Properties

Label 1120.2.bw.h.289.15
Level $1120$
Weight $2$
Character 1120.289
Analytic conductor $8.943$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(289,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bw (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,-8,0,0,0,40,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.15
Character \(\chi\) \(=\) 1120.289
Dual form 1120.2.bw.h.1089.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.04145 - 1.17863i) q^{3} +(2.20846 - 0.350280i) q^{5} +(-0.745750 - 2.53848i) q^{7} +(1.27835 - 2.21416i) q^{9} +(0.300162 + 0.519896i) q^{11} +3.96891i q^{13} +(4.09561 - 3.31804i) q^{15} +(2.53473 - 1.46343i) q^{17} +(1.65804 - 2.87180i) q^{19} +(-4.51434 - 4.30320i) q^{21} +(-0.370565 - 0.213946i) q^{23} +(4.75461 - 1.54716i) q^{25} +1.04500i q^{27} +2.15375 q^{29} +(-0.664524 - 1.15099i) q^{31} +(1.22553 + 0.707561i) q^{33} +(-2.53614 - 5.34490i) q^{35} +(-5.33077 - 3.07772i) q^{37} +(4.67789 + 8.10234i) q^{39} +5.99880 q^{41} -7.79270i q^{43} +(2.04760 - 5.33766i) q^{45} +(-9.37449 - 5.41236i) q^{47} +(-5.88771 + 3.78614i) q^{49} +(3.44968 - 5.97502i) q^{51} +(-10.5518 + 6.09206i) q^{53} +(0.845006 + 1.04303i) q^{55} -7.81686i q^{57} +(3.98454 + 6.90142i) q^{59} +(-3.54639 + 6.14253i) q^{61} +(-6.57391 - 1.59384i) q^{63} +(1.39023 + 8.76519i) q^{65} +(10.7315 - 6.19584i) q^{67} -1.00865 q^{69} +6.86218 q^{71} +(-14.0159 + 8.09206i) q^{73} +(7.88276 - 8.76238i) q^{75} +(1.09590 - 1.14967i) q^{77} +(-6.76969 + 11.7254i) q^{79} +(5.06670 + 8.77579i) q^{81} +5.18749i q^{83} +(5.08524 - 4.11978i) q^{85} +(4.39677 - 2.53848i) q^{87} +(-0.395273 + 0.684632i) q^{89} +(10.0750 - 2.95982i) q^{91} +(-2.71318 - 1.56646i) q^{93} +(2.65577 - 6.92305i) q^{95} +2.80588i q^{97} +1.53484 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 8 q^{5} + 40 q^{9} - 4 q^{21} + 24 q^{25} + 24 q^{29} - 40 q^{41} - 8 q^{45} - 52 q^{49} - 44 q^{61} + 16 q^{65} - 56 q^{69} - 4 q^{81} - 72 q^{85} - 76 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.04145 1.17863i 1.17863 0.680483i 0.222934 0.974834i \(-0.428437\pi\)
0.955698 + 0.294350i \(0.0951032\pi\)
\(4\) 0 0
\(5\) 2.20846 0.350280i 0.987654 0.156650i
\(6\) 0 0
\(7\) −0.745750 2.53848i −0.281867 0.959453i
\(8\) 0 0
\(9\) 1.27835 2.21416i 0.426115 0.738053i
\(10\) 0 0
