Properties

Label 1127.4.a.f.1.5
Level $1127$
Weight $4$
Character 1127.1
Self dual yes
Analytic conductor $66.495$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1127,4,Mod(1,1127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1127.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1127, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4951525765\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 60x^{7} - 22x^{6} + 1179x^{5} + 694x^{4} - 7936x^{3} - 4352x^{2} + 11008x + 3072 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.264899\) of defining polynomial
Character \(\chi\) \(=\) 1127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.264899 q^{2} +6.92505 q^{3} -7.92983 q^{4} +11.7130 q^{5} -1.83444 q^{6} +4.21980 q^{8} +20.9564 q^{9} -3.10276 q^{10} -55.2621 q^{11} -54.9145 q^{12} +76.7819 q^{13} +81.1131 q^{15} +62.3208 q^{16} -112.294 q^{17} -5.55133 q^{18} -98.4128 q^{19} -92.8820 q^{20} +14.6389 q^{22} -23.0000 q^{23} +29.2223 q^{24} +12.1943 q^{25} -20.3395 q^{26} -41.8524 q^{27} -195.047 q^{29} -21.4868 q^{30} +99.2668 q^{31} -50.2671 q^{32} -382.693 q^{33} +29.7467 q^{34} -166.181 q^{36} -14.5629 q^{37} +26.0694 q^{38} +531.719 q^{39} +49.4264 q^{40} +329.303 q^{41} -275.032 q^{43} +438.219 q^{44} +245.462 q^{45} +6.09268 q^{46} +4.09163 q^{47} +431.575 q^{48} -3.23025 q^{50} -777.645 q^{51} -608.868 q^{52} -254.594 q^{53} +11.0866 q^{54} -647.285 q^{55} -681.514 q^{57} +51.6676 q^{58} -207.145 q^{59} -643.213 q^{60} -721.632 q^{61} -26.2957 q^{62} -485.251 q^{64} +899.347 q^{65} +101.375 q^{66} -514.780 q^{67} +890.476 q^{68} -159.276 q^{69} +1059.23 q^{71} +88.4317 q^{72} +376.129 q^{73} +3.85769 q^{74} +84.4459 q^{75} +780.396 q^{76} -140.852 q^{78} +849.401 q^{79} +729.963 q^{80} -855.652 q^{81} -87.2319 q^{82} -204.086 q^{83} -1315.30 q^{85} +72.8557 q^{86} -1350.71 q^{87} -233.195 q^{88} +631.481 q^{89} -65.0227 q^{90} +182.386 q^{92} +687.428 q^{93} -1.08387 q^{94} -1152.71 q^{95} -348.102 q^{96} -988.987 q^{97} -1158.09 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} + 48 q^{4} + 4 q^{5} - 46 q^{6} + 66 q^{8} + 122 q^{9} - 50 q^{10} - 8 q^{11} - 220 q^{12} - 25 q^{13} + 88 q^{15} + 180 q^{16} + 28 q^{17} - 54 q^{18} - 254 q^{19} - 302 q^{20} - 122 q^{22}+ \cdots - 618 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.264899 −0.0936559 −0.0468280 0.998903i \(-0.514911\pi\)
−0.0468280 + 0.998903i \(0.514911\pi\)
\(3\) 6.92505 1.33273 0.666364 0.745627i \(-0.267850\pi\)
0.666364 + 0.745627i \(0.267850\pi\)
\(4\) −7.92983 −0.991229
\(5\) 11.7130 1.04764 0.523821 0.851828i \(-0.324506\pi\)
0.523821 + 0.851828i \(0.324506\pi\)
\(6\) −1.83444 −0.124818
\(7\) 0 0
\(8\) 4.21980 0.186490
\(9\) 20.9564 0.776162
\(10\) −3.10276 −0.0981179
\(11\) −55.2621 −1.51474 −0.757370 0.652986i \(-0.773516\pi\)
−0.757370 + 0.652986i \(0.773516\pi\)
\(12\) −54.9145 −1.32104
\(13\) 76.7819 1.63811 0.819057 0.573712i \(-0.194497\pi\)
0.819057 + 0.573712i \(0.194497\pi\)
\(14\) 0 0
\(15\) 81.1131 1.39622
\(16\) 62.3208 0.973763
\(17\) −112.294 −1.60208 −0.801041 0.598609i \(-0.795720\pi\)
−0.801041 + 0.598609i \(0.795720\pi\)
\(18\) −5.55133 −0.0726922
\(19\) −98.4128 −1.18829 −0.594143 0.804359i \(-0.702509\pi\)
−0.594143 + 0.804359i \(0.702509\pi\)
\(20\) −92.8820 −1.03845
\(21\) 0 0
\(22\) 14.6389 0.141864
\(23\) −23.0000 −0.208514
\(24\) 29.2223 0.248541
\(25\) 12.1943 0.0975541
\(26\) −20.3395 −0.153419
\(27\) −41.8524 −0.298314
\(28\) 0 0
\(29\) −195.047 −1.24894 −0.624470 0.781049i \(-0.714685\pi\)
−0.624470 + 0.781049i \(0.714685\pi\)
\(30\) −21.4868 −0.130764
\(31\) 99.2668 0.575124 0.287562 0.957762i \(-0.407155\pi\)
0.287562 + 0.957762i \(0.407155\pi\)
\(32\) −50.2671 −0.277689
\(33\) −382.693 −2.01874
\(34\) 29.7467 0.150045
\(35\) 0 0
\(36\) −166.181 −0.769354
\(37\) −14.5629 −0.0647060 −0.0323530 0.999477i \(-0.510300\pi\)
−0.0323530 + 0.999477i \(0.510300\pi\)
\(38\) 26.0694 0.111290
\(39\) 531.719 2.18316
\(40\) 49.4264 0.195375
\(41\) 329.303 1.25435 0.627176 0.778878i \(-0.284211\pi\)
0.627176 + 0.778878i \(0.284211\pi\)
\(42\) 0 0
\(43\) −275.032 −0.975395 −0.487697 0.873013i \(-0.662163\pi\)
−0.487697 + 0.873013i \(0.662163\pi\)
\(44\) 438.219 1.50145
\(45\) 245.462 0.813140
\(46\) 6.09268 0.0195286
\(47\) 4.09163 0.0126984 0.00634921 0.999980i \(-0.497979\pi\)
0.00634921 + 0.999980i \(0.497979\pi\)
\(48\) 431.575 1.29776
\(49\) 0 0
\(50\) −3.23025 −0.00913652
\(51\) −777.645 −2.13514
\(52\) −608.868 −1.62375
\(53\) −254.594 −0.659832 −0.329916 0.944010i \(-0.607020\pi\)
−0.329916 + 0.944010i \(0.607020\pi\)
\(54\) 11.0866 0.0279389
\(55\) −647.285 −1.58691
\(56\) 0 0
\(57\) −681.514 −1.58366
\(58\) 51.6676 0.116971
\(59\) −207.145 −0.457083 −0.228542 0.973534i \(-0.573396\pi\)
−0.228542 + 0.973534i \(0.573396\pi\)
\(60\) −643.213 −1.38397
\(61\) −721.632 −1.51468 −0.757341 0.653020i \(-0.773502\pi\)
