Properties

Label 1150.4.b.s.599.8
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(599,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-48,0,-20,0,0,-122,0,-98] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 219x^{10} + 17685x^{8} + 640366x^{6} + 10000368x^{4} + 54897345x^{2} + 95531076 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.8
Root \(-6.96868i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.s.599.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -5.96868i q^{3} -4.00000 q^{4} +11.9374 q^{6} -15.2484i q^{7} -8.00000i q^{8} -8.62516 q^{9} +12.0268 q^{11} +23.8747i q^{12} +90.1983i q^{13} +30.4968 q^{14} +16.0000 q^{16} -83.9831i q^{17} -17.2503i q^{18} -74.8503 q^{19} -91.0130 q^{21} +24.0537i q^{22} +23.0000i q^{23} -47.7495 q^{24} -180.397 q^{26} -109.674i q^{27} +60.9937i q^{28} -94.5321 q^{29} -178.393 q^{31} +32.0000i q^{32} -71.7844i q^{33} +167.966 q^{34} +34.5007 q^{36} -296.487i q^{37} -149.701i q^{38} +538.365 q^{39} +193.074 q^{41} -182.026i q^{42} +15.4576i q^{43} -48.1074 q^{44} -46.0000 q^{46} -128.899i q^{47} -95.4989i q^{48} +110.486 q^{49} -501.269 q^{51} -360.793i q^{52} +342.961i q^{53} +219.347 q^{54} -121.987 q^{56} +446.758i q^{57} -189.064i q^{58} -725.012 q^{59} -784.288 q^{61} -356.786i q^{62} +131.520i q^{63} -64.0000 q^{64} +143.569 q^{66} +782.822i q^{67} +335.932i q^{68} +137.280 q^{69} -141.768 q^{71} +69.0013i q^{72} +404.340i q^{73} +592.973 q^{74} +299.401 q^{76} -183.390i q^{77} +1076.73i q^{78} +721.038 q^{79} -887.486 q^{81} +386.147i q^{82} -985.391i q^{83} +364.052 q^{84} -30.9153 q^{86} +564.232i q^{87} -96.2148i q^{88} -463.054 q^{89} +1375.38 q^{91} -92.0000i q^{92} +1064.77i q^{93} +257.798 q^{94} +190.998 q^{96} +1680.05i q^{97} +220.971i q^{98} -103.734 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 48 q^{4} - 20 q^{6} - 122 q^{9} - 98 q^{11} + 168 q^{14} + 192 q^{16} + 458 q^{19} + 184 q^{21} + 80 q^{24} - 64 q^{26} + 364 q^{29} + 228 q^{31} + 700 q^{34} + 488 q^{36} + 286 q^{39} + 486 q^{41}+ \cdots + 284 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) − 5.96868i − 1.14867i −0.818619 0.574337i \(-0.805260\pi\)
0.818619 0.574337i \(-0.194740\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 11.9374 0.812235
\(7\) − 15.2484i − 0.823337i −0.911334 0.411669i \(-0.864946\pi\)
0.911334 0.411669i \(-0.135054\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) −8.62516 −0.319451
\(10\) 0 0
\(11\) 12.0268 0.329657 0.164829 0.986322i \(-0.447293\pi\)
0.164829 + 0.986322i \(0.447293\pi\)
\(12\) 23.8747i 0.574337i
\(13\) 90.1983i 1.92435i 0.272438 + 0.962173i \(0.412170\pi\)
−0.272438 + 0.962173i \(0.587830\pi\)
\(14\) 30.4968 0.582187
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 83.9831i − 1.19817i −0.800685 0.599085i \(-0.795531\pi\)
0.800685 0.599085i \(-0.204469\pi\)
\(18\) − 17.2503i − 0.225886i
\(19\) −74.8503 −0.903781 −0.451890 0.892073i \(-0.649250\pi\)
−0.451890 + 0.892073i \(0.649250\pi\)
\(20\) 0 0
\(21\) −91.0130 −0.945746
\(22\) 24.0537i 0.233103i
\(23\) 23.0000i 0.208514i
\(24\) −47.7495 −0.406117
\(25\) 0 0
\(26\) −180.397 −1.36072
\(27\) − 109.674i − 0.781729i
\(28\) 60.9937i 0.411669i
\(29\) −94.5321 −0.605316 −0.302658 0.953099i \(-0.597874\pi\)
−0.302658 + 0.953099i \(0.597874\pi\)
\(30\) 0 0
\(31\) −178.393 −1.03356 −0.516779 0.856119i \(-0.672869\pi\)
−0.516779 + 0.856119i \(0.672869\pi\)
\(32\) 32.0000i 0.176777i
\(33\) − 71.7844i − 0.378669i
\(34\) 167.966 0.847234
\(35\) 0 0
\(36\) 34.5007 0.159725
\(37\) − 296.487i − 1.31735i −0.752426 0.658677i \(-0.771116\pi\)
0.752426 0.658677i \(-0.228884\pi\)
\(38\) − 149.701i − 0.639069i
\(39\) 538.365 2.21045
\(40\) 0 0
\(41\) 193.074 0.735440 0.367720 0.929937i \(-0.380139\pi\)
0.367720 + 0.929937i \(0.380139\pi\)
\(42\) − 182.026i − 0.668743i
\(43\) 15.4576i 0.0548202i 0.999624 + 0.0274101i \(0.00872600\pi\)
−0.999624 + 0.0274101i \(0.991274\pi\)
\(44\) −48.1074 −0.164829
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) − 128.899i − 0.400040i −0.979792 0.200020i \(-0.935899\pi\)
0.979792 0.200020i \(-0.0641006\pi\)
\(48\) − 95.4989i − 0.287168i
\(49\) 110.486 0.322116
\(50\) 0 0
\(51\) −501.269 −1.37631
\(52\) − 360.793i − 0.962173i
\(53\) 342.961i 0.888855i 0.895815 + 0.444428i \(0.146593\pi\)
−0.895815 + 0.444428i \(0.853407\pi\)
\(54\) 219.347 0.552766
\(55\) 0 0
\(56\) −121.987 −0.291094
\(57\) 446.758i 1.03815i
\(58\) − 189.064i − 0.428023i
\(59\) −725.012 −1.59980 −0.799902 0.600130i \(-0.795115\pi\)
−0.799902 + 0.600130i \(0.795115\pi\)
\(60\) 0 0
\(61\) −784.288 −1.64619 −0.823097 0.567901i \(-0.807756\pi\)
−0.823097 + 0.567901i \(0.807756\pi\)
\(62\) − 356.786i − 0.730837i
\(63\) 131.520i 0.263016i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 143.569 0.267759
\(67\) 782.822i 1.42742i 0.700443 + 0.713708i \(0.252986\pi\)
−0.700443 + 0.713708i \(0.747014\pi\)
\(68\) 335.932i 0.599085i