\(11\) 0.300162 + 0.519896i 0.0905023 + 0.156755i 0.907723 0.419571i \(-0.137819\pi\)
−0.817220 + 0.576325i \(0.804486\pi\)
\(12\) 0 0
\(13\) 3.96891i 1.10078i 0.834908 + 0.550389i \(0.185521\pi\)
−0.834908 + 0.550389i \(0.814479\pi\)
\(14\) 0 0
\(15\) 4.09561 3.31804i 1.05748 0.856715i
\(16\) 0 0
\(17\) 2.53473 1.46343i 0.614762 0.354933i −0.160065 0.987106i \(-0.551170\pi\)
0.774827 + 0.632174i \(0.217837\pi\)
\(18\) 0 0
\(19\) 1.65804 2.87180i 0.380380 0.658837i −0.610737 0.791834i \(-0.709127\pi\)
0.991116 + 0.132997i \(0.0424599\pi\)
\(20\) 0 0
\(21\) −4.51434 4.30320i −0.985110 0.939036i
\(22\) 0 0
\(23\) −0.370565 0.213946i −0.0772681 0.0446108i 0.460868 0.887469i \(-0.347538\pi\)
−0.538136 + 0.842858i \(0.680871\pi\)
\(24\) 0 0
\(25\) 4.75461 1.54716i 0.950921 0.309432i
\(26\) 0 0
\(27\) 1.04500i 0.201110i
\(28\) 0 0
\(29\) 2.15375 0.399941 0.199970 0.979802i \(-0.435915\pi\)
0.199970 + 0.979802i \(0.435915\pi\)
\(30\) 0 0
\(31\) −0.664524 1.15099i −0.119352 0.206724i 0.800159 0.599788i \(-0.204748\pi\)
−0.919511 + 0.393064i \(0.871415\pi\)
\(32\) 0 0
\(33\) 1.22553 + 0.707561i 0.213338 + 0.123171i
\(34\) 0 0
\(35\) −2.53614 5.34490i −0.428686 0.903454i
\(36\) 0 0
\(37\) −5.33077 3.07772i −0.876373 0.505974i −0.00691230 0.999976i \(-0.502200\pi\)
−0.869461 + 0.494002i \(0.835534\pi\)
\(38\) 0 0
\(39\) 4.67789 + 8.10234i 0.749061 + 1.29741i
\(40\) 0 0
\(41\) 5.99880 0.936854 0.468427 0.883502i \(-0.344821\pi\)
0.468427 + 0.883502i \(0.344821\pi\)
\(42\) 0 0
\(43\) 7.79270i 1.18838i −0.804326 0.594188i \(-0.797474\pi\)
0.804326 0.594188i \(-0.202526\pi\)
\(44\) 0 0
\(45\) 2.04760 5.33766i 0.305238 0.795692i
\(46\) 0 0
\(47\) −9.37449 5.41236i −1.36741 0.789474i −0.376813 0.926289i \(-0.622980\pi\)
−0.990597 + 0.136815i \(0.956313\pi\)
\(48\) 0 0
\(49\) −5.88771 + 3.78614i −0.841102 + 0.540877i
\(50\) 0 0
\(51\) 3.44968 5.97502i 0.483052 0.836670i
\(52\) 0 0
\(53\) −10.5518 + 6.09206i −1.44940 + 0.836809i −0.998445 0.0557402i \(-0.982248\pi\)
−0.450950 + 0.892549i \(0.648915\pi\)
\(54\) 0 0
\(55\) 0.845006 + 1.04303i 0.113941 + 0.140642i
\(56\) 0 0
\(57\) 7.81686i 1.03537i
\(58\) 0 0
\(59\) 3.98454 + 6.90142i 0.518742 + 0.898488i 0.999763 + 0.0217787i \(0.00693291\pi\)
−0.481021 + 0.876709i \(0.659734\pi\)
\(60\) 0 0
\(61\) −3.54639 + 6.14253i −0.454069 + 0.786470i −0.998634 0.0522484i \(-0.983361\pi\)
0.544566 + 0.838718i \(0.316695\pi\)
