
\(908\) 0 0
\(909\) −44.6486 −1.48090
\(910\) 0 0
\(911\) 11.5621 0.383070 0.191535 0.981486i \(-0.438653\pi\)
0.191535 + 0.981486i \(0.438653\pi\)
\(912\) 0 0
\(913\) −48.0993 −1.59185
\(914\) 0 0
\(915\) 21.6732 0.716495
\(916\) 0 0
\(917\) −12.6928 −0.419154
\(918\) 0 0
\(919\) −2.78880 −0.0919940 −0.0459970 0.998942i \(-0.514646\pi\)
−0.0459970 + 0.998942i \(0.514646\pi\)
\(920\) 0 0
\(921\) −41.2053 −1.35776
\(922\) 0 0
\(923\) −19.9489 −0.656627
\(924\) 0 0
\(925\) −12.1307 −0.398856
\(926\) 0 0
\(927\) −50.2380 −1.65003
\(928\) 0 0
\(929\) 40.2540 1.32069 0.660346 0.750962i \(-0.270410\pi\)
0.660346 + 0.750962i \(0.270410\pi\)
\(930\) 0 0
\(931\) 25.4766 0.834961
\(932\) 0 0
\(933\) 61.0019 1.99711
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −32.7739 −1.07068 −0.535339 0.844637i \(-0.679816\pi\)
−0.535339 + 0.844637i \(0.679816\pi\)
\(938\) 0 0
\(939\) 1.12061 0.0365699
\(940\) 0 0
\(941\) 40.9121 1.33370 0.666848 0.745194i \(-0.267643\pi\)
0.666848 + 0.745194i \(0.267643\pi\)
\(942\) 0 0
\(943\) −44.7515 −1.45731
\(944\) 0 0
\(945\) −34.7196 −1.12943
\(946\) 0 0
\(947\) 15.4807 0.503055 0.251528 0.967850i \(-0.419067\pi\)
0.251528 + 0.967850i \(0.419067\pi\)
\(948\) 0 0
\(949\) −6.73742 −0.218706
\(950\) 0 0
\(951\) −43.1712 −1.39992
\(952\) 0 0
\(953\) 46.9677 1.52143 0.760717 0.649084i \(-0.224848\pi\)
0.760717 + 0.649084i \(0.224848\pi\)
\(954\) 0 0
\(955\) −6.20769 −0.200876
\(956\) 0 0
\(957\) −18.8229 −0.608460
\(958\) 0 0
\(959\) −19.6263 −0.633766
\(960\) 0 0
\(961\) −30.8185 −0.994145
\(962\) 0 0
\(963\) −24.4219 −0.786985
\(964\) 0 0
\(965\) 1.19759 0.0385516
\(966\) 0 0
\(967\) 36.8881 1.18624 0.593120 0.805114i \(-0.297896\pi\)
0.593120 + 0.805114i \(0.297896\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 31.0087 0.995116 0.497558 0.867431i \(-0.334230\pi\)
0.497558 + 0.867431i \(0.334230\pi\)
\(972\) 0 0
\(973\) 15.4688 0.495908
\(974\) 0 0
\(975\) 9.21987 0.295272
\(976\) 0 0
\(977\) −13.9905 −0.447596 −0.223798 0.974636i \(-0.571846\pi\)
−0.223798 + 0.974636i \(0.571846\pi\)
\(978\) 0 0
\(979\) −46.1147 −1.47383
\(980\) 0 0
\(981\) 68.2877 2.18026
\(982\) 0 0
\(983\) −21.0888 −0.672629 −0.336315 0.941750i \(-0.609181\pi\)
−0.336315 + 0.941750i \(0.609181\pi\)
\(984\) 0 0
\(985\) 1.75433 0.0558975
\(986\) 0 0
\(987\) 44.9495 1.43076
\(988\) 0 0
\(989\) 1.79923 0.0572122
\(990\) 0 0
\(991\) −14.2362 −0.452227 −0.226114 0.974101i \(-0.572602\pi\)
−0.226114 + 0.974101i \(0.572602\pi\)
\(992\) 0 0
\(993\) −18.6655 −0.592332
\(994\) 0 0
\(995\) 21.4415 0.679741
\(996\) 0 0
\(997\) 9.52528 0.301669 0.150834 0.988559i \(-0.451804\pi\)
0.150834 + 0.988559i \(0.451804\pi\)
\(998\) 0 0
\(999\) 35.2722 1.11596
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.a.f.1.3 yes 3
4.3 odd 2 4624.2.a.be.1.1 3
17.2 even 8 1156.2.e.g.905.6 12
17.3 odd 16 1156.2.h.h.757.6 24
17.4 even 4 1156.2.b.e.577.1 6
17.5 odd 16 1156.2.h.h.977.1 24
17.6 odd 16 1156.2.h.h.733.6 24
17.7 odd 16 1156.2.h.h.1001.1 24
17.8 even 8 1156.2.e.g.829.1 12
17.9 even 8 1156.2.e.g.829.6 12
17.10 odd 16 1156.2.h.h.1001.6 24
17.11 odd 16 1156.2.h.h.733.1 24
17.12 odd 16 1156.2.h.h.977.6 24
17.13 even 4 1156.2.b.e.577.6 6
17.14 odd 16 1156.2.h.h.757.1 24
17.15 even 8 1156.2.e.g.905.1 12
17.16 even 2 1156.2.a.e.1.1 3
68.67 odd 2 4624.2.a.bf.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1156.2.a.e.1.1 3 17.16 even 2
1156.2.a.f.1.3 yes 3 1.1 even 1 trivial
1156.2.b.e.577.1 6 17.4 even 4
1156.2.b.e.577.6 6 17.13 even 4
1156.2.e.g.829.1 12 17.8 even 8
1156.2.e.g.829.6 12 17.9 even 8
1156.2.e.g.905.1 12 17.15 even 8
1156.2.e.g.905.6 12 17.2 even 8
1156.2.h.h.733.1 24 17.11 odd 16
1156.2.h.h.733.6 24 17.6 odd 16
1156.2.h.h.757.1 24 17.14 odd 16
1156.2.h.h.757.6 24 17.3 odd 16
1156.2.h.h.977.1 24 17.5 odd 16
1156.2.h.h.977.6 24 17.12 odd 16
1156.2.h.h.1001.1 24 17.7 odd 16
1156.2.h.h.1001.6 24 17.10 odd 16
4624.2.a.be.1.1 3 4.3 odd 2
4624.2.a.bf.1.3 3 68.67 odd 2