−0.757341 + 0.653020i \(0.773502\pi\)
\(62\) −26.2957 −0.0538638
\(63\) 0 0
\(64\) −485.251 −0.947755
\(65\) 899.347 1.71616
\(66\) 101.375 0.189067
\(67\) −514.780 −0.938662 −0.469331 0.883022i \(-0.655505\pi\)
−0.469331 + 0.883022i \(0.655505\pi\)
\(68\) 890.476 1.58803
\(69\) −159.276 −0.277893
\(70\) 0 0
\(71\) 1059.23 1.77053 0.885266 0.465085i \(-0.153976\pi\)
0.885266 + 0.465085i \(0.153976\pi\)
\(72\) 88.4317 0.144747
\(73\) 376.129 0.603049 0.301525 0.953458i \(-0.402504\pi\)
0.301525 + 0.953458i \(0.402504\pi\)
\(74\) 3.85769 0.00606010
\(75\) 84.4459 0.130013
\(76\) 780.396 1.17786
\(77\) 0 0
\(78\) −140.852 −0.204466
\(79\) 849.401 1.20968 0.604842 0.796345i \(-0.293236\pi\)
0.604842 + 0.796345i \(0.293236\pi\)
\(80\) 729.963 1.02015
\(81\) −855.652 −1.17373
\(82\) −87.2319 −0.117477
\(83\) −204.086 −0.269896 −0.134948 0.990853i \(-0.543087\pi\)
−0.134948 + 0.990853i \(0.543087\pi\)
\(84\) 0 0
\(85\) −1315.30 −1.67841
\(86\) 72.8557 0.0913515
\(87\) −1350.71 −1.66450
\(88\) −233.195 −0.282485
\(89\) 631.481 0.752099 0.376050 0.926599i \(-0.377282\pi\)
0.376050 + 0.926599i \(0.377282\pi\)
\(90\) −65.0227 −0.0761554
\(91\) 0 0
\(92\) 182.386 0.206685
\(93\) 687.428 0.766483
\(94\) −1.08387 −0.00118928
\(95\) −1152.71 −1.24490
\(96\) −348.102 −0.370084
\(97\) −988.987 −1.03522 −0.517610 0.855616i \(-0.673178\pi\)
−0.517610 + 0.855616i \(0.673178\pi\)
\(98\) 0 0
\(99\) −1158.09 −1.17568
\(100\) −96.6984 −0.0966984
\(101\) 179.498 0.176839 0.0884196 0.996083i \(-0.471818\pi\)
0.0884196 + 0.996083i \(0.471818\pi\)
\(102\) 205.997 0.199968
\(103\) −1643.80 −1.57251 −0.786255 0.617903i \(-0.787983\pi\)
−0.786255 + 0.617903i \(0.787983\pi\)
\(104\) 324.004 0.305492
\(105\) 0 0
\(106\) 67.4416 0.0617972
\(107\) −992.701 −0.896897 −0.448449 0.893809i \(-0.648023\pi\)
−0.448449 + 0.893809i \(0.648023\pi\)
\(108\) 331.882 0.295698
\(109\) 21.3103 0.0187262 0.00936310 0.999956i \(-0.497020\pi\)
0.00936310 + 0.999956i \(0.497020\pi\)
\(110\) 171.465 0.148623
\(111\) −100.849 −0.0862354
\(112\) 0 0
\(113\) 613.931 0.511095 0.255548 0.966796i \(-0.417744\pi\)
0.255548 + 0.966796i \(0.417744\pi\)
\(114\) 180.532 0.148319
\(115\) −269.399 −0.218448
\(116\) 1546.69 1.23798
\(117\) 1609.07 1.27144
\(118\) 54.8724 0.0428086
\(119\) 0 0
\(120\) 342.281 0.260382
\(121\) 1722.90 1.29444
\(122\) 191.160 0.141859
\(123\) 2280.44 1.67171
\(124\) −787.169 −0.570079
\(125\) −1321.29 −0.945440
\(126\) 0 0
\(127\) −960.519 −0.671120 −0.335560 0.942019i \(-0.608926\pi\)
−0.335560 + 0.942019i \(0.608926\pi\)
\(128\) 530.679 0.366452
\(129\) −1904.61 −1.29994
\(130\) −238.236 −0.160728
\(131\) 1991.37 1.32814 0.664071 0.747670i \(-0.268827\pi\)
0.664071 + 0.747670i \(0.268827\pi\)
\(132\) 3034.69 2.00103
\(133\) 0 0
\(134\) 136.365 0.0879113
\(135\) −490.216 −0.312527
\(136\) −473.860 −0.298773
\(137\) −2774.94 −1.73050 −0.865251 0.501338i \(-0.832841\pi\)
−0.865251 + 0.501338i \(0.832841\pi\)
\(138\) 42.1921 0.0260263
\(139\) 60.9410 0.0371867 0.0185933 0.999827i \(-0.494081\pi\)
0.0185933 + 0.999827i \(0.494081\pi\)
\(140\) 0 0
\(141\) 28.3348 0.0169235
\(142\) −280.590 −0.165821
\(143\) −4243.13 −2.48132
\(144\) 1306.02 0.755798
\(145\) −2284.58 −1.30844
\(146\) −99.6362 −0.0564791
\(147\) 0 0
\(148\) 115.481 0.0641384
\(149\) −625.084 −0.343684 −0.171842 0.985125i \(-0.554972\pi\)
−0.171842 + 0.985125i \(0.554972\pi\)
\(150\) −22.3696 −0.0121765
\(151\) 2266.11 1.22128 0.610639 0.791909i \(-0.290913\pi\)
0.610639 + 0.791909i \(0.290913\pi\)
\(152\) −415.282 −0.221604
\(153\) −2353.29 −1.24348
\(154\) 0 0
\(155\) 1162.71 0.602524
\(156\) −4216.44 −2.16401
\(157\) −2533.35 −1.28779 −0.643895 0.765114i \(-0.722683\pi\)
−0.643895 + 0.765114i \(0.722683\pi\)
\(158\) −225.005 −0.113294
\(159\) −1763.07 −0.879377
\(160\) −588.778 −0.290919
\(161\) 0 0
\(162\) 226.661 0.109927
\(163\) 2479.38 1.19141 0.595705 0.803203i \(-0.296873\pi\)
0.595705 + 0.803203i \(0.296873\pi\)
\(164\) −2611.31 −1.24335
\(165\) −4482.48 −2.11491
\(166\) 54.0622 0.0252773
\(167\) −440.669 −0.204192 −0.102096 0.994775i \(-0.532555\pi\)
−0.102096 + 0.994775i \(0.532555\pi\)
\(168\) 0 0
\(169\) 3698.47 1.68342
\(170\) 348.423 0.157193
\(171\) −2062.38 −0.922303
\(172\) 2180.96 0.966839
\(173\) 3111.52 1.36742 0.683712 0.729752i \(-0.260364\pi\)
0.683712 + 0.729752i \(0.260364\pi\)
\(174\) 357.801 0.155890
\(175\) 0 0
\(176\) −3443.98 −1.47500
\(177\) −1434.49 −0.609168
\(178\) −167.279 −0.0704386
\(179\) 1846.07 0.770848 0.385424 0.922740i \(-0.374055\pi\)
0.385424 + 0.922740i \(0.374055\pi\)
\(180\) −1946.47 −0.806008
\(181\) 2020.32 0.829665 0.414833 0.909898i \(-0.363840\pi\)
0.414833 + 0.909898i \(0.363840\pi\)
\(182\) 0 0
\(183\) −4997.34 −2.01866
\(184\) −97.0553 −0.0388859
\(185\) −170.575 −0.0677887
\(186\) −182.099 −0.0717857
\(187\) 6205.62 2.42674
\(188\) −32.4459 −0.0125870
\(189\) 0 0