\(69\) 137.280 0.239515
\(70\) 0 0
\(71\) −141.768 −0.236968 −0.118484 0.992956i \(-0.537803\pi\)
−0.118484 + 0.992956i \(0.537803\pi\)
\(72\) 69.0013i 0.112943i
\(73\) 404.340i 0.648280i 0.946009 + 0.324140i \(0.105075\pi\)
−0.946009 + 0.324140i \(0.894925\pi\)
\(74\) 592.973 0.931510
\(75\) 0 0
\(76\) 299.401 0.451890
\(77\) − 183.390i − 0.271419i
\(78\) 1076.73i 1.56302i
\(79\) 721.038 1.02687 0.513437 0.858127i \(-0.328372\pi\)
0.513437 + 0.858127i \(0.328372\pi\)
\(80\) 0 0
\(81\) −887.486 −1.21740
\(82\) 386.147i 0.520035i
\(83\) − 985.391i − 1.30314i −0.758588 0.651570i \(-0.774110\pi\)
0.758588 0.651570i \(-0.225890\pi\)
\(84\) 364.052 0.472873
\(85\) 0 0
\(86\) −30.9153 −0.0387637
\(87\) 564.232i 0.695311i
\(88\) − 96.2148i − 0.116551i
\(89\) −463.054 −0.551502 −0.275751 0.961229i \(-0.588926\pi\)
−0.275751 + 0.961229i \(0.588926\pi\)
\(90\) 0 0
\(91\) 1375.38 1.58439
\(92\) − 92.0000i − 0.104257i
\(93\) 1064.77i 1.18722i
\(94\) 257.798 0.282871
\(95\) 0 0
\(96\) 190.998 0.203059
\(97\) 1680.05i 1.75859i 0.476277 + 0.879295i \(0.341986\pi\)
−0.476277 + 0.879295i \(0.658014\pi\)
\(98\) 220.971i 0.227770i
\(99\) −103.734 −0.105309
\(100\) 0 0
\(101\) −1142.69 −1.12576 −0.562882 0.826537i \(-0.690308\pi\)
−0.562882 + 0.826537i \(0.690308\pi\)
\(102\) − 1002.54i − 0.973196i
\(103\) 716.090i 0.685033i 0.939512 + 0.342517i \(0.111279\pi\)
−0.939512 + 0.342517i \(0.888721\pi\)
\(104\) 721.586 0.680359
\(105\) 0 0
\(106\) −685.922 −0.628515
\(107\) − 710.395i − 0.641836i −0.947107 0.320918i \(-0.896009\pi\)
0.947107 0.320918i \(-0.103991\pi\)
\(108\) 438.694i 0.390865i
\(109\) 827.349 0.727024 0.363512 0.931589i \(-0.381578\pi\)
0.363512 + 0.931589i \(0.381578\pi\)
\(110\) 0 0
\(111\) −1769.63 −1.51321
\(112\) − 243.975i − 0.205834i
\(113\) 1425.51i 1.18673i 0.804934 + 0.593364i \(0.202201\pi\)
−0.804934 + 0.593364i \(0.797799\pi\)
\(114\) −893.515 −0.734082
\(115\) 0 0
\(116\) 378.128 0.302658
\(117\) − 777.975i − 0.614734i
\(118\) − 1450.02i − 1.13123i
\(119\) −1280.61 −0.986498
\(120\) 0 0
\(121\) −1186.35 −0.891326
\(122\) − 1568.58i − 1.16403i
\(123\) − 1152.40i − 0.844780i
\(124\) 713.572 0.516779
\(125\) 0 0
\(126\) −263.040 −0.185980
\(127\) 1410.48i 0.985514i 0.870167 + 0.492757i \(0.164011\pi\)
−0.870167 + 0.492757i \(0.835989\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) 92.2617 0.0629705
\(130\) 0 0
\(131\) 1187.59 0.792060 0.396030 0.918238i \(-0.370388\pi\)
0.396030 + 0.918238i \(0.370388\pi\)
\(132\) 287.138i 0.189334i
\(133\) 1141.35i 0.744116i
\(134\) −1565.64 −1.00934
\(135\) 0 0
\(136\) −671.865 −0.423617
\(137\) − 925.039i − 0.576872i −0.957499 0.288436i \(-0.906865\pi\)
0.957499 0.288436i \(-0.0931352\pi\)
\(138\) 274.559i 0.169363i
\(139\) −1600.12 −0.976409 −0.488204 0.872729i \(-0.662348\pi\)
−0.488204 + 0.872729i \(0.662348\pi\)
\(140\) 0 0
\(141\) −769.357 −0.459515
\(142\) − 283.535i − 0.167562i
\(143\) 1084.80i 0.634375i
\(144\) −138.003 −0.0798626
\(145\) 0 0
\(146\) −808.680 −0.458403
\(147\) − 659.454i − 0.370006i
\(148\) 1185.95i 0.658677i
\(149\) −3494.49 −1.92134 −0.960671 0.277688i \(-0.910432\pi\)
−0.960671 + 0.277688i \(0.910432\pi\)
\(150\) 0 0
\(151\) 2981.78 1.60698 0.803488 0.595321i \(-0.202975\pi\)
0.803488 + 0.595321i \(0.202975\pi\)
\(152\) 598.802i 0.319535i
\(153\) 724.368i 0.382756i
\(154\) 366.781 0.191922
\(155\) 0 0
\(156\) −2153.46 −1.10522
\(157\) − 2061.78i − 1.04808i −0.851695 0.524038i \(-0.824425\pi\)
0.851695 0.524038i \(-0.175575\pi\)
\(158\) 1442.08i 0.726110i
\(159\) 2047.03 1.02100
\(160\) 0 0
\(161\) 350.714 0.171678
\(162\) − 1774.97i − 0.860833i
\(163\) 1017.82i 0.489092i 0.969638 + 0.244546i \(0.0786389\pi\)
−0.969638 + 0.244546i \(0.921361\pi\)
\(164\) −772.294 −0.367720
\(165\) 0 0
\(166\) 1970.78 0.921460
\(167\) 2501.83i 1.15927i 0.814877 + 0.579633i \(0.196804\pi\)
−0.814877 + 0.579633i \(0.803196\pi\)
\(168\) 728.104i 0.334372i
\(169\) −5938.73 −2.70311
\(170\) 0 0
\(171\) 645.596 0.288713
\(172\) − 61.8306i − 0.0274101i
\(173\) 248.051i 0.109011i 0.998513 + 0.0545057i \(0.0173583\pi\)
−0.998513 + 0.0545057i \(0.982642\pi\)
\(174\) −1128.46 −0.491659
\(175\) 0 0
\(176\) 192.430 0.0824144
\(177\) 4327.36i 1.83765i
\(178\) − 926.109i − 0.389971i
\(179\) −1394.61 −0.582336 −0.291168 0.956672i \(-0.594044\pi\)
−0.291168 + 0.956672i \(0.594044\pi\)
\(180\) 0 0
\(181\) −546.627 −0.224478 −0.112239 0.993681i \(-0.535802\pi\)
−0.112239 + 0.993681i \(0.535802\pi\)
\(182\) 2750.76i 1.12033i
\(183\) 4681.17i 1.89094i
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −2129.54 −0.839492
\(187\) − 1010.05i − 0.394986i
\(188\) 515.596i 0.200020i
\(189\) −1672.35 −0.643627
\(190\) 0 0
\(191\) 992.925 0.376154 0.188077 0.982154i \(-0.439774\pi\)
0.188077 + 0.982154i \(0.439774\pi\)
\(192\) 381.996i 0.143584i
\(193\) 4855.73i 1.81100i 0.424347 + 0.905500i \(0.360504\pi\)
−0.424347 + 0.905500i \(0.639496\pi\)