\(62\) 0 0
\(63\) −6.57391 1.59384i −0.828235 0.200805i
\(64\) 0 0
\(65\) 1.39023 + 8.76519i 0.172437 + 1.08719i
\(66\) 0 0
\(67\) 10.7315 6.19584i 1.31106 0.756942i 0.328790 0.944403i \(-0.393359\pi\)
0.982272 + 0.187461i \(0.0600259\pi\)
\(68\) 0 0
\(69\) −1.00865 −0.121428
\(70\) 0 0
\(71\) 6.86218 0.814391 0.407195 0.913341i \(-0.366507\pi\)
0.407195 + 0.913341i \(0.366507\pi\)
\(72\) 0 0
\(73\) −14.0159 + 8.09206i −1.64043 + 0.947104i −0.659753 + 0.751483i \(0.729339\pi\)
−0.980679 + 0.195621i \(0.937328\pi\)
\(74\) 0 0
\(75\) 7.88276 8.76238i 0.910223 1.01179i
\(76\) 0 0
\(77\) 1.09590 1.14967i 0.124889 0.131017i
\(78\) 0 0
\(79\) −6.76969 + 11.7254i −0.761650 + 1.31922i 0.180350 + 0.983602i \(0.442277\pi\)
−0.942000 + 0.335613i \(0.891056\pi\)
\(80\) 0 0
\(81\) 5.06670 + 8.77579i 0.562967 + 0.975087i
\(82\) 0 0
\(83\) 5.18749i 0.569401i 0.958617 + 0.284700i \(0.0918941\pi\)
−0.958617 + 0.284700i \(0.908106\pi\)
\(84\) 0 0
\(85\) 5.08524 4.11978i 0.551572 0.446853i
\(86\) 0 0
\(87\) 4.39677 2.53848i 0.471383 0.272153i
\(88\) 0 0
\(89\) −0.395273 + 0.684632i −0.0418988 + 0.0725709i −0.886214 0.463275i \(-0.846674\pi\)
0.844316 + 0.535846i \(0.180007\pi\)
\(90\) 0 0
\(91\) 10.0750 2.95982i 1.05615 0.310273i
\(92\) 0 0
\(93\) −2.71318 1.56646i −0.281344 0.162434i
\(94\) 0 0
\(95\) 2.65577 6.92305i 0.272477 0.710290i
\(96\) 0 0
\(97\) 2.80588i 0.284894i 0.989802 + 0.142447i \(0.0454971\pi\)
−0.989802 + 0.142447i \(0.954503\pi\)
\(98\) 0 0
\(99\) 1.53484 0.154258
\(100\) 0 0
\(101\) −0.175266 0.303570i −0.0174396 0.0302063i 0.857174 0.515027i \(-0.172218\pi\)
−0.874614 + 0.484821i \(0.838885\pi\)
\(102\) 0 0
\(103\) −11.9705 6.91118i −1.17949 0.680978i −0.223593 0.974683i \(-0.571779\pi\)
−0.955896 + 0.293704i \(0.905112\pi\)
\(104\) 0 0
\(105\) −11.4771 7.92218i −1.12005 0.773126i
\(106\) 0 0
\(107\) 0.904995 + 0.522499i 0.0874892 + 0.0505119i 0.543106 0.839664i \(-0.317248\pi\)
−0.455617 + 0.890176i \(0.650581\pi\)
\(108\) 0 0
\(109\) 8.45410 + 14.6429i 0.809756 + 1.40254i 0.913033 + 0.407886i \(0.133734\pi\)
−0.103277 + 0.994653i \(0.532933\pi\)
\(110\) 0 0
\(111\) −14.5100 −1.37723
\(112\) 0 0
\(113\) 5.75946i 0.541804i 0.962607 + 0.270902i \(0.0873220\pi\)
−0.962607 + 0.270902i \(0.912678\pi\)
\(114\) 0 0
\(115\) −0.893319 0.342689i −0.0833025 0.0319560i
\(116\) 0 0
