Properties

Label 1120.2.w.a.657.4
Level $1120$
Weight $2$
Character 1120.657
Analytic conductor $8.943$
Analytic rank $0$
Dimension $8$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(433,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.w (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.40282095616.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 8x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 657.4
Root \(-1.71331 - 0.254137i\) of defining polynomial
Character \(\chi\) \(=\) 1120.657
Dual form 1120.2.w.a.433.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.96744 - 1.96744i) q^{3} +(0.254137 - 2.22158i) q^{5} +(-1.87083 - 1.87083i) q^{7} -4.74166i q^{9} +(-4.88578 + 4.88578i) q^{13} +(-3.87083 - 4.87083i) q^{15} -2.41006i q^{19} -7.36149 q^{21} +(6.74166 - 6.74166i) q^{23} +(-4.87083 - 1.12917i) q^{25} +(-3.42661 - 3.42661i) q^{27} +(-4.63164 + 3.68075i) q^{35} +19.2250i q^{39} +(-10.5340 - 1.20503i) q^{45} +7.00000i q^{49} +(-4.74166 - 4.74166i) q^{57} -10.4111i q^{59} +6.47626 q^{61} +(-8.87083 + 8.87083i) q^{63} +(9.61249 + 12.0958i) q^{65} -26.5276i q^{69} +15.2250 q^{71} +(-11.8047 + 7.36149i) q^{75} -8.25834i q^{79} +0.741657 q^{81} +(-12.2473 + 12.2473i) q^{83} +18.2809 q^{91} +(-5.35414 - 0.612486i) q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{15} + 24 q^{23} - 24 q^{25} - 8 q^{57} - 56 q^{63} + 32 q^{65} + 32 q^{71} - 24 q^{81} + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.96744 1.96744i 1.13590 1.13590i 0.146726 0.989177i \(-0.453126\pi\)
0.989177 0.146726i \(-0.0468736\pi\)
\(4\) 0 0
\(5\) 0.254137 2.22158i 0.113654 0.993520i
\(6\) 0 0
\(7\) −1.87083 1.87083i −0.707107 0.707107i
\(8\) 0 0
\(9\) 4.74166i 1.58055i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −4.88578 + 4.88578i −1.35507 + 1.35507i −0.475185 + 0.879886i \(0.657619\pi\)
−0.879886 + 0.475185i \(0.842381\pi\)
\(14\) 0 0
\(15\) −3.87083 4.87083i −0.999444 1.25764i
\(16\) 0 0
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) 0 0
\(19\) 2.41006i 0.552906i −0.961027 0.276453i \(-0.910841\pi\)
0.961027 0.276453i \(-0.0891590\pi\)
\(20\) 0 0
\(21\) −7.36149 −1.60641
\(22\) 0 0
\(23\) 6.74166 6.74166i 1.40573 1.40573i 0.625543 0.780189i \(-0.284877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) −4.87083 1.12917i −0.974166 0.225834i
\(26\) 0 0
\(27\) −3.42661 3.42661i −0.659451 0.659451i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.63164 + 3.68075i −0.782890 + 0.622160i
\(36\) 0 0
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 19.2250i 3.07846i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) −10.5340 1.20503i −1.57031 0.179635i
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.74166 4.74166i −0.628048 0.628048i
\(58\) 0 0
\(59\) 10.4111i 1.35541i −0.735332 0.677707i \(-0.762974\pi\)
0.735332 0.677707i \(-0.237026\pi\)
\(60\) 0 0
\(61\) 6.47626 0.829199 0.414600 0.910004i \(-0.363922\pi\)
0.414600 + 0.910004i \(0.363922\pi\)
\(62\) 0 0
\(63\) −8.87083 + 8.87083i −1.11762 + 1.11762i
\(64\) 0 0
\(65\) 9.61249 + 12.0958i 1.19228 + 1.50030i
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 0 0
\(69\) 26.5276i 3.19355i
\(70\) 0 0
\(71\) 15.2250 1.80687 0.903436 0.428723i \(-0.141036\pi\)
0.903436 + 0.428723i \(0.141036\pi\)
\(72\) 0 0
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) −11.8047 + 7.36149i −1.36308 + 0.850032i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.25834i 0.929136i −0.885537 0.464568i \(-0.846210\pi\)