\(194\) −3360.10 −1.24351
\(195\) 0 0
\(196\) −441.943 −0.161058
\(197\) 3461.50i 1.25189i 0.779868 + 0.625944i \(0.215286\pi\)
−0.779868 + 0.625944i \(0.784714\pi\)
\(198\) − 207.467i − 0.0744649i
\(199\) 2461.35 0.876785 0.438393 0.898784i \(-0.355548\pi\)
0.438393 + 0.898784i \(0.355548\pi\)
\(200\) 0 0
\(201\) 4672.42 1.63964
\(202\) − 2285.39i − 0.796036i
\(203\) 1441.46i 0.498379i
\(204\) 2005.07 0.688153
\(205\) 0 0
\(206\) −1432.18 −0.484391
\(207\) − 198.379i − 0.0666100i
\(208\) 1443.17i 0.481087i
\(209\) −900.213 −0.297938
\(210\) 0 0
\(211\) −3338.23 −1.08916 −0.544581 0.838708i \(-0.683311\pi\)
−0.544581 + 0.838708i \(0.683311\pi\)
\(212\) − 1371.84i − 0.444428i
\(213\) 846.166i 0.272199i
\(214\) 1420.79 0.453846
\(215\) 0 0
\(216\) −877.388 −0.276383
\(217\) 2720.21i 0.850968i
\(218\) 1654.70i 0.514084i
\(219\) 2413.38 0.744662
\(220\) 0 0
\(221\) 7575.13 2.30570
\(222\) − 3539.27i − 1.07000i
\(223\) − 3805.53i − 1.14277i −0.820683 0.571384i \(-0.806407\pi\)
0.820683 0.571384i \(-0.193593\pi\)
\(224\) 487.949 0.145547
\(225\) 0 0
\(226\) −2851.01 −0.839144
\(227\) − 2552.09i − 0.746204i −0.927790 0.373102i \(-0.878294\pi\)
0.927790 0.373102i \(-0.121706\pi\)
\(228\) − 1787.03i − 0.519074i
\(229\) 281.217 0.0811500 0.0405750 0.999176i \(-0.487081\pi\)
0.0405750 + 0.999176i \(0.487081\pi\)
\(230\) 0 0
\(231\) −1094.60 −0.311772
\(232\) 756.257i 0.214012i
\(233\) 5732.97i 1.61193i 0.591965 + 0.805964i \(0.298352\pi\)
−0.591965 + 0.805964i \(0.701648\pi\)
\(234\) 1555.95 0.434682
\(235\) 0 0
\(236\) 2900.05 0.799902
\(237\) − 4303.64i − 1.17954i
\(238\) − 2561.22i − 0.697560i
\(239\) −170.096 −0.0460360 −0.0230180 0.999735i \(-0.507328\pi\)
−0.0230180 + 0.999735i \(0.507328\pi\)
\(240\) 0 0
\(241\) −4733.72 −1.26525 −0.632626 0.774458i \(-0.718023\pi\)
−0.632626 + 0.774458i \(0.718023\pi\)
\(242\) − 2372.71i − 0.630263i
\(243\) 2335.94i 0.616668i
\(244\) 3137.15 0.823097
\(245\) 0 0
\(246\) 2304.79 0.597350
\(247\) − 6751.37i − 1.73919i
\(248\) 1427.14i 0.365418i
\(249\) −5881.48 −1.49688
\(250\) 0 0
\(251\) −222.109 −0.0558543 −0.0279271 0.999610i \(-0.508891\pi\)
−0.0279271 + 0.999610i \(0.508891\pi\)
\(252\) − 526.080i − 0.131508i
\(253\) 276.618i 0.0687383i
\(254\) −2820.97 −0.696864
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 818.457i − 0.198654i −0.995055 0.0993268i \(-0.968331\pi\)
0.995055 0.0993268i \(-0.0316689\pi\)
\(258\) 184.523i 0.0445269i
\(259\) −4520.95 −1.08463
\(260\) 0 0
\(261\) 815.355 0.193369
\(262\) 2375.17i 0.560071i
\(263\) − 6242.92i − 1.46371i −0.681462 0.731853i \(-0.738656\pi\)
0.681462 0.731853i \(-0.261344\pi\)
\(264\) −574.275 −0.133880
\(265\) 0 0
\(266\) −2282.70 −0.526170
\(267\) 2763.82i 0.633496i
\(268\) − 3131.29i − 0.713708i
\(269\) −1088.75 −0.246774 −0.123387 0.992359i \(-0.539376\pi\)
−0.123387 + 0.992359i \(0.539376\pi\)
\(270\) 0 0
\(271\) −6897.04 −1.54600 −0.772999 0.634408i \(-0.781244\pi\)
−0.772999 + 0.634408i \(0.781244\pi\)
\(272\) − 1343.73i − 0.299543i
\(273\) − 8209.21i − 1.81994i
\(274\) 1850.08 0.407910
\(275\) 0 0
\(276\) −549.119 −0.119757
\(277\) − 6455.61i − 1.40029i −0.714001 0.700145i \(-0.753119\pi\)
0.714001 0.700145i \(-0.246881\pi\)
\(278\) − 3200.25i − 0.690425i
\(279\) 1538.67 0.330171
\(280\) 0 0
\(281\) −1521.46 −0.322999 −0.161499 0.986873i \(-0.551633\pi\)
−0.161499 + 0.986873i \(0.551633\pi\)
\(282\) − 1538.71i − 0.324926i
\(283\) 3613.92i 0.759101i 0.925171 + 0.379550i \(0.123921\pi\)
−0.925171 + 0.379550i \(0.876079\pi\)
\(284\) 567.071 0.118484
\(285\) 0 0
\(286\) −2169.60 −0.448571
\(287\) − 2944.07i − 0.605515i
\(288\) − 276.005i − 0.0564714i
\(289\) −2140.16 −0.435613
\(290\) 0 0
\(291\) 10027.7 2.02005
\(292\) − 1617.36i − 0.324140i
\(293\) − 4848.54i − 0.966740i −0.875416 0.483370i \(-0.839413\pi\)
0.875416 0.483370i \(-0.160587\pi\)
\(294\) 1318.91 0.261634
\(295\) 0 0
\(296\) −2371.89 −0.465755
\(297\) − 1319.03i − 0.257703i
\(298\) − 6988.99i − 1.35859i
\(299\) −2074.56 −0.401254
\(300\) 0 0
\(301\) 235.705 0.0451355
\(302\) 5963.55i 1.13630i
\(303\) 6820.37i 1.29314i
\(304\) −1197.60 −0.225945
\(305\) 0 0
\(306\) −1448.74 −0.270650
\(307\) 1976.04i 0.367356i 0.982986 + 0.183678i \(0.0588004\pi\)
−0.982986 + 0.183678i \(0.941200\pi\)
\(308\) 733.562i 0.135710i
\(309\) 4274.11 0.786879
\(310\) 0 0
\(311\) 3020.57 0.550742 0.275371 0.961338i \(-0.411199\pi\)
0.275371 + 0.961338i \(0.411199\pi\)
\(312\) − 4306.92i − 0.781511i
\(313\) − 775.315i − 0.140011i −0.997547 0.0700054i \(-0.977698\pi\)
0.997547 0.0700054i \(-0.0223017\pi\)
\(314\) 4123.56 0.741101
\(315\) 0 0
\(316\) −2884.15 −0.513437
\(317\) 4878.60i 0.864384i 0.901782 + 0.432192i \(0.142260\pi\)
−0.901782 + 0.432192i \(0.857740\pi\)
\(318\) 4094.05i 0.721959i
\(319\) −1136.92 −0.199547
\(320\) 0 0
\(321\) −4240.12 −0.737260
\(322\) 701.427i 0.121394i
\(323\) 6286.16i 1.08288i
\(324\) 3549.94 0.608701
\(325\) 0 0
\(326\) −2035.64 −0.345840