\(117\) 8.78780 + 5.07364i 0.812433 + 0.469058i
\(118\) 0 0
\(119\) −5.60514 5.34299i −0.513823 0.489791i
\(120\) 0 0
\(121\) 5.31981 9.21417i 0.483619 0.837652i
\(122\) 0 0
\(123\) 12.2462 7.07037i 1.10421 0.637514i
\(124\) 0 0
\(125\) 9.95843 5.08229i 0.890709 0.454574i
\(126\) 0 0
\(127\) 3.47167i 0.308061i −0.988066 0.154030i \(-0.950775\pi\)
0.988066 0.154030i \(-0.0492253\pi\)
\(128\) 0 0
\(129\) −9.18472 15.9084i −0.808670 1.40066i
\(130\) 0 0
\(131\) 7.80881 13.5253i 0.682259 1.18171i −0.292031 0.956409i \(-0.594331\pi\)
0.974290 0.225299i \(-0.0723358\pi\)
\(132\) 0 0
\(133\) −8.52649 2.06724i −0.739340 0.179252i
\(134\) 0 0
\(135\) 0.366042 + 2.30784i 0.0315039 + 0.198627i
\(136\) 0 0
\(137\) −7.70689 + 4.44958i −0.658444 + 0.380153i −0.791684 0.610931i \(-0.790795\pi\)
0.133240 + 0.991084i \(0.457462\pi\)
\(138\) 0 0
\(139\) −13.7244 −1.16408 −0.582042 0.813159i \(-0.697746\pi\)
−0.582042 + 0.813159i \(0.697746\pi\)
\(140\) 0 0
\(141\) −25.5167 −2.14890
\(142\) 0 0
\(143\) −2.06342 + 1.19132i −0.172552 + 0.0996229i
\(144\) 0 0
\(145\) 4.75647 0.754416i 0.395003 0.0626508i
\(146\) 0 0
\(147\) −7.55701 + 14.6687i −0.623292 + 1.20985i
\(148\) 0 0
\(149\) 2.79268 4.83707i 0.228786 0.396268i −0.728663 0.684873i \(-0.759858\pi\)
0.957448 + 0.288604i \(0.0931912\pi\)
\(150\) 0 0
\(151\) 10.1680 + 17.6115i 0.827461 + 1.43320i 0.900024 + 0.435841i \(0.143549\pi\)
−0.0725624 + 0.997364i \(0.523118\pi\)
\(152\) 0 0
\(153\) 7.48305i 0.604969i
\(154\) 0 0
\(155\) −1.87074 2.30915i −0.150262 0.185475i
\(156\) 0 0
\(157\) 19.2419 11.1093i 1.53567 0.886619i 0.536584 0.843847i \(-0.319715\pi\)
0.999085 0.0427714i \(-0.0136187\pi\)
\(158\) 0 0
\(159\) −14.3606 + 24.8733i −1.13887 + 1.97258i
\(160\) 0 0
\(161\) −0.266747 + 1.10022i −0.0210226 + 0.0867095i
\(162\) 0 0
\(163\) 11.3580 + 6.55753i 0.889625 + 0.513625i 0.873820 0.486250i \(-0.161635\pi\)
0.0158054 + 0.999875i \(0.494969\pi\)
\(164\) 0 0
\(165\) 2.95438 + 1.13334i 0.229999 + 0.0882305i
\(166\) 0 0
\(167\) 11.4865i 0.888854i 0.895815 + 0.444427i \(0.146593\pi\)
−0.895815 + 0.444427i \(0.853407\pi\)
\(168\) 0 0
\(169\) −2.75227 −0.211713
\(170\) 0 0
\(171\) −4.23909 7.34231i −0.324171 0.561481i
\(172\) 0 0
\(173\) 12.3137 + 7.10930i 0.936191 + 0.540510i 0.888764 0.458365i \(-0.151565\pi\)
0.0474266 + 0.998875i \(0.484898\pi\)
\(174\) 0 0