0.885537 0.464568i \(-0.153790\pi\)
\(80\) 0 0
\(81\) 0.741657 0.0824064
\(82\) 0 0
\(83\) −12.2473 + 12.2473i −1.34431 + 1.34431i −0.452598 + 0.891715i \(0.649503\pi\)
−0.891715 + 0.452598i \(0.850497\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 18.2809 1.91636
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.35414 0.612486i −0.549324 0.0628397i
\(96\) 0 0
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.39351 0.138660 0.0693299 0.997594i \(-0.477914\pi\)
0.0693299 + 0.997594i \(0.477914\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 0 0
\(105\) −1.87083 + 16.3541i −0.182574 + 1.59600i
\(106\) 0 0
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.2250 11.2250i 1.05596 1.05596i 0.0576178 0.998339i \(-0.481650\pi\)
0.998339 0.0576178i \(-0.0183505\pi\)
\(114\) 0 0
\(115\) −13.2638 16.6904i −1.23686 1.55639i
\(116\) 0 0
\(117\) 23.1667 + 23.1667i 2.14176 + 2.14176i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.74640 + 10.5340i −0.335088 + 0.942187i
\(126\) 0 0
\(127\) −10.2250 10.2250i −0.907320 0.907320i 0.0887357 0.996055i \(-0.471717\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.3129 −1.07579 −0.537893 0.843013i \(-0.680779\pi\)
−0.537893 + 0.843013i \(0.680779\pi\)
\(132\) 0 0
\(133\) −4.50881 + 4.50881i −0.390964 + 0.390964i
\(134\) 0 0
\(135\) −8.48331 + 6.74166i −0.730127 + 0.580229i
\(136\) 0 0
\(137\) 1.51669 + 1.51669i 0.129579 + 0.129579i 0.768922 0.639343i \(-0.220793\pi\)
−0.639343 + 0.768922i \(0.720793\pi\)
\(138\) 0 0
\(139\) 5.32840i 0.451949i −0.974133 0.225974i \(-0.927443\pi\)
0.974133 0.225974i \(-0.0725566\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 13.7721 + 13.7721i 1.13590 + 1.13590i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 22.4499 1.82695 0.913475 0.406894i \(-0.133388\pi\)
0.913475 + 0.406894i \(0.133388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.3135 16.3135i −1.30196 1.30196i −0.927071 0.374885i \(-0.877682\pi\)
−0.374885 0.927071i \(-0.622318\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −25.2250 −1.98801
\(162\) 0 0
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 34.7417i 2.67244i
\(170\) 0 0
\(171\) −11.4277 −0.873897
\(172\) 0 0
\(173\) 0.573929 0.573929i 0.0436350 0.0436350i −0.684953 0.728588i \(-0.740177\pi\)
0.728588 + 0.684953i \(0.240177\pi\)
\(174\) 0 0
\(175\) 7.00000 + 11.2250i 0.529150 + 0.848528i
\(176\) 0 0
\(177\) −20.4833 20.4833i −1.53962 1.53962i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 26.9046 1.99980 0.999902 0.0140098i \(-0.00445961\pi\)
0.999902 + 0.0140098i \(0.00445961\pi\)
\(182\) 0 0
\(183\) 12.7417 12.7417i 0.941890 0.941890i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 12.8212i 0.932605i
\(190\) 0 0
\(191\) −4.77503 −0.345509 −0.172754 0.984965i \(-0.555267\pi\)
−0.172754 + 0.984965i \(0.555267\pi\)
\(192\) 0 0
\(193\) −6.00000 + 6.00000i −0.431889 + 0.431889i −0.889271 0.457381i \(-0.848787\pi\)
0.457381 + 0.889271i \(0.348787\pi\)
\(194\) 0 0
\(195\) 42.7098 + 4.88578i 3.05851 + 0.349878i
\(196\) 0 0
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −31.9666 31.9666i −2.22183 2.22183i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 29.9543 29.9543i 2.05243 2.05243i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) −5.35414 + 23.0958i −0.356943 + 1.53972i
\(226\) 0 0
\(227\) 17.0674 + 17.0674i 1.13280 + 1.13280i 0.989709 + 0.143094i \(0.0457050\pi\)
0.143094 + 0.989709i \(0.454295\pi\)
\(228\) 0 0
\(229\) 30.0856i 1.98811i 0.108880 + 0.994055i \(0.465274\pi\)