\(327\) − 4938.18i − 0.835113i
\(328\) − 1544.59i − 0.260017i
\(329\) −1965.51 −0.329367
\(330\) 0 0
\(331\) 3250.81 0.539822 0.269911 0.962885i \(-0.413006\pi\)
0.269911 + 0.962885i \(0.413006\pi\)
\(332\) 3941.56i 0.651570i
\(333\) 2557.25i 0.420830i
\(334\) −5003.66 −0.819725
\(335\) 0 0
\(336\) −1456.21 −0.236436
\(337\) 836.952i 0.135287i 0.997710 + 0.0676435i \(0.0215480\pi\)
−0.997710 + 0.0676435i \(0.978452\pi\)
\(338\) − 11877.5i − 1.91139i
\(339\) 8508.39 1.36316
\(340\) 0 0
\(341\) −2145.51 −0.340720
\(342\) 1291.19i 0.204151i
\(343\) − 6914.94i − 1.08855i
\(344\) 123.661 0.0193819
\(345\) 0 0
\(346\) −496.102 −0.0770827
\(347\) 2965.99i 0.458856i 0.973326 + 0.229428i \(0.0736855\pi\)
−0.973326 + 0.229428i \(0.926315\pi\)
\(348\) − 2256.93i − 0.347655i
\(349\) 869.965 0.133433 0.0667165 0.997772i \(-0.478748\pi\)
0.0667165 + 0.997772i \(0.478748\pi\)
\(350\) 0 0
\(351\) 9892.37 1.50432
\(352\) 384.859i 0.0582757i
\(353\) 1984.81i 0.299265i 0.988742 + 0.149633i \(0.0478091\pi\)
−0.988742 + 0.149633i \(0.952191\pi\)
\(354\) −8654.73 −1.29942
\(355\) 0 0
\(356\) 1852.22 0.275751
\(357\) 7643.55i 1.13316i
\(358\) − 2789.22i − 0.411774i
\(359\) 778.464 0.114445 0.0572225 0.998361i \(-0.481776\pi\)
0.0572225 + 0.998361i \(0.481776\pi\)
\(360\) 0 0
\(361\) −1256.43 −0.183180
\(362\) − 1093.25i − 0.158730i
\(363\) 7080.98i 1.02384i
\(364\) −5501.53 −0.792193
\(365\) 0 0
\(366\) −9362.33 −1.33710
\(367\) − 3782.98i − 0.538066i −0.963131 0.269033i \(-0.913296\pi\)
0.963131 0.269033i \(-0.0867040\pi\)
\(368\) 368.000i 0.0521286i
\(369\) −1665.29 −0.234937
\(370\) 0 0
\(371\) 5229.61 0.731827
\(372\) − 4259.08i − 0.593611i
\(373\) − 4252.72i − 0.590342i −0.955444 0.295171i \(-0.904623\pi\)
0.955444 0.295171i \(-0.0953766\pi\)
\(374\) 2020.10 0.279297
\(375\) 0 0
\(376\) −1031.19 −0.141435
\(377\) − 8526.63i − 1.16484i
\(378\) − 3344.70i − 0.455113i
\(379\) −4743.71 −0.642923 −0.321462 0.946923i \(-0.604174\pi\)
−0.321462 + 0.946923i \(0.604174\pi\)
\(380\) 0 0
\(381\) 8418.74 1.13203
\(382\) 1985.85i 0.265981i
\(383\) 6966.42i 0.929419i 0.885463 + 0.464710i \(0.153841\pi\)
−0.885463 + 0.464710i \(0.846159\pi\)
\(384\) −763.991 −0.101529
\(385\) 0 0
\(386\) −9711.45 −1.28057
\(387\) − 133.325i − 0.0175123i
\(388\) − 6720.20i − 0.879295i
\(389\) 8686.79 1.13223 0.566115 0.824326i \(-0.308446\pi\)
0.566115 + 0.824326i \(0.308446\pi\)
\(390\) 0 0
\(391\) 1931.61 0.249836
\(392\) − 883.886i − 0.113885i
\(393\) − 7088.32i − 0.909818i
\(394\) −6923.01 −0.885219
\(395\) 0 0
\(396\) 414.934 0.0526546
\(397\) − 13526.4i − 1.71000i −0.518631 0.854998i \(-0.673558\pi\)
0.518631 0.854998i \(-0.326442\pi\)
\(398\) 4922.69i 0.619981i
\(399\) 6812.35 0.854747
\(400\) 0 0
\(401\) −6804.61 −0.847396 −0.423698 0.905803i \(-0.639268\pi\)
−0.423698 + 0.905803i \(0.639268\pi\)
\(402\) 9344.83i 1.15940i
\(403\) − 16090.7i − 1.98893i
\(404\) 4570.77 0.562882
\(405\) 0 0
\(406\) −2882.93 −0.352407
\(407\) − 3565.80i − 0.434276i
\(408\) 4010.15i 0.486598i
\(409\) −3156.92 −0.381662 −0.190831 0.981623i \(-0.561118\pi\)
−0.190831 + 0.981623i \(0.561118\pi\)
\(410\) 0 0
\(411\) −5521.27 −0.662637
\(412\) − 2864.36i − 0.342517i
\(413\) 11055.3i 1.31718i
\(414\) 396.758 0.0471004
\(415\) 0 0
\(416\) −2886.35 −0.340180
\(417\) 9550.64i 1.12157i
\(418\) − 1800.43i − 0.210674i
\(419\) 13696.5 1.59694 0.798468 0.602038i \(-0.205644\pi\)
0.798468 + 0.602038i \(0.205644\pi\)
\(420\) 0 0
\(421\) −3910.11 −0.452653 −0.226326 0.974052i \(-0.572672\pi\)
−0.226326 + 0.974052i \(0.572672\pi\)
\(422\) − 6676.46i − 0.770154i
\(423\) 1111.78i 0.127793i
\(424\) 2743.69 0.314258
\(425\) 0 0
\(426\) −1692.33 −0.192474
\(427\) 11959.2i 1.35537i
\(428\) 2841.58i 0.320918i
\(429\) 6474.83 0.728690
\(430\) 0 0
\(431\) 5415.70 0.605256 0.302628 0.953109i \(-0.402136\pi\)
0.302628 + 0.953109i \(0.402136\pi\)
\(432\) − 1754.78i − 0.195432i
\(433\) 15906.0i 1.76534i 0.469989 + 0.882672i \(0.344258\pi\)
−0.469989 + 0.882672i \(0.655742\pi\)
\(434\) −5440.42 −0.601725
\(435\) 0 0
\(436\) −3309.39 −0.363512
\(437\) − 1721.56i − 0.188451i
\(438\) 4826.75i 0.526555i
\(439\) −6939.90 −0.754495 −0.377247 0.926112i \(-0.623129\pi\)
−0.377247 + 0.926112i \(0.623129\pi\)
\(440\) 0 0
\(441\) −952.958 −0.102900
\(442\) 15150.3i 1.63037i
\(443\) − 16617.0i − 1.78216i −0.453844 0.891081i \(-0.649948\pi\)
0.453844 0.891081i \(-0.350052\pi\)
\(444\) 7078.54 0.756605
\(445\) 0 0
\(446\) 7611.07 0.808059
\(447\) 20857.5i 2.20700i
\(448\) 975.899i 0.102917i
\(449\) −12669.8 −1.33168 −0.665841 0.746093i \(-0.731927\pi\)
−0.665841 + 0.746093i \(0.731927\pi\)
\(450\) 0 0
\(451\) 2322.07 0.242443
\(452\) − 5702.02i − 0.593364i
\(453\) − 17797.3i − 1.84589i
\(454\) 5104.19 0.527646
\(455\) 0 0
\(456\) 3574.06 0.367041
\(457\) − 7479.70i − 0.765614i −0.923828 0.382807i \(-0.874957\pi\)
0.923828 0.382807i \(-0.125043\pi\)
\(458\) 562.435i 0.0573818i