\(175\) −7.47318 10.9157i −0.564919 0.825146i
\(176\) 0 0
\(177\) 16.2685 + 9.39260i 1.22281 + 0.705991i
\(178\) 0 0
\(179\) 0.835558 + 1.44723i 0.0624525 + 0.108171i 0.895561 0.444938i \(-0.146774\pi\)
−0.833109 + 0.553109i \(0.813441\pi\)
\(180\) 0 0
\(181\) 5.84964 0.434800 0.217400 0.976083i \(-0.430242\pi\)
0.217400 + 0.976083i \(0.430242\pi\)
\(182\) 0 0
\(183\) 16.7195i 1.23594i
\(184\) 0 0
\(185\) −12.8509 4.92977i −0.944815 0.362444i
\(186\) 0 0
\(187\) 1.52166 + 0.878530i 0.111275 + 0.0642444i
\(188\) 0 0
\(189\) 2.65270 0.779308i 0.192956 0.0566863i
\(190\) 0 0
\(191\) 10.8089 18.7216i 0.782106 1.35465i −0.148607 0.988896i \(-0.547479\pi\)
0.930713 0.365750i \(-0.119188\pi\)
\(192\) 0 0
\(193\) −14.6201 + 8.44092i −1.05238 + 0.607591i −0.923314 0.384045i \(-0.874531\pi\)
−0.129064 + 0.991636i \(0.541197\pi\)
\(194\) 0 0
\(195\) 13.1690 + 16.2551i 0.943053 + 1.16405i
\(196\) 0 0
\(197\) 7.42088i 0.528716i −0.964425 0.264358i \(-0.914840\pi\)
0.964425 0.264358i \(-0.0851600\pi\)
\(198\) 0 0
\(199\) 7.30115 + 12.6460i 0.517565 + 0.896448i 0.999792 + 0.0204022i \(0.00649466\pi\)
−0.482227 + 0.876046i \(0.660172\pi\)
\(200\) 0 0
\(201\) 14.6052 25.2970i 1.03017 1.78431i
\(202\) 0 0
\(203\) −1.60616 5.46724i −0.112730 0.383725i
\(204\) 0 0
\(205\) 13.2481 2.10126i 0.925288 0.146758i
\(206\) 0 0
\(207\) −0.947420 + 0.546993i −0.0658502 + 0.0380186i
\(208\) 0 0
\(209\) 1.99072 0.137701
\(210\) 0 0
\(211\) −12.7079 −0.874851 −0.437426 0.899255i \(-0.644110\pi\)
−0.437426 + 0.899255i \(0.644110\pi\)
\(212\) 0 0
\(213\) 14.0088 8.08798i 0.959867 0.554179i
\(214\) 0 0
\(215\) −2.72963 17.2099i −0.186159 1.17370i
\(216\) 0 0
\(217\) −2.42619 + 2.54523i −0.164700 + 0.172781i
\(218\) 0 0
\(219\) −19.0751 + 33.0391i −1.28898 + 2.23257i
\(220\) 0 0
\(221\) 5.80821 + 10.0601i 0.390702 + 0.676716i
\(222\) 0 0
\(223\) 22.6819i 1.51889i 0.650570 + 0.759446i \(0.274530\pi\)
−0.650570 + 0.759446i \(0.725470\pi\)
\(224\) 0 0
\(225\) 2.65237 12.5053i 0.176824 0.833684i
\(226\) 0 0
\(227\) −16.7168 + 9.65145i −1.10953 + 0.640589i −0.938708 0.344712i \(-0.887977\pi\)
−0.170825 + 0.985301i \(0.554643\pi\)
\(228\) 0 0
\(229\) 11.2526 19.4901i 0.743595 1.28794i −0.207254 0.978287i \(-0.566453\pi\)
0.950848 0.309657i \(-0.100214\pi\)
\(230\) 0 0
\(231\) 0.882185 3.63865i 0.0580435 0.239405i
\(232\) 0 0