\(190\) 305.351 0.116592
\(191\) 279.890 0.106032 0.0530160 0.998594i \(-0.483117\pi\)
0.0530160 + 0.998594i \(0.483117\pi\)
\(192\) −3360.39 −1.26310
\(193\) −4842.79 −1.80617 −0.903087 0.429458i \(-0.858705\pi\)
−0.903087 + 0.429458i \(0.858705\pi\)
\(194\) 261.982 0.0969546
\(195\) 6228.02 2.28717
\(196\) 0 0
\(197\) −2838.58 −1.02660 −0.513301 0.858208i \(-0.671578\pi\)
−0.513301 + 0.858208i \(0.671578\pi\)
\(198\) 306.778 0.110110
\(199\) −3449.73 −1.22887 −0.614435 0.788968i \(-0.710616\pi\)
−0.614435 + 0.788968i \(0.710616\pi\)
\(200\) 51.4573 0.0181929
\(201\) −3564.88 −1.25098
\(202\) −47.5490 −0.0165620
\(203\) 0 0
\(204\) 6166.59 2.11641
\(205\) 3857.12 1.31411
\(206\) 435.441 0.147275
\(207\) −481.997 −0.161841
\(208\) 4785.11 1.59513
\(209\) 5438.49 1.79995
\(210\) 0 0
\(211\) 1249.39 0.407636 0.203818 0.979009i \(-0.434665\pi\)
0.203818 + 0.979009i \(0.434665\pi\)
\(212\) 2018.88 0.654045
\(213\) 7335.25 2.35964
\(214\) 262.966 0.0839998
\(215\) −3221.45 −1.02186
\(216\) −176.608 −0.0556328
\(217\) 0 0
\(218\) −5.64508 −0.00175382
\(219\) 2604.72 0.803700
\(220\) 5132.86 1.57299
\(221\) −8622.19 −2.62439
\(222\) 26.7147 0.00807646
\(223\) −4170.14 −1.25226 −0.626128 0.779720i \(-0.715361\pi\)
−0.626128 + 0.779720i \(0.715361\pi\)
\(224\) 0 0
\(225\) 255.548 0.0757178
\(226\) −162.630 −0.0478671
\(227\) 3259.90 0.953158 0.476579 0.879132i \(-0.341877\pi\)
0.476579 + 0.879132i \(0.341877\pi\)
\(228\) 5404.29 1.56977
\(229\) −3715.07 −1.07205 −0.536023 0.844204i \(-0.680074\pi\)
−0.536023 + 0.844204i \(0.680074\pi\)
\(230\) 71.3635 0.0204590
\(231\) 0 0
\(232\) −823.057 −0.232915
\(233\) −5851.29 −1.64520 −0.822598 0.568624i \(-0.807476\pi\)
−0.822598 + 0.568624i \(0.807476\pi\)
\(234\) −426.242 −0.119078
\(235\) 47.9252 0.0133034
\(236\) 1642.62 0.453074
\(237\) 5882.15 1.61218
\(238\) 0 0
\(239\) 2342.48 0.633985 0.316993 0.948428i \(-0.397327\pi\)
0.316993 + 0.948428i \(0.397327\pi\)
\(240\) 5055.04 1.35959
\(241\) −3014.50 −0.805731 −0.402865 0.915259i \(-0.631986\pi\)
−0.402865 + 0.915259i \(0.631986\pi\)
\(242\) −456.394 −0.121232
\(243\) −4795.43 −1.26595
\(244\) 5722.42 1.50140
\(245\) 0 0
\(246\) −604.086 −0.156565
\(247\) −7556.32 −1.94655
\(248\) 418.886 0.107255
\(249\) −1413.31 −0.359698
\(250\) 350.009 0.0885461
\(251\) 3717.17 0.934763 0.467381 0.884056i \(-0.345198\pi\)
0.467381 + 0.884056i \(0.345198\pi\)
\(252\) 0 0
\(253\) 1271.03 0.315845
\(254\) 254.440 0.0628544
\(255\) −9108.55 −2.23686
\(256\) 3741.43 0.913435
\(257\) 851.188 0.206598 0.103299 0.994650i \(-0.467060\pi\)
0.103299 + 0.994650i \(0.467060\pi\)
\(258\) 504.530 0.121747
\(259\) 0 0
\(260\) −7131.66 −1.70110
\(261\) −4087.47 −0.969380
\(262\) −527.511 −0.124388
\(263\) 6282.40 1.47296 0.736482 0.676458i \(-0.236486\pi\)
0.736482 + 0.676458i \(0.236486\pi\)
\(264\) −1614.89 −0.376475
\(265\) −2982.05 −0.691268
\(266\) 0 0
\(267\) 4373.04 1.00234
\(268\) 4082.12 0.930429
\(269\) −3572.08 −0.809642 −0.404821 0.914396i \(-0.632666\pi\)
−0.404821 + 0.914396i \(0.632666\pi\)
\(270\) 129.858 0.0292700
\(271\) −97.7240 −0.0219052 −0.0109526 0.999940i \(-0.503486\pi\)
−0.0109526 + 0.999940i \(0.503486\pi\)
\(272\) −6998.28 −1.56005
\(273\) 0 0
\(274\) 735.078 0.162072
\(275\) −673.880 −0.147769
\(276\) 1263.03 0.275455
\(277\) −4764.37 −1.03344 −0.516721 0.856154i \(-0.672847\pi\)
−0.516721 + 0.856154i \(0.672847\pi\)
\(278\) −16.1432 −0.00348275
\(279\) 2080.27 0.446390
\(280\) 0 0
\(281\) −2901.10 −0.615890 −0.307945 0.951404i \(-0.599641\pi\)
−0.307945 + 0.951404i \(0.599641\pi\)
\(282\) −7.50585 −0.00158499
\(283\) 3015.38 0.633377 0.316688 0.948530i \(-0.397429\pi\)
0.316688 + 0.948530i \(0.397429\pi\)
\(284\) −8399.53 −1.75500
\(285\) −7982.57 −1.65911
\(286\) 1124.00 0.232390
\(287\) 0 0
\(288\) −1053.42 −0.215532
\(289\) 7697.04 1.56667
\(290\) 605.183 0.122543
\(291\) −6848.79 −1.37967
\(292\) −2982.64 −0.597760
\(293\) −2746.50 −0.547619 −0.273810 0.961784i \(-0.588284\pi\)
−0.273810 + 0.961784i \(0.588284\pi\)
\(294\) 0 0
\(295\) −2426.28 −0.478860
\(296\) −61.4523 −0.0120670
\(297\) 2312.85 0.451869
\(298\) 165.584 0.0321880
\(299\) −1765.98 −0.341570
\(300\) −669.642 −0.128873
\(301\) 0 0
\(302\) −600.289 −0.114380
\(303\) 1243.04 0.235679
\(304\) −6133.16 −1.15711
\(305\) −8452.48 −1.58684
\(306\) 623.383 0.116459
\(307\) −9858.98 −1.83284 −0.916420 0.400219i \(-0.868934\pi\)
−0.916420 + 0.400219i \(0.868934\pi\)
\(308\) 0 0
\(309\) −11383.4 −2.09573
\(310\) −308.001 −0.0564300
\(311\) 5543.80 1.01080 0.505402 0.862884i \(-0.331344\pi\)
0.505402 + 0.862884i \(0.331344\pi\)
\(312\) 2243.75 0.407138
\(313\) 8209.35 1.48249 0.741245 0.671234i \(-0.234235\pi\)
0.741245 + 0.671234i \(0.234235\pi\)
\(314\) 671.081 0.120609
\(315\) 0 0
\(316\) −6735.60 −1.19907
\(317\) 325.685 0.0577043 0.0288522 0.999584i \(-0.490815\pi\)
0.0288522 + 0.999584i \(0.490815\pi\)