\(459\) −9210.73 −0.936645
\(460\) 0 0
\(461\) 3260.42 0.329399 0.164699 0.986344i \(-0.447335\pi\)
0.164699 + 0.986344i \(0.447335\pi\)
\(462\) − 2189.20i − 0.220456i
\(463\) − 10666.2i − 1.07062i −0.844654 0.535312i \(-0.820194\pi\)
0.844654 0.535312i \(-0.179806\pi\)
\(464\) −1512.51 −0.151329
\(465\) 0 0
\(466\) −11465.9 −1.13980
\(467\) 6202.48i 0.614597i 0.951613 + 0.307298i \(0.0994250\pi\)
−0.951613 + 0.307298i \(0.900575\pi\)
\(468\) 3111.90i 0.307367i
\(469\) 11936.8 1.17525
\(470\) 0 0
\(471\) −12306.1 −1.20390
\(472\) 5800.09i 0.565616i
\(473\) 185.907i 0.0180719i
\(474\) 8607.29 0.834063
\(475\) 0 0
\(476\) 5122.44 0.493249
\(477\) − 2958.10i − 0.283945i
\(478\) − 340.193i − 0.0325524i
\(479\) 13749.4 1.31154 0.655768 0.754962i \(-0.272345\pi\)
0.655768 + 0.754962i \(0.272345\pi\)
\(480\) 0 0
\(481\) 26742.6 2.53505
\(482\) − 9467.43i − 0.894668i
\(483\) − 2093.30i − 0.197202i
\(484\) 4745.42 0.445663
\(485\) 0 0
\(486\) −4671.87 −0.436050
\(487\) 9673.72i 0.900119i 0.892999 + 0.450060i \(0.148597\pi\)
−0.892999 + 0.450060i \(0.851403\pi\)
\(488\) 6274.31i 0.582017i
\(489\) 6075.05 0.561807
\(490\) 0 0
\(491\) 5908.70 0.543087 0.271544 0.962426i \(-0.412466\pi\)
0.271544 + 0.962426i \(0.412466\pi\)
\(492\) 4609.58i 0.422390i
\(493\) 7939.10i 0.725272i
\(494\) 13502.7 1.22979
\(495\) 0 0
\(496\) −2854.29 −0.258390
\(497\) 2161.73i 0.195105i
\(498\) − 11763.0i − 1.05846i
\(499\) 12119.8 1.08729 0.543644 0.839316i \(-0.317044\pi\)
0.543644 + 0.839316i \(0.317044\pi\)
\(500\) 0 0
\(501\) 14932.6 1.33162
\(502\) − 444.219i − 0.0394949i
\(503\) 17552.8i 1.55595i 0.628298 + 0.777973i \(0.283752\pi\)
−0.628298 + 0.777973i \(0.716248\pi\)
\(504\) 1052.16 0.0929900
\(505\) 0 0
\(506\) −553.235 −0.0486053
\(507\) 35446.4i 3.10499i
\(508\) − 5641.94i − 0.492757i
\(509\) −7377.43 −0.642434 −0.321217 0.947006i \(-0.604092\pi\)
−0.321217 + 0.947006i \(0.604092\pi\)
\(510\) 0 0
\(511\) 6165.55 0.533753
\(512\) 512.000i 0.0441942i
\(513\) 8209.10i 0.706512i
\(514\) 1636.91 0.140469
\(515\) 0 0
\(516\) −369.047 −0.0314852
\(517\) − 1550.25i − 0.131876i
\(518\) − 9041.91i − 0.766947i
\(519\) 1480.54 0.125219
\(520\) 0 0
\(521\) −1512.93 −0.127222 −0.0636111 0.997975i \(-0.520262\pi\)
−0.0636111 + 0.997975i \(0.520262\pi\)
\(522\) 1630.71i 0.136732i
\(523\) − 13736.6i − 1.14849i −0.818684 0.574244i \(-0.805296\pi\)
0.818684 0.574244i \(-0.194704\pi\)
\(524\) −4750.34 −0.396030
\(525\) 0 0
\(526\) 12485.8 1.03500
\(527\) 14982.0i 1.23838i
\(528\) − 1148.55i − 0.0946672i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 6253.34 0.511058
\(532\) − 4565.39i − 0.372058i
\(533\) 17414.9i 1.41524i
\(534\) −5527.65 −0.447949
\(535\) 0 0
\(536\) 6262.58 0.504668
\(537\) 8323.99i 0.668914i
\(538\) − 2177.50i − 0.174496i
\(539\) 1328.80 0.106188
\(540\) 0 0
\(541\) 24827.7 1.97306 0.986529 0.163587i \(-0.0523063\pi\)
0.986529 + 0.163587i \(0.0523063\pi\)
\(542\) − 13794.1i − 1.09319i
\(543\) 3262.64i 0.257852i
\(544\) 2687.46 0.211809
\(545\) 0 0
\(546\) 16418.4 1.28689
\(547\) − 4902.67i − 0.383223i −0.981471 0.191612i \(-0.938629\pi\)
0.981471 0.191612i \(-0.0613714\pi\)
\(548\) 3700.16i 0.288436i
\(549\) 6764.62 0.525877
\(550\) 0 0
\(551\) 7075.75 0.547073
\(552\) − 1098.24i − 0.0846813i
\(553\) − 10994.7i − 0.845464i
\(554\) 12911.2 0.990154
\(555\) 0 0
\(556\) 6400.50 0.488204
\(557\) − 2422.01i − 0.184244i −0.995748 0.0921220i \(-0.970635\pi\)
0.995748 0.0921220i \(-0.0293650\pi\)
\(558\) 3077.34i 0.233466i
\(559\) −1394.25 −0.105493
\(560\) 0 0
\(561\) −6028.68 −0.453710
\(562\) − 3042.92i − 0.228395i
\(563\) − 18122.4i − 1.35660i −0.734785 0.678300i \(-0.762717\pi\)
0.734785 0.678300i \(-0.237283\pi\)
\(564\) 3077.43 0.229757
\(565\) 0 0
\(566\) −7227.85 −0.536765
\(567\) 13532.8i 1.00233i
\(568\) 1134.14i 0.0837809i
\(569\) −15845.3 −1.16744 −0.583718 0.811956i \(-0.698403\pi\)
−0.583718 + 0.811956i \(0.698403\pi\)
\(570\) 0 0
\(571\) −6699.07 −0.490976 −0.245488 0.969400i \(-0.578948\pi\)
−0.245488 + 0.969400i \(0.578948\pi\)
\(572\) − 4339.21i − 0.317188i
\(573\) − 5926.45i − 0.432079i
\(574\) 5888.13 0.428164
\(575\) 0 0
\(576\) 552.011 0.0399313
\(577\) 19546.6i 1.41029i 0.709065 + 0.705143i \(0.249117\pi\)
−0.709065 + 0.705143i \(0.750883\pi\)
\(578\) − 4280.33i − 0.308025i
\(579\) 28982.3 2.08025
\(580\) 0 0
\(581\) −15025.7 −1.07292
\(582\) 20055.4i 1.42839i
\(583\) 4124.74i 0.293018i
\(584\) 3234.72 0.229201
\(585\) 0 0
\(586\) 9697.08 0.683588
\(587\) − 1488.14i − 0.104638i −0.998630 0.0523188i \(-0.983339\pi\)
0.998630 0.0523188i \(-0.0166612\pi\)
\(588\) 2637.82i 0.185003i
\(589\) 13352.8 0.934111
\(590\) 0 0
\(591\) 20660.6 1.43801
\(592\) − 4743.79i − 0.329339i
\(593\) − 8930.13i − 0.618409i −0.950996 0.309205i \(-0.899937\pi\)
0.950996 0.309205i \(-0.100063\pi\)
\(594\) 2638.05 0.182223
\(595\) 0 0
\(596\) 13978.0 0.960671
\(597\) − 14691.0i − 1.00714i
\(598\) − 4149.12i − 0.283729i