−0.108880 + 0.994055i \(0.534726\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.9666 11.9666i 0.783960 0.783960i −0.196537 0.980497i \(-0.562969\pi\)
0.980497 + 0.196537i \(0.0629694\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −16.2478 16.2478i −1.05541 1.05541i
\(238\) 0 0
\(239\) 7.48331i 0.484055i 0.970269 + 0.242028i \(0.0778125\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 11.7390 11.7390i 0.753057 0.753057i
\(244\) 0 0
\(245\) 15.5511 + 1.77896i 0.993520 + 0.113654i
\(246\) 0 0
\(247\) 11.7750 + 11.7750i 0.749227 + 0.749227i
\(248\) 0 0
\(249\) 48.1916i 3.05402i
\(250\) 0 0
\(251\) 13.1982 0.833061 0.416530 0.909122i \(-0.363246\pi\)
0.416530 + 0.909122i \(0.363246\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.2250 + 11.2250i −0.692161 + 0.692161i −0.962707 0.270546i \(-0.912796\pi\)
0.270546 + 0.962707i \(0.412796\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 17.0017i 1.03661i 0.855194 + 0.518307i \(0.173438\pi\)
−0.855194 + 0.518307i \(0.826562\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 35.9666 35.9666i 2.17680 2.17680i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.9666 0.892834 0.446417 0.894825i \(-0.352700\pi\)
0.446417 + 0.894825i \(0.352700\pi\)
\(282\) 0 0
\(283\) 2.34441 2.34441i 0.139361 0.139361i −0.633985 0.773345i \(-0.718582\pi\)
0.773345 + 0.633985i \(0.218582\pi\)
\(284\) 0 0
\(285\) −11.7390 + 9.32894i −0.695358 + 0.552599i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.1832 + 24.1832i −1.41280 + 1.41280i −0.674788 + 0.738011i \(0.735765\pi\)
−0.738011 + 0.674788i \(0.764235\pi\)
\(294\) 0 0
\(295\) −23.1292 2.64586i −1.34663 0.154048i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 65.8765i 3.80974i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.74166 2.74166i 0.157504 0.157504i
\(304\) 0 0
\(305\) 1.64586 14.3875i 0.0942415 0.823827i
\(306\) 0 0
\(307\) −17.1987 17.1987i −0.981582 0.981582i 0.0182515 0.999833i \(-0.494190\pi\)
−0.999833 + 0.0182515i \(0.994190\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 17.4528 + 21.9617i 0.983356 + 1.23740i
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 29.3147 18.2809i 1.62609 1.01404i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000 + 18.0000i 0.980522 + 0.980522i 0.999814 0.0192914i \(-0.00614103\pi\)
−0.0192914 + 0.999814i \(0.506141\pi\)
\(338\) 0 0
\(339\) 44.1690i 2.39893i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 13.0958 13.0958i 0.707107 0.707107i
\(344\) 0 0
\(345\) −58.9333 6.74166i −3.17286 0.362959i
\(346\) 0 0
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 17.2644i 0.924140i −0.886843 0.462070i \(-0.847107\pi\)
0.886843 0.462070i \(-0.152893\pi\)
\(350\) 0 0
\(351\) 33.4833 1.78721
\(352\) 0 0
\(353\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(354\) 0 0
\(355\) 3.86923 33.8235i 0.205357 1.79516i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000i 0.316668i 0.987386 + 0.158334i \(0.0506123\pi\)
−0.987386 + 0.158334i \(0.949388\pi\)
\(360\) 0 0
\(361\) 13.1916 0.694295
\(362\) 0 0
\(363\) 21.6419 21.6419i 1.13590 1.13590i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 13.3541 + 28.0958i 0.689605 + 1.45086i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) −40.2341 −2.06125
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −24.2250 + 24.2250i −1.22199 + 1.22199i
\(394\) 0 0
\(395\) −18.3466 2.09875i −0.923116 0.105600i
\(396\) 0 0
\(397\) 28.1181 + 28.1181i 1.41121 + 1.41121i 0.751680 + 0.659528i \(0.229244\pi\)