\(318\) 467.037 0.0823589
\(319\) 10778.7 1.89182
\(320\) −5683.74 −0.992909
\(321\) −6874.51 −1.19532
\(322\) 0 0
\(323\) 11051.2 1.90373
\(324\) 6785.18 1.16344
\(325\) 936.299 0.159805
\(326\) −656.785 −0.111583
\(327\) 147.575 0.0249569
\(328\) 1389.59 0.233924
\(329\) 0 0
\(330\) 1187.40 0.198074
\(331\) 3735.77 0.620352 0.310176 0.950679i \(-0.399612\pi\)
0.310176 + 0.950679i \(0.399612\pi\)
\(332\) 1618.37 0.267528
\(333\) −305.185 −0.0502224
\(334\) 116.733 0.0191238
\(335\) −6029.61 −0.983382
\(336\) 0 0
\(337\) −4319.35 −0.698189 −0.349095 0.937087i \(-0.613511\pi\)
−0.349095 + 0.937087i \(0.613511\pi\)
\(338\) −979.720 −0.157662
\(339\) 4251.50 0.681150
\(340\) 10430.1 1.66369
\(341\) −5485.69 −0.871164
\(342\) 546.321 0.0863792
\(343\) 0 0
\(344\) −1160.58 −0.181902
\(345\) −1865.60 −0.291132
\(346\) −824.238 −0.128067
\(347\) −4875.70 −0.754298 −0.377149 0.926153i \(-0.623096\pi\)
−0.377149 + 0.926153i \(0.623096\pi\)
\(348\) 10710.9 1.64990
\(349\) −11218.1 −1.72060 −0.860300 0.509788i \(-0.829724\pi\)
−0.860300 + 0.509788i \(0.829724\pi\)
\(350\) 0 0
\(351\) −3213.51 −0.488673
\(352\) 2777.86 0.420627
\(353\) 3699.99 0.557878 0.278939 0.960309i \(-0.410017\pi\)
0.278939 + 0.960309i \(0.410017\pi\)
\(354\) 379.994 0.0570522
\(355\) 12406.8 1.85488
\(356\) −5007.54 −0.745502
\(357\) 0 0
\(358\) −489.022 −0.0721945
\(359\) 1556.36 0.228807 0.114403 0.993434i \(-0.463504\pi\)
0.114403 + 0.993434i \(0.463504\pi\)
\(360\) 1035.80 0.151643
\(361\) 2826.07 0.412024
\(362\) −535.181 −0.0777031
\(363\) 11931.2 1.72513
\(364\) 0 0
\(365\) 4405.60 0.631780
\(366\) 1323.79 0.189059
\(367\) 13384.4 1.90371 0.951856 0.306546i \(-0.0991734\pi\)
0.951856 + 0.306546i \(0.0991734\pi\)
\(368\) −1433.38 −0.203044
\(369\) 6900.99 0.973581
\(370\) 45.1851 0.00634882
\(371\) 0 0
\(372\) −5451.19 −0.759760
\(373\) −708.946 −0.0984125 −0.0492062 0.998789i \(-0.515669\pi\)
−0.0492062 + 0.998789i \(0.515669\pi\)
\(374\) −1643.86 −0.227279
\(375\) −9150.03 −1.26001
\(376\) 17.2658 0.00236813
\(377\) −14976.1 −2.04590
\(378\) 0 0
\(379\) 6754.31 0.915423 0.457712 0.889101i \(-0.348669\pi\)
0.457712 + 0.889101i \(0.348669\pi\)
\(380\) 9140.78 1.23398
\(381\) −6651.64 −0.894420
\(382\) −74.1425 −0.00993052
\(383\) −4262.89 −0.568730 −0.284365 0.958716i \(-0.591783\pi\)
−0.284365 + 0.958716i \(0.591783\pi\)
\(384\) 3674.98 0.488381
\(385\) 0 0
\(386\) 1282.85 0.169159
\(387\) −5763.68 −0.757065
\(388\) 7842.50 1.02614
\(389\) 11230.0 1.46371 0.731857 0.681459i \(-0.238654\pi\)
0.731857 + 0.681459i \(0.238654\pi\)
\(390\) −1649.80 −0.214207
\(391\) 2582.77 0.334057
\(392\) 0 0
\(393\) 13790.3 1.77005
\(394\) 751.938 0.0961475
\(395\) 9949.03 1.26732
\(396\) 9183.48 1.16537
\(397\) −1644.30 −0.207872 −0.103936 0.994584i \(-0.533144\pi\)
−0.103936 + 0.994584i \(0.533144\pi\)
\(398\) 913.830 0.115091
\(399\) 0 0
\(400\) 759.956 0.0949945
\(401\) 7463.82 0.929489 0.464745 0.885445i \(-0.346146\pi\)
0.464745 + 0.885445i \(0.346146\pi\)
\(402\) 944.333 0.117162
\(403\) 7621.90 0.942119
\(404\) −1423.39 −0.175288
\(405\) −10022.3 −1.22965
\(406\) 0 0
\(407\) 804.775 0.0980128
\(408\) −3281.50 −0.398183
\(409\) −3759.62 −0.454526 −0.227263 0.973833i \(-0.572978\pi\)
−0.227263 + 0.973833i \(0.572978\pi\)
\(410\) −1021.75 −0.123074
\(411\) −19216.6 −2.30629
\(412\) 13035.1 1.55872
\(413\) 0 0
\(414\) 127.680 0.0151574
\(415\) −2390.46 −0.282754
\(416\) −3859.60 −0.454886
\(417\) 422.020 0.0495597
\(418\) −1440.65 −0.168576
\(419\) 7619.80 0.888428 0.444214 0.895921i \(-0.353483\pi\)
0.444214 + 0.895921i \(0.353483\pi\)
\(420\) 0 0
\(421\) 1487.35 0.172183 0.0860914 0.996287i \(-0.472562\pi\)
0.0860914 + 0.996287i \(0.472562\pi\)
\(422\) −330.961 −0.0381776
\(423\) 85.7458 0.00985603
\(424\) −1074.33 −0.123052
\(425\) −1369.35 −0.156290
\(426\) −1943.10 −0.220994
\(427\) 0 0
\(428\) 7871.95 0.889030
\(429\) −29383.9 −3.30692
\(430\) 853.358 0.0957037
\(431\) −2649.29 −0.296083 −0.148042 0.988981i \(-0.547297\pi\)
−0.148042 + 0.988981i \(0.547297\pi\)
\(432\) −2608.27 −0.290487
\(433\) 4224.97 0.468912 0.234456 0.972127i \(-0.424669\pi\)
0.234456 + 0.972127i \(0.424669\pi\)
\(434\) 0 0
\(435\) −15820.8 −1.74380
\(436\) −168.987 −0.0185619
\(437\) 2263.49 0.247775
\(438\) −689.986 −0.0752713
\(439\) 14831.9 1.61250 0.806251 0.591573i \(-0.201493\pi\)
0.806251 + 0.591573i \(0.201493\pi\)
\(440\) −2731.41 −0.295943
\(441\) 0 0
\(442\) 2284.01 0.245790
\(443\) −4704.72 −0.504578 −0.252289 0.967652i \(-0.581183\pi\)
−0.252289 + 0.967652i \(0.581183\pi\)
\(444\) 799.713 0.0854790
\(445\) 7396.53 0.787931
\(446\) 1104.67 0.117281
\(447\) −4328.74 −0.458037
\(448\) 0 0
\(449\) 49.6103 0.00521438 0.00260719 0.999997i \(-0.499170\pi\)
0.00260719 + 0.999997i \(0.499170\pi\)
\(450\) −67.6943 −0.00709142
\(451\) −18197.9 −1.90002
\(452\) −4868.37 −0.506612
\(453\) 15692.9 1.62763
\(454\) −863.543 −0.0892689
