Defining parameters
Level: | \( N \) | \(=\) | \( 1120 = 2^{5} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1120.w (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 280 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(15\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1120, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 416 | 104 | 312 |
Cusp forms | 352 | 88 | 264 |
Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1120, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1120.2.w.a | $8$ | $8.943$ | 8.0.\(\cdots\).8 | \(\Q(\sqrt{-14}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{5}-\beta _{6})q^{3}+(\beta _{1}-\beta _{5}-\beta _{6})q^{5}+\cdots\) |
1120.2.w.b | $8$ | $8.943$ | 8.0.\(\cdots\).8 | \(\Q(\sqrt{-14}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+\beta _{5}q^{5}+\beta _{7}q^{7}+(-\beta _{3}-5\beta _{4}+\cdots)q^{9}+\cdots\) |
1120.2.w.c | $72$ | $8.943$ | None | \(0\) | \(0\) | \(0\) | \(4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1120, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1120, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(280, [\chi])\)\(^{\oplus 3}\)