\(233\) 4.44817 + 2.56815i 0.291409 + 0.168245i 0.638577 0.769558i \(-0.279523\pi\)
−0.347168 + 0.937803i \(0.612857\pi\)
\(234\) 0 0
\(235\) −22.5990 8.66930i −1.47420 0.565523i
\(236\) 0 0
\(237\) 31.9159i 2.07316i
\(238\) 0 0
\(239\) −6.99311 −0.452347 −0.226173 0.974087i \(-0.572622\pi\)
−0.226173 + 0.974087i \(0.572622\pi\)
\(240\) 0 0
\(241\) 6.11633 + 10.5938i 0.393987 + 0.682406i 0.992971 0.118355i \(-0.0377621\pi\)
−0.598984 + 0.800761i \(0.704429\pi\)
\(242\) 0 0
\(243\) 17.9719 + 10.3761i 1.15290 + 0.665624i
\(244\) 0 0
\(245\) −11.6766 + 10.4239i −0.745989 + 0.665958i
\(246\) 0 0
\(247\) 11.3979 + 6.58061i 0.725234 + 0.418714i
\(248\) 0 0
\(249\) 6.11414 + 10.5900i 0.387468 + 0.671114i
\(250\) 0 0
\(251\) −31.6584 −1.99826 −0.999129 0.0417342i \(-0.986712\pi\)
−0.999129 + 0.0417342i \(0.986712\pi\)
\(252\) 0 0
\(253\) 0.256874i 0.0161495i
\(254\) 0 0
\(255\) 5.52555 14.4040i 0.346023 0.902011i
\(256\) 0 0
\(257\) −2.95465 1.70587i −0.184306 0.106409i 0.405008 0.914313i \(-0.367269\pi\)
−0.589314 + 0.807904i \(0.700602\pi\)
\(258\) 0 0
\(259\) −3.83730 + 15.8272i −0.238438 + 0.983457i
\(260\) 0 0
\(261\) 2.75323 4.76874i 0.170421 0.295178i
\(262\) 0 0
\(263\) −19.5818 + 11.3056i −1.20746 + 0.697130i −0.962205 0.272327i \(-0.912207\pi\)
−0.245260 + 0.969457i \(0.578873\pi\)
\(264\) 0 0
\(265\) −21.1692 + 17.1502i −1.30042 + 1.05353i
\(266\) 0 0
\(267\) 1.86352i 0.114046i
\(268\) 0 0
\(269\) 1.31780 + 2.28249i 0.0803475 + 0.139166i 0.903399 0.428800i \(-0.141064\pi\)
−0.823052 + 0.567966i \(0.807730\pi\)
\(270\) 0 0
\(271\) −8.92122 + 15.4520i −0.541925 + 0.938642i 0.456868 + 0.889534i \(0.348971\pi\)
−0.998793 + 0.0491078i \(0.984362\pi\)
\(272\) 0 0
\(273\) 17.0790 17.9170i 1.03367 1.08439i
\(274\) 0 0
\(275\) 2.23152 + 2.00750i 0.134565 + 0.121057i
\(276\) 0 0
\(277\) −6.18316 + 3.56985i −0.371510 + 0.214491i −0.674118 0.738624i \(-0.735476\pi\)
0.302608 + 0.953115i \(0.402143\pi\)
\(278\) 0 0
\(279\) −3.39796 −0.203431
\(280\) 0 0
\(281\) −4.14630 −0.247347 −0.123674 0.992323i \(-0.539468\pi\)
−0.123674 + 0.992323i \(0.539468\pi\)
\(282\) 0 0
\(283\) 10.3250 5.96114i 0.613758 0.354353i −0.160677 0.987007i \(-0.551368\pi\)
0.774435 + 0.632654i \(0.218034\pi\)
\(284\) 0 0
\(285\) −2.73809 17.2632i −0.162191 1.02259i
\(286\) 0 0
\(287\) −4.47360 15.2278i −0.264069 0.898868i
\(288\) 0 0