\(455\) 0 0
\(456\) −2875.85 −0.295338
\(457\) −6277.49 −0.642557 −0.321279 0.946985i \(-0.604113\pi\)
−0.321279 + 0.946985i \(0.604113\pi\)
\(458\) 984.117 0.100403
\(459\) 4699.79 0.477924
\(460\) 2136.29 0.216532
\(461\) 11140.2 1.12549 0.562744 0.826631i \(-0.309746\pi\)
0.562744 + 0.826631i \(0.309746\pi\)
\(462\) 0 0
\(463\) −6821.86 −0.684749 −0.342374 0.939564i \(-0.611231\pi\)
−0.342374 + 0.939564i \(0.611231\pi\)
\(464\) −12155.5 −1.21617
\(465\) 8051.84 0.803000
\(466\) 1550.00 0.154082
\(467\) −3374.34 −0.334360 −0.167180 0.985926i \(-0.553466\pi\)
−0.167180 + 0.985926i \(0.553466\pi\)
\(468\) −12759.7 −1.26029
\(469\) 0 0
\(470\) −12.6953 −0.00124594
\(471\) −17543.6 −1.71627
\(472\) −874.108 −0.0852417
\(473\) 15198.8 1.47747
\(474\) −1558.17 −0.150990
\(475\) −1200.07 −0.115922
\(476\) 0 0
\(477\) −5335.36 −0.512137
\(478\) −620.521 −0.0593765
\(479\) −9644.40 −0.919967 −0.459983 0.887928i \(-0.652145\pi\)
−0.459983 + 0.887928i \(0.652145\pi\)
\(480\) −4077.32 −0.387715
\(481\) −1118.17 −0.105996
\(482\) 798.538 0.0754615
\(483\) 0 0
\(484\) −13662.3 −1.28309
\(485\) −11584.0 −1.08454
\(486\) 1270.30 0.118564
\(487\) 587.142 0.0546323 0.0273162 0.999627i \(-0.491304\pi\)
0.0273162 + 0.999627i \(0.491304\pi\)
\(488\) −3045.14 −0.282473
\(489\) 17169.8 1.58783
\(490\) 0 0
\(491\) 17831.2 1.63892 0.819461 0.573135i \(-0.194273\pi\)
0.819461 + 0.573135i \(0.194273\pi\)
\(492\) −18083.5 −1.65705
\(493\) 21902.6 2.00090
\(494\) 2001.66 0.182306
\(495\) −13564.7 −1.23170
\(496\) 6186.39 0.560034
\(497\) 0 0
\(498\) 374.384 0.0336878
\(499\) 7196.23 0.645586 0.322793 0.946470i \(-0.395378\pi\)
0.322793 + 0.946470i \(0.395378\pi\)
\(500\) 10477.6 0.937148
\(501\) −3051.66 −0.272132
\(502\) −984.673 −0.0875461
\(503\) −3011.39 −0.266941 −0.133471 0.991053i \(-0.542612\pi\)
−0.133471 + 0.991053i \(0.542612\pi\)
\(504\) 0 0
\(505\) 2102.46 0.185264
\(506\) −336.694 −0.0295808
\(507\) 25612.1 2.24354
\(508\) 7616.75 0.665233
\(509\) 6422.75 0.559299 0.279650 0.960102i \(-0.409782\pi\)
0.279650 + 0.960102i \(0.409782\pi\)
\(510\) 2412.85 0.209495
\(511\) 0 0
\(512\) −5236.53 −0.452001
\(513\) 4118.81 0.354483
\(514\) −225.479 −0.0193491
\(515\) −19253.8 −1.64743
\(516\) 15103.2 1.28853
\(517\) −226.112 −0.0192348
\(518\) 0 0
\(519\) 21547.4 1.82240
\(520\) 3795.06 0.320047
\(521\) 10457.6 0.879378 0.439689 0.898150i \(-0.355089\pi\)
0.439689 + 0.898150i \(0.355089\pi\)
\(522\) 1082.77 0.0907882
\(523\) 5417.27 0.452927 0.226463 0.974020i \(-0.427284\pi\)
0.226463 + 0.974020i \(0.427284\pi\)
\(524\) −15791.2 −1.31649
\(525\) 0 0
\(526\) −1664.20 −0.137952
\(527\) −11147.1 −0.921396
\(528\) −23849.7 −1.96577
\(529\) 529.000 0.0434783
\(530\) 789.943 0.0647414
\(531\) −4341.00 −0.354771
\(532\) 0 0
\(533\) 25284.5 2.05477
\(534\) −1158.41 −0.0938754
\(535\) −11627.5 −0.939628
\(536\) −2172.27 −0.175051
\(537\) 12784.1 1.02733
\(538\) 946.242 0.0758278
\(539\) 0 0
\(540\) 3887.33 0.309785
\(541\) 17716.7 1.40795 0.703975 0.710224i \(-0.251406\pi\)
0.703975 + 0.710224i \(0.251406\pi\)
\(542\) 25.8870 0.00205155
\(543\) 13990.8 1.10572
\(544\) 5644.71 0.444881
\(545\) 249.607 0.0196184
\(546\) 0 0
\(547\) 11555.7 0.903266 0.451633 0.892204i \(-0.350842\pi\)
0.451633 + 0.892204i \(0.350842\pi\)
\(548\) 22004.8 1.71532
\(549\) −15122.8 −1.17564
\(550\) 178.510 0.0138395
\(551\) 19195.1 1.48410
\(552\) −672.113 −0.0518244
\(553\) 0 0
\(554\) 1262.08 0.0967879
\(555\) −1181.24 −0.0903439
\(556\) −483.251 −0.0368605
\(557\) −4915.47 −0.373923 −0.186962 0.982367i \(-0.559864\pi\)
−0.186962 + 0.982367i \(0.559864\pi\)
\(558\) −551.062 −0.0418070
\(559\) −21117.5 −1.59781
\(560\) 0 0
\(561\) 42974.3 3.23418
\(562\) 768.498 0.0576818
\(563\) 17080.7 1.27862 0.639312 0.768947i \(-0.279219\pi\)
0.639312 + 0.768947i \(0.279219\pi\)
\(564\) −224.690 −0.0167751
\(565\) 7190.97 0.535445
\(566\) −798.770 −0.0593195
\(567\) 0 0
\(568\) 4469.75 0.330187
\(569\) 26856.6 1.97871 0.989357 0.145507i \(-0.0464813\pi\)
0.989357 + 0.145507i \(0.0464813\pi\)
\(570\) 2114.57 0.155386
\(571\) 10125.2 0.742077 0.371039 0.928617i \(-0.379002\pi\)
0.371039 + 0.928617i \(0.379002\pi\)
\(572\) 33647.3 2.45955
\(573\) 1938.25 0.141312
\(574\) 0 0
\(575\) −280.468 −0.0203414
\(576\) −10169.1 −0.735612
\(577\) −10605.0 −0.765147 −0.382574 0.923925i \(-0.624962\pi\)
−0.382574 + 0.923925i \(0.624962\pi\)
\(578\) −2038.94 −0.146728
\(579\) −33536.6 −2.40714
\(580\) 18116.3 1.29696
\(581\) 0 0
\(582\) 1814.24 0.129214
\(583\) 14069.4 0.999475
\(584\) 1587.19 0.112463
\(585\) 18847.1 1.33202
\(586\) 727.546 0.0512878
\(587\) 2267.45 0.159434 0.0797169 0.996818i \(-0.474598\pi\)
0.0797169 + 0.996818i \(0.474598\pi\)
\(588\) 0 0
\(589\) −9769.12 −0.683412
\(590\) 642.720 0.0448481
\(591\) −19657.4 −1.36818
\(592\) −907.570 −0.0630083
\(593\) −27734.2 −1.92059 −0.960294 0.278989i \(-0.910001\pi\)