0.659528 + 0.751680i \(0.270756\pi\)
\(398\) 0 0
\(399\) 17.7417i 0.888194i
\(400\) 0 0
\(401\) 14.7750 0.737830 0.368915 0.929463i \(-0.379729\pi\)
0.368915 + 0.929463i \(0.379729\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.188483 1.64765i 0.00936578 0.0818724i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 5.96798 0.294379
\(412\) 0 0
\(413\) −19.4775 + 19.4775i −0.958423 + 0.958423i
\(414\) 0 0
\(415\) 24.0958 + 30.3208i 1.18282 + 1.48839i
\(416\) 0 0
\(417\) −10.4833 10.4833i −0.513370 0.513370i
\(418\) 0 0
\(419\) 26.7733i 1.30796i 0.756511 + 0.653981i \(0.226902\pi\)
−0.756511 + 0.653981i \(0.773098\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.1160 12.1160i −0.586333 0.586333i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 0 0
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −16.2478 16.2478i −0.777238 0.777238i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 33.1916 1.58055
\(442\) 0 0
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 29.9333i 1.41264i 0.707894 + 0.706319i \(0.249646\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 44.1690 44.1690i 2.07524 2.07524i
\(454\) 0 0
\(455\) 4.64586 40.6125i 0.217801 1.90394i
\(456\) 0 0
\(457\) 3.74166 + 3.74166i 0.175027 + 0.175027i 0.789184 0.614157i \(-0.210504\pi\)
−0.614157 + 0.789184i \(0.710504\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −41.6276 −1.93879 −0.969395 0.245505i \(-0.921046\pi\)
−0.969395 + 0.245505i \(0.921046\pi\)
\(462\) 0 0
\(463\) −24.0000 + 24.0000i −1.11537 + 1.11537i −0.122963 + 0.992411i \(0.539240\pi\)
−0.992411 + 0.122963i \(0.960760\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.8548 + 18.8548i 0.872498 + 0.872498i 0.992744 0.120246i \(-0.0383684\pi\)
−0.120246 + 0.992744i \(0.538368\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −64.1916 −2.95779
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −2.72137 + 11.7390i −0.124865 + 0.538622i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −49.6287 + 49.6287i −2.25818 + 2.25818i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −30.2250 30.2250i −1.36962 1.36962i −0.860972 0.508652i \(-0.830144\pi\)
−0.508652 0.860972i \(-0.669856\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −28.4833 28.4833i −1.27765 1.27765i
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0.354143 3.09580i 0.0157592 0.137761i
\(506\) 0 0
\(507\) −68.3522 68.3522i −3.03563 3.03563i
\(508\) 0 0
\(509\) 25.0028i 1.10823i 0.832440 + 0.554115i \(0.186943\pi\)
−0.832440 + 0.554115i \(0.813057\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −8.25834 + 8.25834i −0.364615 + 0.364615i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.25834i 0.0991302i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 26.7246 26.7246i 1.16859 1.16859i 0.186044 0.982541i \(-0.440433\pi\)
0.982541 0.186044i \(-0.0595667\pi\)
\(524\) 0 0
\(525\) 35.8566 + 8.31239i 1.56491 + 0.362782i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 67.8999i 2.95217i
\(530\) 0 0
\(531\) −49.3661 −2.14230
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 52.9333 52.9333i 2.27158 2.27158i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) 30.7082i 1.31059i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −15.4499 + 15.4499i −0.656998 + 0.656998i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.05018 7.05018i 0.297130 0.297130i −0.542759 0.839889i \(-0.682620\pi\)
0.839889 + 0.542759i \(0.182620\pi\)
\(564\) 0 0