\(599\) −18051.8 −1.23135 −0.615674 0.788001i \(-0.711116\pi\)
−0.615674 + 0.788001i \(0.711116\pi\)
\(600\) 0 0
\(601\) −22172.1 −1.50486 −0.752428 0.658674i \(-0.771118\pi\)
−0.752428 + 0.658674i \(0.771118\pi\)
\(602\) 471.409i 0.0319156i
\(603\) − 6751.97i − 0.455989i
\(604\) −11927.1 −0.803488
\(605\) 0 0
\(606\) −13640.7 −0.914385
\(607\) − 11705.4i − 0.782713i −0.920239 0.391357i \(-0.872006\pi\)
0.920239 0.391357i \(-0.127994\pi\)
\(608\) − 2395.21i − 0.159767i
\(609\) 8603.64 0.572475
\(610\) 0 0
\(611\) 11626.5 0.769815
\(612\) − 2897.47i − 0.191378i
\(613\) 10911.8i 0.718962i 0.933152 + 0.359481i \(0.117046\pi\)
−0.933152 + 0.359481i \(0.882954\pi\)
\(614\) −3952.07 −0.259760
\(615\) 0 0
\(616\) −1467.12 −0.0959612
\(617\) − 23999.1i − 1.56591i −0.622079 0.782955i \(-0.713712\pi\)
0.622079 0.782955i \(-0.286288\pi\)
\(618\) 8548.22i 0.556408i
\(619\) −9204.68 −0.597685 −0.298843 0.954302i \(-0.596601\pi\)
−0.298843 + 0.954302i \(0.596601\pi\)
\(620\) 0 0
\(621\) 2522.49 0.163002
\(622\) 6041.14i 0.389433i
\(623\) 7060.85i 0.454072i
\(624\) 8613.84 0.552611
\(625\) 0 0
\(626\) 1550.63 0.0990026
\(627\) 5373.09i 0.342233i
\(628\) 8247.11i 0.524038i
\(629\) −24899.9 −1.57842
\(630\) 0 0
\(631\) −2047.31 −0.129163 −0.0645817 0.997912i \(-0.520571\pi\)
−0.0645817 + 0.997912i \(0.520571\pi\)
\(632\) − 5768.30i − 0.363055i
\(633\) 19924.8i 1.25109i
\(634\) −9757.21 −0.611212
\(635\) 0 0
\(636\) −8188.10 −0.510502
\(637\) 9965.62i 0.619863i
\(638\) − 2273.85i − 0.141101i
\(639\) 1222.77 0.0756996
\(640\) 0 0
\(641\) 16728.4 1.03078 0.515390 0.856956i \(-0.327647\pi\)
0.515390 + 0.856956i \(0.327647\pi\)
\(642\) − 8480.24i − 0.521321i
\(643\) − 23471.6i − 1.43955i −0.694209 0.719774i \(-0.744245\pi\)
0.694209 0.719774i \(-0.255755\pi\)
\(644\) −1402.85 −0.0858388
\(645\) 0 0
\(646\) −12572.3 −0.765714
\(647\) 8626.14i 0.524156i 0.965047 + 0.262078i \(0.0844077\pi\)
−0.965047 + 0.262078i \(0.915592\pi\)
\(648\) 7099.89i 0.430417i
\(649\) −8719.60 −0.527387
\(650\) 0 0
\(651\) 16236.1 0.977484
\(652\) − 4071.29i − 0.244546i
\(653\) − 22752.2i − 1.36350i −0.731587 0.681748i \(-0.761220\pi\)
0.731587 0.681748i \(-0.238780\pi\)
\(654\) 9876.36 0.590514
\(655\) 0 0
\(656\) 3089.18 0.183860
\(657\) − 3487.50i − 0.207093i
\(658\) − 3931.01i − 0.232898i
\(659\) 31487.4 1.86127 0.930633 0.365954i \(-0.119257\pi\)
0.930633 + 0.365954i \(0.119257\pi\)
\(660\) 0 0
\(661\) 2034.20 0.119699 0.0598496 0.998207i \(-0.480938\pi\)
0.0598496 + 0.998207i \(0.480938\pi\)
\(662\) 6501.63i 0.381712i
\(663\) − 45213.6i − 2.64849i
\(664\) −7883.13 −0.460730
\(665\) 0 0
\(666\) −5114.49 −0.297571
\(667\) − 2174.24i − 0.126217i
\(668\) − 10007.3i − 0.579633i
\(669\) −22714.0 −1.31267
\(670\) 0 0
\(671\) −9432.52 −0.542680
\(672\) − 2912.41i − 0.167186i
\(673\) − 2759.40i − 0.158049i −0.996873 0.0790246i \(-0.974819\pi\)
0.996873 0.0790246i \(-0.0251806\pi\)
\(674\) −1673.90 −0.0956623
\(675\) 0 0
\(676\) 23754.9 1.35156
\(677\) − 19232.2i − 1.09181i −0.837849 0.545903i \(-0.816187\pi\)
0.837849 0.545903i \(-0.183813\pi\)
\(678\) 17016.8i 0.963902i
\(679\) 25618.1 1.44791
\(680\) 0 0
\(681\) −15232.6 −0.857145
\(682\) − 4291.01i − 0.240926i
\(683\) − 1381.53i − 0.0773980i −0.999251 0.0386990i \(-0.987679\pi\)
0.999251 0.0386990i \(-0.0123213\pi\)
\(684\) −2582.38 −0.144357
\(685\) 0 0
\(686\) 13829.9 0.769719
\(687\) − 1678.50i − 0.0932149i
\(688\) 247.322i 0.0137050i
\(689\) −30934.5 −1.71047
\(690\) 0 0
\(691\) −31009.3 −1.70716 −0.853581 0.520960i \(-0.825574\pi\)
−0.853581 + 0.520960i \(0.825574\pi\)
\(692\) − 992.204i − 0.0545057i
\(693\) 1581.77i 0.0867050i
\(694\) −5931.99 −0.324460
\(695\) 0 0
\(696\) 4513.86 0.245829
\(697\) − 16214.9i − 0.881182i
\(698\) 1739.93i 0.0943514i
\(699\) 34218.2 1.85158
\(700\) 0 0
\(701\) −14937.6 −0.804830 −0.402415 0.915457i \(-0.631829\pi\)
−0.402415 + 0.915457i \(0.631829\pi\)
\(702\) 19784.7i 1.06371i
\(703\) 22192.1i 1.19060i
\(704\) −769.718 −0.0412072
\(705\) 0 0
\(706\) −3969.61 −0.211612
\(707\) 17424.3i 0.926884i
\(708\) − 17309.5i − 0.918826i
\(709\) 7067.82 0.374383 0.187191 0.982323i \(-0.440062\pi\)
0.187191 + 0.982323i \(0.440062\pi\)
\(710\) 0 0
\(711\) −6219.07 −0.328036
\(712\) 3704.43i 0.194985i
\(713\) − 4103.04i − 0.215512i
\(714\) −15287.1 −0.801268
\(715\) 0 0
\(716\) 5578.45 0.291168
\(717\) 1015.25i 0.0528804i
\(718\) 1556.93i 0.0809249i
\(719\) 13129.8 0.681028 0.340514 0.940239i \(-0.389399\pi\)
0.340514 + 0.940239i \(0.389399\pi\)
\(720\) 0 0
\(721\) 10919.2 0.564013
\(722\) − 2512.87i − 0.129528i
\(723\) 28254.1i 1.45336i
\(724\) 2186.51 0.112239
\(725\) 0 0
\(726\) −14162.0 −0.723966
\(727\) − 3432.63i − 0.175116i −0.996159 0.0875580i \(-0.972094\pi\)
0.996159 0.0875580i \(-0.0279063\pi\)
\(728\) − 11003.1i − 0.560165i
\(729\) −10019.7 −0.509052
\(730\) 0 0
\(731\) 1298.18 0.0656839
\(732\) − 18724.7i − 0.945469i