−0.960294 + 0.278989i \(0.910001\pi\)
\(594\) −612.671 −0.0423202
\(595\) 0 0
\(596\) 4956.81 0.340669
\(597\) −23889.6 −1.63775
\(598\) 467.808 0.0319901
\(599\) −8268.56 −0.564014 −0.282007 0.959412i \(-0.591000\pi\)
−0.282007 + 0.959412i \(0.591000\pi\)
\(600\) 356.344 0.0242462
\(601\) −1545.61 −0.104903 −0.0524515 0.998623i \(-0.516703\pi\)
−0.0524515 + 0.998623i \(0.516703\pi\)
\(602\) 0 0
\(603\) −10787.9 −0.728554
\(604\) −17969.8 −1.21057
\(605\) 20180.3 1.35611
\(606\) −329.279 −0.0220727
\(607\) −17902.6 −1.19711 −0.598554 0.801083i \(-0.704258\pi\)
−0.598554 + 0.801083i \(0.704258\pi\)
\(608\) 4946.92 0.329974
\(609\) 0 0
\(610\) 2239.05 0.148617
\(611\) 314.163 0.0208015
\(612\) 18661.1 1.23257
\(613\) −13780.7 −0.907986 −0.453993 0.891005i \(-0.650001\pi\)
−0.453993 + 0.891005i \(0.650001\pi\)
\(614\) 2611.63 0.171656
\(615\) 26710.8 1.75135
\(616\) 0 0
\(617\) 12935.0 0.843995 0.421998 0.906597i \(-0.361329\pi\)
0.421998 + 0.906597i \(0.361329\pi\)
\(618\) 3015.45 0.196277
\(619\) 28162.3 1.82866 0.914329 0.404971i \(-0.132719\pi\)
0.914329 + 0.404971i \(0.132719\pi\)
\(620\) −9220.10 −0.597239
\(621\) 962.604 0.0622029
\(622\) −1468.55 −0.0946679
\(623\) 0 0
\(624\) 33137.2 2.12588
\(625\) −17000.6 −1.08804
\(626\) −2174.65 −0.138844
\(627\) 37661.9 2.39884
\(628\) 20089.0 1.27649
\(629\) 1635.33 0.103664
\(630\) 0 0
\(631\) 18619.8 1.17471 0.587356 0.809328i \(-0.300169\pi\)
0.587356 + 0.809328i \(0.300169\pi\)
\(632\) 3584.30 0.225594
\(633\) 8652.07 0.543268
\(634\) −86.2735 −0.00540435
\(635\) −11250.5 −0.703094
\(636\) 13980.9 0.871663
\(637\) 0 0
\(638\) −2855.26 −0.177180
\(639\) 22197.7 1.37422
\(640\) 6215.84 0.383911
\(641\) 4403.53 0.271340 0.135670 0.990754i \(-0.456681\pi\)
0.135670 + 0.990754i \(0.456681\pi\)
\(642\) 1821.05 0.111949
\(643\) 9833.46 0.603101 0.301550 0.953450i \(-0.402496\pi\)
0.301550 + 0.953450i \(0.402496\pi\)
\(644\) 0 0
\(645\) −22308.7 −1.36187
\(646\) −2927.45 −0.178296
\(647\) −11633.7 −0.706908 −0.353454 0.935452i \(-0.614993\pi\)
−0.353454 + 0.935452i \(0.614993\pi\)
\(648\) −3610.68 −0.218890
\(649\) 11447.2 0.692363
\(650\) −248.025 −0.0149667
\(651\) 0 0
\(652\) −19661.0 −1.18096
\(653\) 26410.4 1.58272 0.791361 0.611349i \(-0.209373\pi\)
0.791361 + 0.611349i \(0.209373\pi\)
\(654\) −39.0925 −0.00233736
\(655\) 23324.9 1.39142
\(656\) 20522.4 1.22144
\(657\) 7882.31 0.468064
\(658\) 0 0
\(659\) 6928.02 0.409525 0.204763 0.978812i \(-0.434358\pi\)
0.204763 + 0.978812i \(0.434358\pi\)
\(660\) 35545.3 2.09636
\(661\) 3672.24 0.216087 0.108044 0.994146i \(-0.465541\pi\)
0.108044 + 0.994146i \(0.465541\pi\)
\(662\) −989.601 −0.0580996
\(663\) −59709.1 −3.49760
\(664\) −861.201 −0.0503330
\(665\) 0 0
\(666\) 80.8433 0.00470362
\(667\) 4486.07 0.260422
\(668\) 3494.43 0.202401
\(669\) −28878.4 −1.66892
\(670\) 1597.24 0.0920996
\(671\) 39878.9 2.29435
\(672\) 0 0
\(673\) −15522.8 −0.889092 −0.444546 0.895756i \(-0.646635\pi\)
−0.444546 + 0.895756i \(0.646635\pi\)
\(674\) 1144.19 0.0653896
\(675\) −510.358 −0.0291018
\(676\) −29328.2 −1.66865
\(677\) 5347.48 0.303575 0.151788 0.988413i \(-0.451497\pi\)
0.151788 + 0.988413i \(0.451497\pi\)
\(678\) −1126.22 −0.0637938
\(679\) 0 0
\(680\) −5550.31 −0.313007
\(681\) 22575.0 1.27030
\(682\) 1453.15 0.0815896
\(683\) 7008.63 0.392647 0.196324 0.980539i \(-0.437100\pi\)
0.196324 + 0.980539i \(0.437100\pi\)
\(684\) 16354.3 0.914213
\(685\) −32502.8 −1.81295
\(686\) 0 0
\(687\) −25727.0 −1.42874
\(688\) −17140.2 −0.949803
\(689\) −19548.2 −1.08088
\(690\) 494.196 0.0272663
\(691\) 2542.80 0.139989 0.0699947 0.997547i \(-0.477702\pi\)
0.0699947 + 0.997547i \(0.477702\pi\)
\(692\) −24673.8 −1.35543
\(693\) 0 0
\(694\) 1291.57 0.0706445
\(695\) 713.801 0.0389583
\(696\) −5699.71 −0.310412
\(697\) −36978.8 −2.00957
\(698\) 2971.65 0.161144
\(699\) −40520.5 −2.19260
\(700\) 0 0
\(701\) 5986.08 0.322527 0.161263 0.986911i \(-0.448443\pi\)
0.161263 + 0.986911i \(0.448443\pi\)
\(702\) 851.254 0.0457671
\(703\) 1433.17 0.0768892
\(704\) 26816.0 1.43560
\(705\) 331.885 0.0177298
\(706\) −980.125 −0.0522486
\(707\) 0 0
\(708\) 11375.2 0.603824
\(709\) −23850.9 −1.26339 −0.631693 0.775219i \(-0.717640\pi\)
−0.631693 + 0.775219i \(0.717640\pi\)
\(710\) −3286.55 −0.173721
\(711\) 17800.4 0.938911
\(712\) 2664.72 0.140259
\(713\) −2283.14 −0.119922
\(714\) 0 0
\(715\) −49699.8 −2.59953
\(716\) −14639.0 −0.764087
\(717\) 16221.8 0.844929
\(718\) −412.279 −0.0214291
\(719\) −16198.0 −0.840173 −0.420086 0.907484i \(-0.638000\pi\)
−0.420086 + 0.907484i \(0.638000\pi\)
\(720\) 15297.4 0.791806
\(721\) 0 0
\(722\) −748.623 −0.0385885
\(723\) −20875.6 −1.07382
\(724\) −16020.8 −0.822388
\(725\) −2378.45 −0.121839
\(726\) −3160.55 −0.161569
\(727\) −14714.5 −0.750662 −0.375331 0.926891i \(-0.622471\pi\)
−0.375331 + 0.926891i \(0.622471\pi\)
\(728\) 0 0
\(729\) −10106.0 −0.513437