\(565\) −22.0845 27.7898i −0.929101 1.16913i
\(566\) 0 0
\(567\) −1.38751 1.38751i −0.0582701 0.0582701i
\(568\) 0 0
\(569\) 35.6749i 1.49557i 0.663941 + 0.747785i \(0.268883\pi\)
−0.663941 + 0.747785i \(0.731117\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −9.39459 + 9.39459i −0.392465 + 0.392465i
\(574\) 0 0
\(575\) −40.4499 + 25.2250i −1.68688 + 1.05195i
\(576\) 0 0
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 0 0
\(579\) 23.6093i 0.981169i
\(580\) 0 0
\(581\) 45.8251 1.90115
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 57.3541 45.5791i 2.37130 1.88446i
\(586\) 0 0
\(587\) −30.6595 30.6595i −1.26545 1.26545i −0.948412 0.317041i \(-0.897311\pi\)
−0.317041 0.948412i \(-0.602689\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 25.6749i 1.04905i −0.851395 0.524524i \(-0.824243\pi\)
0.851395 0.524524i \(-0.175757\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.79551 24.4374i 0.113654 0.993520i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −33.6749 33.6749i −1.35570 1.35570i −0.879143 0.476558i \(-0.841884\pi\)
−0.476558 0.879143i \(-0.658116\pi\)
\(618\) 0 0
\(619\) 28.9377i 1.16310i 0.813509 + 0.581552i \(0.197554\pi\)
−0.813509 + 0.581552i \(0.802446\pi\)
\(620\) 0 0
\(621\) −46.2021 −1.85402
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 22.4499 + 11.0000i 0.897998 + 0.440000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −2.19160 −0.0872463 −0.0436231 0.999048i \(-0.513890\pi\)
−0.0436231 + 0.999048i \(0.513890\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −25.3141 + 20.1170i −1.00456 + 0.798320i
\(636\) 0 0
\(637\) −34.2004 34.2004i −1.35507 1.35507i
\(638\) 0 0
\(639\) 72.1916i 2.85586i
\(640\) 0 0
\(641\) −45.2250 −1.78628 −0.893140 0.449780i \(-0.851502\pi\)
−0.893140 + 0.449780i \(0.851502\pi\)
\(642\) 0 0
\(643\) −3.11530 + 3.11530i −0.122855 + 0.122855i −0.765861 0.643006i \(-0.777687\pi\)
0.643006 + 0.765861i \(0.277687\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) −3.12917 + 27.3541i −0.122267 + 1.06881i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −12.4442 −0.484025 −0.242012 0.970273i \(-0.577807\pi\)
−0.242012 + 0.970273i \(0.577807\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.87083 + 11.1625i 0.343996 + 0.432865i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −35.4499 + 35.4499i −1.36649 + 1.36649i −0.501113 + 0.865382i \(0.667076\pi\)
−0.865382 + 0.501113i \(0.832924\pi\)
\(674\) 0 0
\(675\) 12.8212 + 20.5597i 0.493488 + 0.791342i
\(676\) 0 0
\(677\) −35.9879 35.9879i −1.38313 1.38313i −0.839008 0.544119i \(-0.816864\pi\)
−0.544119 0.839008i \(-0.683136\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 67.1582 2.57351
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) 3.75488 2.98399i 0.143467 0.114012i
\(686\) 0 0
\(687\) 59.1916 + 59.1916i 2.25830 + 2.25830i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −46.5790 −1.77195 −0.885975 0.463733i \(-0.846510\pi\)
−0.885975 + 0.463733i \(0.846510\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.8375 1.35414i −0.449020 0.0513656i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 47.0873i 1.78101i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.60703 2.60703i −0.0980473 0.0980473i
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) −39.1582 −1.46855
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 14.7230 + 14.7230i 0.549840 + 0.549840i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 43.9666i 1.62839i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −19.1005 + 19.1005i −0.705493 + 0.705493i −0.965584 0.260091i \(-0.916247\pi\)