\(733\) 3319.64i 0.167277i 0.996496 + 0.0836383i \(0.0266540\pi\)
−0.996496 + 0.0836383i \(0.973346\pi\)
\(734\) 7565.97 0.380470
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 9414.88i 0.470559i
\(738\) − 3330.58i − 0.166125i
\(739\) −29135.2 −1.45028 −0.725139 0.688602i \(-0.758225\pi\)
−0.725139 + 0.688602i \(0.758225\pi\)
\(740\) 0 0
\(741\) −40296.8 −1.99776
\(742\) 10459.2i 0.517480i
\(743\) 11376.3i 0.561718i 0.959749 + 0.280859i \(0.0906194\pi\)
−0.959749 + 0.280859i \(0.909381\pi\)
\(744\) 8518.17 0.419746
\(745\) 0 0
\(746\) 8505.44 0.417435
\(747\) 8499.16i 0.416289i
\(748\) 4040.21i 0.197493i
\(749\) −10832.4 −0.528447
\(750\) 0 0
\(751\) −6225.31 −0.302483 −0.151241 0.988497i \(-0.548327\pi\)
−0.151241 + 0.988497i \(0.548327\pi\)
\(752\) − 2062.38i − 0.100010i
\(753\) 1325.70i 0.0641583i
\(754\) 17053.3 0.823665
\(755\) 0 0
\(756\) 6689.39 0.321813
\(757\) − 1885.26i − 0.0905163i −0.998975 0.0452582i \(-0.985589\pi\)
0.998975 0.0452582i \(-0.0144110\pi\)
\(758\) − 9487.42i − 0.454615i
\(759\) 1651.04 0.0789579
\(760\) 0 0
\(761\) 15635.5 0.744791 0.372395 0.928074i \(-0.378537\pi\)
0.372395 + 0.928074i \(0.378537\pi\)
\(762\) 16837.5i 0.800469i
\(763\) − 12615.8i − 0.598586i
\(764\) −3971.70 −0.188077
\(765\) 0 0
\(766\) −13932.8 −0.657199
\(767\) − 65394.8i − 3.07858i
\(768\) − 1527.98i − 0.0717921i
\(769\) −18918.5 −0.887151 −0.443576 0.896237i \(-0.646290\pi\)
−0.443576 + 0.896237i \(0.646290\pi\)
\(770\) 0 0
\(771\) −4885.11 −0.228188
\(772\) − 19422.9i − 0.905500i
\(773\) 32813.2i 1.52679i 0.645931 + 0.763395i \(0.276469\pi\)
−0.645931 + 0.763395i \(0.723531\pi\)
\(774\) 266.649 0.0123831
\(775\) 0 0
\(776\) 13440.4 0.621756
\(777\) 26984.1i 1.24588i
\(778\) 17373.6i 0.800608i
\(779\) −14451.6 −0.664676
\(780\) 0 0
\(781\) −1705.02 −0.0781183
\(782\) 3863.22i 0.176661i
\(783\) 10367.7i 0.473193i
\(784\) 1767.77 0.0805290
\(785\) 0 0
\(786\) 14176.6 0.643339
\(787\) − 10855.2i − 0.491672i −0.969311 0.245836i \(-0.920938\pi\)
0.969311 0.245836i \(-0.0790625\pi\)
\(788\) − 13846.0i − 0.625944i
\(789\) −37262.0 −1.68132
\(790\) 0 0
\(791\) 21736.7 0.977078
\(792\) 829.868i 0.0372324i
\(793\) − 70741.5i − 3.16785i
\(794\) 27052.7 1.20915
\(795\) 0 0
\(796\) −9845.39 −0.438393
\(797\) − 20171.5i − 0.896499i −0.893908 0.448250i \(-0.852048\pi\)
0.893908 0.448250i \(-0.147952\pi\)
\(798\) 13624.7i 0.604397i
\(799\) −10825.3 −0.479316
\(800\) 0 0
\(801\) 3993.92 0.176178
\(802\) − 13609.2i − 0.599200i
\(803\) 4862.94i 0.213710i
\(804\) −18689.7 −0.819818
\(805\) 0 0
\(806\) 32181.5 1.40638
\(807\) 6498.40i 0.283463i
\(808\) 9141.54i 0.398018i
\(809\) −6849.64 −0.297677 −0.148838 0.988862i \(-0.547553\pi\)
−0.148838 + 0.988862i \(0.547553\pi\)
\(810\) 0 0
\(811\) −21138.6 −0.915262 −0.457631 0.889142i \(-0.651302\pi\)
−0.457631 + 0.889142i \(0.651302\pi\)
\(812\) − 5765.86i − 0.249190i
\(813\) 41166.2i 1.77585i
\(814\) 7131.60 0.307079
\(815\) 0 0
\(816\) −8020.30 −0.344077
\(817\) − 1157.01i − 0.0495454i
\(818\) − 6313.84i − 0.269876i
\(819\) −11862.9 −0.506133
\(820\) 0 0
\(821\) 260.761 0.0110848 0.00554240 0.999985i \(-0.498236\pi\)
0.00554240 + 0.999985i \(0.498236\pi\)
\(822\) − 11042.5i − 0.468555i
\(823\) 20615.0i 0.873139i 0.899671 + 0.436569i \(0.143807\pi\)
−0.899671 + 0.436569i \(0.856193\pi\)
\(824\) 5728.72 0.242196
\(825\) 0 0
\(826\) −22110.6 −0.931386
\(827\) 10281.8i 0.432327i 0.976357 + 0.216164i \(0.0693545\pi\)
−0.976357 + 0.216164i \(0.930646\pi\)
\(828\) 793.515i 0.0333050i
\(829\) 14144.4 0.592590 0.296295 0.955097i \(-0.404249\pi\)
0.296295 + 0.955097i \(0.404249\pi\)
\(830\) 0 0
\(831\) −38531.5 −1.60847
\(832\) − 5772.69i − 0.240543i
\(833\) − 9278.94i − 0.385950i
\(834\) −19101.3 −0.793073
\(835\) 0 0
\(836\) 3600.85 0.148969
\(837\) 19565.0i 0.807963i
\(838\) 27392.9i 1.12920i
\(839\) 38790.8 1.59619 0.798097 0.602529i \(-0.205840\pi\)
0.798097 + 0.602529i \(0.205840\pi\)
\(840\) 0 0
\(841\) −15452.7 −0.633592
\(842\) − 7820.21i − 0.320074i
\(843\) 9081.11i 0.371020i
\(844\) 13352.9 0.544581
\(845\) 0 0
\(846\) −2223.55 −0.0903632
\(847\) 18090.0i 0.733862i
\(848\) 5487.38i 0.222214i
\(849\) 21570.4 0.871959
\(850\) 0 0
\(851\) 6819.19 0.274687
\(852\) − 3384.67i − 0.136099i
\(853\) − 38874.0i − 1.56040i −0.625530 0.780200i \(-0.715117\pi\)
0.625530 0.780200i \(-0.284883\pi\)
\(854\) −23918.3 −0.958393
\(855\) 0 0
\(856\) −5683.16 −0.226923
\(857\) − 11643.1i − 0.464086i −0.972706 0.232043i \(-0.925459\pi\)
0.972706 0.232043i \(-0.0745410\pi\)
\(858\) 12949.7i 0.515262i
\(859\) −32626.4 −1.29592 −0.647961 0.761673i \(-0.724378\pi\)
−0.647961 + 0.761673i \(0.724378\pi\)
\(860\) 0 0
\(861\) −17572.2 −0.695539
\(862\) 10831.4i 0.427980i
\(863\) − 30383.6i − 1.19846i −0.800578 0.599229i \(-0.795474\pi\)
0.800578 0.599229i \(-0.204526\pi\)
\(864\) 3509.55 0.138191
\(865\) 0 0
\(866\) −31812.0 −1.24829
\(867\) 12774.0i 0.500377i
\(868\) − 10880.8i − 0.425484i