\(730\) −1167.04 −0.0591699
\(731\) 30884.6 1.56266
\(732\) 39628.1 2.00095
\(733\) −22554.3 −1.13651 −0.568255 0.822852i \(-0.692381\pi\)
−0.568255 + 0.822852i \(0.692381\pi\)
\(734\) −3545.53 −0.178294
\(735\) 0 0
\(736\) 1156.14 0.0579022
\(737\) 28447.8 1.42183
\(738\) −1828.07 −0.0911816
\(739\) −30940.6 −1.54015 −0.770073 0.637956i \(-0.779780\pi\)
−0.770073 + 0.637956i \(0.779780\pi\)
\(740\) 1352.63 0.0671941
\(741\) −52328.0 −2.59422
\(742\) 0 0
\(743\) 1548.59 0.0764632 0.0382316 0.999269i \(-0.487828\pi\)
0.0382316 + 0.999269i \(0.487828\pi\)
\(744\) 2900.81 0.142942
\(745\) −7321.60 −0.360057
\(746\) 187.799 0.00921691
\(747\) −4276.91 −0.209483
\(748\) −49209.5 −2.40545
\(749\) 0 0
\(750\) 2423.83 0.118008
\(751\) 3631.60 0.176457 0.0882284 0.996100i \(-0.471879\pi\)
0.0882284 + 0.996100i \(0.471879\pi\)
\(752\) 254.994 0.0123652
\(753\) 25741.6 1.24578
\(754\) 3967.14 0.191611
\(755\) 26542.9 1.27946
\(756\) 0 0
\(757\) 10320.4 0.495513 0.247756 0.968822i \(-0.420307\pi\)
0.247756 + 0.968822i \(0.420307\pi\)
\(758\) −1789.21 −0.0857348
\(759\) 8801.94 0.420936
\(760\) −4864.19 −0.232162
\(761\) −28242.0 −1.34530 −0.672650 0.739961i \(-0.734844\pi\)
−0.672650 + 0.739961i \(0.734844\pi\)
\(762\) 1762.01 0.0837677
\(763\) 0 0
\(764\) −2219.48 −0.105102
\(765\) −27564.0 −1.30272
\(766\) 1129.24 0.0532650
\(767\) −15905.0 −0.748755
\(768\) 25909.6 1.21736
\(769\) 2021.61 0.0947997 0.0473998 0.998876i \(-0.484907\pi\)
0.0473998 + 0.998876i \(0.484907\pi\)
\(770\) 0 0
\(771\) 5894.52 0.275339
\(772\) 38402.5 1.79033
\(773\) −1544.52 −0.0718661 −0.0359330 0.999354i \(-0.511440\pi\)
−0.0359330 + 0.999354i \(0.511440\pi\)
\(774\) 1526.79 0.0709036
\(775\) 1210.48 0.0561057
\(776\) −4173.32 −0.193059
\(777\) 0 0
\(778\) −2974.82 −0.137085
\(779\) −32407.6 −1.49053
\(780\) −49387.2 −2.26711
\(781\) −58535.4 −2.68190
\(782\) −684.174 −0.0312864
\(783\) 8163.16 0.372577
\(784\) 0 0
\(785\) −29673.1 −1.34914
\(786\) −3653.04 −0.165776
\(787\) 13130.7 0.594736 0.297368 0.954763i \(-0.403891\pi\)
0.297368 + 0.954763i \(0.403891\pi\)
\(788\) 22509.5 1.01760
\(789\) 43506.0 1.96306
\(790\) −2635.49 −0.118692
\(791\) 0 0
\(792\) −4886.92 −0.219254
\(793\) −55408.3 −2.48122
\(794\) 435.574 0.0194685
\(795\) −20650.9 −0.921272
\(796\) 27355.8 1.21809
\(797\) 37425.0 1.66332 0.831658 0.555288i \(-0.187392\pi\)
0.831658 + 0.555288i \(0.187392\pi\)
\(798\) 0 0
\(799\) −459.467 −0.0203439
\(800\) −612.970 −0.0270897
\(801\) 13233.6 0.583751
\(802\) −1977.16 −0.0870522
\(803\) −20785.7 −0.913463
\(804\) 28268.9 1.24001
\(805\) 0 0
\(806\) −2019.03 −0.0882350
\(807\) −24736.9 −1.07903
\(808\) 757.447 0.0329788
\(809\) 25725.0 1.11797 0.558987 0.829176i \(-0.311190\pi\)
0.558987 + 0.829176i \(0.311190\pi\)
\(810\) 2654.88 0.115164
\(811\) −12076.9 −0.522908 −0.261454 0.965216i \(-0.584202\pi\)
−0.261454 + 0.965216i \(0.584202\pi\)
\(812\) 0 0
\(813\) −676.744 −0.0291937
\(814\) −213.184 −0.00917948
\(815\) 29040.9 1.24817
\(816\) −48463.5 −2.07912
\(817\) 27066.7 1.15905
\(818\) 995.919 0.0425691
\(819\) 0 0
\(820\) −30586.3 −1.30258
\(821\) −5025.21 −0.213619 −0.106809 0.994280i \(-0.534063\pi\)
−0.106809 + 0.994280i \(0.534063\pi\)
\(822\) 5090.46 0.215998
\(823\) −6388.20 −0.270569 −0.135285 0.990807i \(-0.543195\pi\)
−0.135285 + 0.990807i \(0.543195\pi\)
\(824\) −6936.50 −0.293258
\(825\) −4666.66 −0.196936
\(826\) 0 0
\(827\) 3250.99 0.136697 0.0683483 0.997662i \(-0.478227\pi\)
0.0683483 + 0.997662i \(0.478227\pi\)
\(828\) 3822.15 0.160421
\(829\) 26138.3 1.09508 0.547540 0.836780i \(-0.315565\pi\)
0.547540 + 0.836780i \(0.315565\pi\)
\(830\) 633.230 0.0264816
\(831\) −32993.5 −1.37730
\(832\) −37258.5 −1.55253
\(833\) 0 0
\(834\) −111.793 −0.00464156
\(835\) −5161.55 −0.213920
\(836\) −43126.3 −1.78416
\(837\) −4154.55 −0.171568
\(838\) −2018.48 −0.0832066
\(839\) −23507.5 −0.967307 −0.483654 0.875260i \(-0.660691\pi\)
−0.483654 + 0.875260i \(0.660691\pi\)
\(840\) 0 0
\(841\) 13654.2 0.559849
\(842\) −393.997 −0.0161259
\(843\) −20090.3 −0.820813
\(844\) −9907.42 −0.404061
\(845\) 43320.1 1.76362
\(846\) −22.7140 −0.000923076 0
\(847\) 0 0
\(848\) −15866.5 −0.642520
\(849\) 20881.7 0.844118
\(850\) 362.739 0.0146375
\(851\) 334.946 0.0134921
\(852\) −58167.2 −2.33894
\(853\) −19853.1 −0.796901 −0.398450 0.917190i \(-0.630452\pi\)
−0.398450 + 0.917190i \(0.630452\pi\)
\(854\) 0 0
\(855\) −24156.6 −0.966244
\(856\) −4189.00 −0.167263
\(857\) −16851.3 −0.671678 −0.335839 0.941919i \(-0.609020\pi\)
−0.335839 + 0.941919i \(0.609020\pi\)
\(858\) 7783.77 0.309713
\(859\) −36623.8 −1.45470 −0.727350 0.686267i \(-0.759248\pi\)
−0.727350 + 0.686267i \(0.759248\pi\)
\(860\) 25545.5 1.01290
\(861\) 0 0
\(862\) 701.795 0.0277300
\(863\) −93.2237 −0.00367714 −0.00183857 0.999998i \(-0.500585\pi\)
−0.00183857 + 0.999998i \(0.500585\pi\)
\(864\) 2103.80 0.0828387
\(865\) 36445.2 1.43257