0.260091 + 0.965584i \(0.416247\pi\)
\(734\) 0 0
\(735\) 34.0958 27.0958i 1.25764 0.999444i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 46.3334 1.70210
\(742\) 0 0
\(743\) −23.2583 + 23.2583i −0.853266 + 0.853266i −0.990534 0.137268i \(-0.956168\pi\)
0.137268 + 0.990534i \(0.456168\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 58.0724 + 58.0724i 2.12476 + 2.12476i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.4499 0.819210 0.409605 0.912263i \(-0.365667\pi\)
0.409605 + 0.912263i \(0.365667\pi\)
\(752\) 0 0
\(753\) 25.9666 25.9666i 0.946277 0.946277i
\(754\) 0 0
\(755\) 5.70536 49.8743i 0.207639 1.81511i
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 50.8665 + 50.8665i 1.83668 + 1.83668i
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −39.1519 + 39.1519i −1.40820 + 1.40820i −0.638932 + 0.769263i \(0.720624\pi\)
−0.769263 + 0.638932i \(0.779376\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −40.3875 + 32.0958i −1.44149 + 1.14555i
\(786\) 0 0
\(787\) 38.5293 + 38.5293i 1.37342 + 1.37342i 0.855321 + 0.518099i \(0.173360\pi\)
0.518099 + 0.855321i \(0.326640\pi\)
\(788\) 0 0
\(789\) 44.1690i 1.57246i
\(790\) 0 0
\(791\) −42.0000 −1.49335
\(792\) 0 0
\(793\) −31.6415 + 31.6415i −1.12362 + 1.12362i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 34.3318 + 34.3318i 1.21609 + 1.21609i 0.968989 + 0.247104i \(0.0794790\pi\)
0.247104 + 0.968989i \(0.420521\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −6.41060 + 56.0393i −0.225944 + 1.97512i
\(806\) 0 0
\(807\) 33.4499 + 33.4499i 1.17749 + 1.17749i
\(808\) 0 0
\(809\) 55.6749i 1.95743i 0.205234 + 0.978713i \(0.434204\pi\)
−0.205234 + 0.978713i \(0.565796\pi\)
\(810\) 0 0
\(811\) 56.2193 1.97413 0.987063 0.160333i \(-0.0512570\pi\)
0.987063 + 0.160333i \(0.0512570\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 86.6818i 3.02891i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 36.0000 36.0000i 1.25488 1.25488i 0.301376 0.953506i \(-0.402554\pi\)
0.953506 0.301376i \(-0.0974458\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 53.6949i 1.86490i −0.361299 0.932450i \(-0.617667\pi\)
0.361299 0.932450i \(-0.382333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 29.4460 29.4460i 1.01417 1.01417i
\(844\) 0 0
\(845\) −77.1813 8.82914i −2.65512 0.303732i
\(846\) 0 0
\(847\) −20.5791 20.5791i −0.707107 0.707107i
\(848\) 0 0
\(849\) 9.22497i 0.316600i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 39.9228 39.9228i 1.36693 1.36693i 0.502148 0.864782i \(-0.332543\pi\)
0.864782 0.502148i \(-0.167457\pi\)
\(854\) 0 0
\(855\) −2.90420 + 25.3875i −0.0993215 + 0.868235i
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 41.7589i 1.42480i −0.701776 0.712398i \(-0.747609\pi\)
0.701776 0.712398i \(-0.252391\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11.2250 + 11.2250i −0.382102 + 0.382102i −0.871859 0.489757i \(-0.837086\pi\)
0.489757 + 0.871859i \(0.337086\pi\)
\(864\) 0 0
\(865\) −1.12917 1.42088i −0.0383930 0.0483115i
\(866\) 0 0
\(867\) 33.4465 + 33.4465i 1.13590 + 1.13590i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 26.7161 12.6984i 0.903170 0.429283i
\(876\) 0 0
\(877\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 0 0
\(879\) 95.1582i 3.20961i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(884\) 0 0
\(885\) −50.7109 + 40.2997i −1.70463 + 1.35466i
\(886\) 0 0