\(869\) 8671.81 0.338517
\(870\) 0 0
\(871\) −70609.2 −2.74684
\(872\) − 6618.79i − 0.257042i
\(873\) − 14490.7i − 0.561783i
\(874\) 3443.11 0.133255
\(875\) 0 0
\(876\) −9653.51 −0.372331
\(877\) 4652.82i 0.179150i 0.995980 + 0.0895750i \(0.0285509\pi\)
−0.995980 + 0.0895750i \(0.971449\pi\)
\(878\) − 13879.8i − 0.533509i
\(879\) −28939.4 −1.11047
\(880\) 0 0
\(881\) −33643.5 −1.28658 −0.643290 0.765622i \(-0.722431\pi\)
−0.643290 + 0.765622i \(0.722431\pi\)
\(882\) − 1905.92i − 0.0727613i
\(883\) − 33311.2i − 1.26955i −0.772698 0.634774i \(-0.781093\pi\)
0.772698 0.634774i \(-0.218907\pi\)
\(884\) −30300.5 −1.15285
\(885\) 0 0
\(886\) 33234.0 1.26018
\(887\) − 25636.1i − 0.970435i −0.874394 0.485217i \(-0.838741\pi\)
0.874394 0.485217i \(-0.161259\pi\)
\(888\) 14157.1i 0.535000i
\(889\) 21507.7 0.811410
\(890\) 0 0
\(891\) −10673.7 −0.401326
\(892\) 15222.1i 0.571384i
\(893\) 9648.13i 0.361548i
\(894\) −41715.0 −1.56058
\(895\) 0 0
\(896\) −1951.80 −0.0727734
\(897\) 12382.4i 0.460910i
\(898\) − 25339.6i − 0.941642i
\(899\) 16863.9 0.625630
\(900\) 0 0
\(901\) 28802.9 1.06500
\(902\) 4644.13i 0.171433i
\(903\) − 1406.85i − 0.0518459i
\(904\) 11404.0 0.419572
\(905\) 0 0
\(906\) 35594.5 1.30524
\(907\) − 14681.1i − 0.537460i −0.963215 0.268730i \(-0.913396\pi\)
0.963215 0.268730i \(-0.0866040\pi\)
\(908\) 10208.4i 0.373102i
\(909\) 9855.91 0.359626
\(910\) 0 0
\(911\) −13950.7 −0.507364 −0.253682 0.967288i \(-0.581642\pi\)
−0.253682 + 0.967288i \(0.581642\pi\)
\(912\) 7148.12i 0.259537i
\(913\) − 11851.1i − 0.429590i
\(914\) 14959.4 0.541371
\(915\) 0 0
\(916\) −1124.87 −0.0405750
\(917\) − 18108.8i − 0.652133i
\(918\) − 18421.5i − 0.662308i
\(919\) 9495.79 0.340846 0.170423 0.985371i \(-0.445487\pi\)
0.170423 + 0.985371i \(0.445487\pi\)
\(920\) 0 0
\(921\) 11794.3 0.421972
\(922\) 6520.84i 0.232920i
\(923\) − 12787.2i − 0.456009i
\(924\) 4378.40 0.155886
\(925\) 0 0
\(926\) 21332.3 0.757046
\(927\) − 6176.39i − 0.218834i
\(928\) − 3025.03i − 0.107006i
\(929\) 28148.4 0.994101 0.497051 0.867722i \(-0.334416\pi\)
0.497051 + 0.867722i \(0.334416\pi\)
\(930\) 0 0
\(931\) −8269.89 −0.291122
\(932\) − 22931.9i − 0.805964i
\(933\) − 18028.8i − 0.632623i
\(934\) −12405.0 −0.434586
\(935\) 0 0
\(936\) −6223.80 −0.217341
\(937\) − 39623.7i − 1.38148i −0.723102 0.690741i \(-0.757285\pi\)
0.723102 0.690741i \(-0.242715\pi\)
\(938\) 23873.6i 0.831024i
\(939\) −4627.61 −0.160827
\(940\) 0 0
\(941\) −24909.7 −0.862948 −0.431474 0.902125i \(-0.642006\pi\)
−0.431474 + 0.902125i \(0.642006\pi\)
\(942\) − 24612.2i − 0.851283i
\(943\) 4440.69i 0.153350i
\(944\) −11600.2 −0.399951
\(945\) 0 0
\(946\) −371.813 −0.0127787
\(947\) − 51892.6i − 1.78066i −0.455320 0.890328i \(-0.650475\pi\)
0.455320 0.890328i \(-0.349525\pi\)
\(948\) 17214.6i 0.589772i
\(949\) −36470.8 −1.24751
\(950\) 0 0
\(951\) 29118.8 0.992895
\(952\) 10244.9i 0.348780i
\(953\) 24462.4i 0.831496i 0.909480 + 0.415748i \(0.136480\pi\)
−0.909480 + 0.415748i \(0.863520\pi\)
\(954\) 5916.19 0.200780
\(955\) 0 0
\(956\) 680.385 0.0230180
\(957\) 6785.93i 0.229214i
\(958\) 27498.8i 0.927396i
\(959\) −14105.4 −0.474960
\(960\) 0 0
\(961\) 2033.06 0.0682440
\(962\) 53485.2i 1.79255i
\(963\) 6127.27i 0.205035i
\(964\) 18934.9 0.632626
\(965\) 0 0
\(966\) 4186.60 0.139443
\(967\) − 7340.86i − 0.244122i −0.992523 0.122061i \(-0.961050\pi\)
0.992523 0.122061i \(-0.0389504\pi\)
\(968\) 9490.84i 0.315131i
\(969\) 37520.1 1.24388
\(970\) 0 0
\(971\) −33474.8 −1.10634 −0.553171 0.833068i \(-0.686582\pi\)
−0.553171 + 0.833068i \(0.686582\pi\)
\(972\) − 9343.74i − 0.308334i
\(973\) 24399.4i 0.803914i
\(974\) −19347.4 −0.636480
\(975\) 0 0
\(976\) −12548.6 −0.411548
\(977\) − 29496.6i − 0.965895i −0.875649 0.482947i \(-0.839566\pi\)
0.875649 0.482947i \(-0.160434\pi\)
\(978\) 12150.1i 0.397257i
\(979\) −5569.09 −0.181807
\(980\) 0 0
\(981\) −7136.02 −0.232248
\(982\) 11817.4i 0.384021i
\(983\) 33214.4i 1.07770i 0.842403 + 0.538848i \(0.181140\pi\)
−0.842403 + 0.538848i \(0.818860\pi\)
\(984\) −9219.16 −0.298675
\(985\) 0 0
\(986\) −15878.2 −0.512845
\(987\) 11731.5i 0.378336i
\(988\) 27005.5i 0.869594i
\(989\) −355.526 −0.0114308
\(990\) 0 0
\(991\) −21527.1 −0.690041 −0.345020 0.938595i \(-0.612128\pi\)
−0.345020 + 0.938595i \(0.612128\pi\)
\(992\) − 5708.58i − 0.182709i
\(993\) − 19403.1i − 0.620079i
\(994\) −4323.47 −0.137960
\(995\) 0 0
\(996\) 23525.9 0.748442
\(997\) − 39017.1i − 1.23940i −0.784838 0.619701i \(-0.787254\pi\)
0.784838 0.619701i \(-0.212746\pi\)
\(998\) 24239.6i 0.768829i
\(999\) −32516.7 −1.02981
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.s.599.8 12
5.2 odd 4 1150.4.a.w.1.2 6
5.3 odd 4 1150.4.a.x.1.5 yes 6
5.4 even 2 inner 1150.4.b.s.599.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.w.1.2 6 5.2 odd 4
1150.4.a.x.1.5 yes 6 5.3 odd 4
1150.4.b.s.599.5 12 5.4 even 2 inner
1150.4.b.s.599.8 12 1.1 even 1 trivial