\(866\) −1119.19 −0.0439164
\(867\) 53302.4 2.08794
\(868\) 0 0
\(869\) −46939.7 −1.83236
\(870\) 4190.92 0.163317
\(871\) −39525.8 −1.53764
\(872\) 89.9251 0.00349226
\(873\) −20725.6 −0.803499
\(874\) −599.597 −0.0232056
\(875\) 0 0
\(876\) −20654.9 −0.796651
\(877\) 30806.3 1.18615 0.593075 0.805147i \(-0.297914\pi\)
0.593075 + 0.805147i \(0.297914\pi\)
\(878\) −3928.96 −0.151020
\(879\) −19019.7 −0.729827
\(880\) −40339.3 −1.54527
\(881\) −30300.4 −1.15874 −0.579369 0.815066i \(-0.696701\pi\)
−0.579369 + 0.815066i \(0.696701\pi\)
\(882\) 0 0
\(883\) −23271.1 −0.886902 −0.443451 0.896299i \(-0.646246\pi\)
−0.443451 + 0.896299i \(0.646246\pi\)
\(884\) 68372.5 2.60137
\(885\) −16802.1 −0.638190
\(886\) 1246.28 0.0472567
\(887\) 1751.59 0.0663053 0.0331526 0.999450i \(-0.489445\pi\)
0.0331526 + 0.999450i \(0.489445\pi\)
\(888\) −425.561 −0.0160821
\(889\) 0 0
\(890\) −1959.33 −0.0737944
\(891\) 47285.1 1.77790
\(892\) 33068.5 1.24127
\(893\) −402.669 −0.0150894
\(894\) 1146.68 0.0428978
\(895\) 21623.0 0.807573
\(896\) 0 0
\(897\) −12229.5 −0.455220
\(898\) −13.1417 −0.000488357 0
\(899\) −19361.6 −0.718295
\(900\) −2026.45 −0.0750536
\(901\) 28589.4 1.05711
\(902\) 4820.62 0.177948
\(903\) 0 0
\(904\) 2590.66 0.0953143
\(905\) 23664.0 0.869192
\(906\) −4157.04 −0.152437
\(907\) 38409.6 1.40614 0.703071 0.711120i \(-0.251812\pi\)
0.703071 + 0.711120i \(0.251812\pi\)
\(908\) −25850.4 −0.944797
\(909\) 3761.64 0.137256
\(910\) 0 0
\(911\) −45581.0 −1.65770 −0.828850 0.559471i \(-0.811004\pi\)
−0.828850 + 0.559471i \(0.811004\pi\)
\(912\) −42472.5 −1.54211
\(913\) 11278.2 0.408822
\(914\) 1662.90 0.0601793
\(915\) −58533.9 −2.11483
\(916\) 29459.8 1.06264
\(917\) 0 0
\(918\) −1244.97 −0.0447604
\(919\) −44113.8 −1.58344 −0.791718 0.610886i \(-0.790813\pi\)
−0.791718 + 0.610886i \(0.790813\pi\)
\(920\) −1136.81 −0.0407385
\(921\) −68274.0 −2.44268
\(922\) −2951.02 −0.105409
\(923\) 81330.0 2.90033
\(924\) 0 0
\(925\) −177.583 −0.00631233
\(926\) 1807.10 0.0641308
\(927\) −34448.1 −1.22052
\(928\) 9804.42 0.346817
\(929\) 14983.8 0.529173 0.264587 0.964362i \(-0.414764\pi\)
0.264587 + 0.964362i \(0.414764\pi\)
\(930\) −2132.92 −0.0752058
\(931\) 0 0
\(932\) 46399.7 1.63076
\(933\) 38391.2 1.34713
\(934\) 893.861 0.0313148
\(935\) 72686.5 2.54235
\(936\) 6789.96 0.237112
\(937\) −14492.9 −0.505295 −0.252647 0.967558i \(-0.581301\pi\)
−0.252647 + 0.967558i \(0.581301\pi\)
\(938\) 0 0
\(939\) 56850.2 1.97576
\(940\) −380.039 −0.0131867
\(941\) −39590.2 −1.37152 −0.685762 0.727826i \(-0.740531\pi\)
−0.685762 + 0.727826i \(0.740531\pi\)
\(942\) 4647.27 0.160739
\(943\) −7573.96 −0.261550
\(944\) −12909.4 −0.445091
\(945\) 0 0
\(946\) −4026.16 −0.138374
\(947\) −7209.23 −0.247380 −0.123690 0.992321i \(-0.539473\pi\)
−0.123690 + 0.992321i \(0.539473\pi\)
\(948\) −46644.4 −1.59804
\(949\) 28879.9 0.987863
\(950\) 317.897 0.0108568
\(951\) 2255.38 0.0769041
\(952\) 0 0
\(953\) −6893.39 −0.234312 −0.117156 0.993114i \(-0.537378\pi\)
−0.117156 + 0.993114i \(0.537378\pi\)
\(954\) 1413.33 0.0479647
\(955\) 3278.35 0.111084
\(956\) −18575.5 −0.628424
\(957\) 74643.0 2.52128
\(958\) 2554.79 0.0861603
\(959\) 0 0
\(960\) −39360.2 −1.32328
\(961\) −19937.1 −0.669232
\(962\) 296.201 0.00992713
\(963\) −20803.4 −0.696138
\(964\) 23904.5 0.798663
\(965\) −56723.6 −1.89222
\(966\) 0 0
\(967\) 50638.5 1.68400 0.841998 0.539480i \(-0.181379\pi\)
0.841998 + 0.539480i \(0.181379\pi\)
\(968\) 7270.28 0.241400
\(969\) 76530.2 2.53716
\(970\) 3068.59 0.101574
\(971\) −27159.4 −0.897619 −0.448809 0.893628i \(-0.648152\pi\)
−0.448809 + 0.893628i \(0.648152\pi\)
\(972\) 38026.9 1.25485
\(973\) 0 0
\(974\) −155.533 −0.00511664
\(975\) 6483.92 0.212976
\(976\) −44972.7 −1.47494
\(977\) −11109.1 −0.363778 −0.181889 0.983319i \(-0.558221\pi\)
−0.181889 + 0.983319i \(0.558221\pi\)
\(978\) −4548.27 −0.148709
\(979\) −34897.0 −1.13924
\(980\) 0 0
\(981\) 446.587 0.0145346
\(982\) −4723.47 −0.153495
\(983\) −27203.6 −0.882666 −0.441333 0.897343i \(-0.645494\pi\)
−0.441333 + 0.897343i \(0.645494\pi\)
\(984\) 9622.98 0.311758
\(985\) −33248.3 −1.07551
\(986\) −5801.99 −0.187397
\(987\) 0 0
\(988\) 59920.4 1.92947
\(989\) 6325.73 0.203384
\(990\) 3593.29 0.115356
\(991\) −30907.6 −0.990729 −0.495364 0.868685i \(-0.664965\pi\)
−0.495364 + 0.868685i \(0.664965\pi\)
\(992\) −4989.85 −0.159706
\(993\) 25870.4 0.826760
\(994\) 0 0
\(995\) −40406.7 −1.28742
\(996\) 11207.3 0.356543
\(997\) −12224.2 −0.388309 −0.194154 0.980971i \(-0.562196\pi\)
−0.194154 + 0.980971i \(0.562196\pi\)
\(998\) −1906.27 −0.0604629
\(999\) 609.491 0.0193027
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.4.a.f.1.5 9
7.6 odd 2 161.4.a.c.1.5 9
21.20 even 2 1449.4.a.n.1.5 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
161.4.a.c.1.5 9 7.6 odd 2
1127.4.a.f.1.5 9 1.1 even 1 trivial
1449.4.a.n.1.5 9 21.20 even 2