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 38.2583i 1.28314i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 129.608 + 129.608i 4.32749 + 4.32749i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.83746 59.7707i 0.227285 1.98685i
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 0 0
\(909\) 6.60756i 0.219159i
\(910\) 0 0
\(911\) −52.3832 −1.73553 −0.867766 0.496972i \(-0.834445\pi\)
−0.867766 + 0.496972i \(0.834445\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −25.0685 31.5447i −0.828738 1.04284i
\(916\) 0 0
\(917\) 23.0354 + 23.0354i 0.760695 + 0.760695i
\(918\) 0 0
\(919\) 29.1582i 0.961841i 0.876764 + 0.480921i \(0.159697\pi\)
−0.876764 + 0.480921i \(0.840303\pi\)
\(920\) 0 0
\(921\) −67.6749 −2.22996
\(922\) 0 0
\(923\) −74.3858 + 74.3858i −2.44844 + 2.44844i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 16.8704 0.552906
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 61.1707 1.99411 0.997054 0.0767020i \(-0.0244390\pi\)
0.997054 + 0.0767020i \(0.0244390\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 28.4833 + 3.25834i 0.926562 + 0.105994i
\(946\) 0 0
\(947\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 41.9666 41.9666i 1.35943 1.35943i 0.484817 0.874616i \(-0.338886\pi\)
0.874616 0.484817i \(-0.161114\pi\)
\(954\) 0 0
\(955\) −1.21351 + 10.6081i −0.0392683 + 0.343270i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.67492i 0.183253i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.8047 + 14.8543i 0.380005 + 0.478177i
\(966\) 0 0
\(967\) −40.2250 40.2250i −1.29355 1.29355i −0.932577 0.360971i \(-0.882445\pi\)
−0.360971 0.932577i \(-0.617555\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 57.6298 1.84943 0.924713 0.380664i \(-0.124305\pi\)
0.924713 + 0.380664i \(0.124305\pi\)
\(972\) 0 0
\(973\) −9.96852 + 9.96852i −0.319576 + 0.319576i
\(974\) 0 0
\(975\) 21.7083 93.6415i 0.695222 2.99893i
\(976\) 0 0
\(977\) 38.9333 + 38.9333i 1.24559 + 1.24559i 0.957650 + 0.287936i \(0.0929689\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −62.1916 −1.97558 −0.987791 0.155787i \(-0.950209\pi\)
−0.987791 + 0.155787i \(0.950209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 19.7401 + 19.7401i 0.625174 + 0.625174i 0.946850 0.321675i \(-0.104246\pi\)
−0.321675 + 0.946850i \(0.604246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.w.a.657.4 8
4.3 odd 2 280.2.s.a.237.1 yes 8
5.3 odd 4 inner 1120.2.w.a.433.4 8
7.6 odd 2 inner 1120.2.w.a.657.1 8
8.3 odd 2 280.2.s.a.237.4 yes 8
8.5 even 2 inner 1120.2.w.a.657.1 8
20.3 even 4 280.2.s.a.13.1 8
28.27 even 2 280.2.s.a.237.4 yes 8
35.13 even 4 inner 1120.2.w.a.433.1 8
40.3 even 4 280.2.s.a.13.4 yes 8
40.13 odd 4 inner 1120.2.w.a.433.1 8
56.13 odd 2 CM 1120.2.w.a.657.4 8
56.27 even 2 280.2.s.a.237.1 yes 8
140.83 odd 4 280.2.s.a.13.4 yes 8
280.13 even 4 inner 1120.2.w.a.433.4 8
280.83 odd 4 280.2.s.a.13.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.s.a.13.1 8 20.3 even 4
280.2.s.a.13.1 8 280.83 odd 4
280.2.s.a.13.4 yes 8 40.3 even 4
280.2.s.a.13.4 yes 8 140.83 odd 4
280.2.s.a.237.1 yes 8 4.3 odd 2
280.2.s.a.237.1 yes 8 56.27 even 2
280.2.s.a.237.4 yes 8 8.3 odd 2
280.2.s.a.237.4 yes 8 28.27 even 2
1120.2.w.a.433.1 8 35.13 even 4 inner
1120.2.w.a.433.1 8 40.13 odd 4 inner
1120.2.w.a.433.4 8 5.3 odd 4 inner
1120.2.w.a.433.4 8 280.13 even 4 inner
1120.2.w.a.657.1 8 7.6 odd 2 inner
1120.2.w.a.657.1 8 8.5 even 2 inner
1120.2.w.a.657.4 8 1.1 even 1 trivial
1120.2.w.a.657.4 8 56.13 odd 2 CM