\(289\) −4.21677 + 7.30367i −0.248045 + 0.429627i
\(290\) 0 0
\(291\) 3.30710 + 5.72807i 0.193866 + 0.335786i
\(292\) 0 0
\(293\) 22.8244i 1.33342i −0.745318 0.666709i \(-0.767702\pi\)
0.745318 0.666709i \(-0.232298\pi\)
\(294\) 0 0
\(295\) 11.2171 + 13.8458i 0.653086 + 0.806134i
\(296\) 0 0
\(297\) −0.543290 + 0.313669i −0.0315249 + 0.0182009i
\(298\) 0 0
\(299\) 0.849132 1.47074i 0.0491066 0.0850551i
\(300\) 0 0
\(301\) −19.7816 + 5.81141i −1.14019 + 0.334964i
\(302\) 0 0
\(303\) −0.715593 0.413148i −0.0411098 0.0237347i
\(304\) 0 0
\(305\) −5.68046 + 14.8078i −0.325262 + 0.847890i
\(306\) 0 0
\(307\) 3.37016i 0.192345i 0.995365 + 0.0961725i \(0.0306600\pi\)
−0.995365 + 0.0961725i \(0.969340\pi\)
\(308\) 0 0
\(309\) −32.5829 −1.85358
\(310\) 0 0
\(311\) −15.0725 26.1064i −0.854685 1.48036i −0.876937 0.480605i \(-0.840417\pi\)
0.0222522 0.999752i \(-0.492916\pi\)
\(312\) 0 0
\(313\) 15.7181 + 9.07482i 0.888437 + 0.512939i 0.873431 0.486948i \(-0.161890\pi\)
0.0150060 + 0.999887i \(0.495223\pi\)
\(314\) 0 0
\(315\) −15.0765 1.21722i −0.849466 0.0685824i
\(316\) 0 0
\(317\) −28.5143 16.4627i −1.60152 0.924638i −0.991184 0.132496i \(-0.957701\pi\)
−0.610336 0.792142i \(-0.708966\pi\)
\(318\) 0 0
\(319\) 0.646473 + 1.11972i 0.0361956 + 0.0626926i
\(320\) 0 0
\(321\) 2.46334 0.137490
\(322\) 0 0
\(323\) 9.70565i 0.540037i
\(324\) 0 0
\(325\) 6.14055 + 18.8706i 0.340616 + 1.04675i
\(326\) 0 0
\(327\) 34.5173 + 19.9285i 1.90881 + 1.10205i
\(328\) 0 0
\(329\) −6.74812 + 27.8332i −0.372036 + 1.53449i
\(330\) 0 0
\(331\) 10.3469 17.9213i 0.568715 0.985043i −0.427978 0.903789i \(-0.640774\pi\)
0.996693 0.0812542i \(-0.0258926\pi\)
\(332\) 0 0
\(333\) −13.6291 + 7.86878i −0.746872 + 0.431206i
\(334\) 0 0
\(335\) 21.5298 17.4423i 1.17630 0.952975i
\(336\) 0 0
\(337\) 26.6719i 1.45291i −0.687212 0.726457i \(-0.741166\pi\)
0.687212 0.726457i \(-0.258834\pi\)
\(338\) 0 0
\(339\) 6.78828 + 11.7576i 0.368689 + 0.638588i
\(340\) 0 0
\(341\) 0.398930 0.690967i 0.0216033 0.0374179i
\(342\) 0 0
\(343\) 14.0018 + 12.1223i 0.756025 + 0.654543i
\(344\) 0 0
\(345\) −2.22757 + 0.353311i −0.119928 + 0.0190216i
\(346\) 0 0
\(347\) −5.73774 + 3.31269i −0.308018 + 0.177834i −0.646039 0.763304i \(-0.723576\pi\)
0.338021 + 0.941139i \(0.390242\pi\)
\(348\) 0 0
\(349\) 11.9911 0.641870 0.320935 0.947101i \(-0.396003\pi\)
0.320935 + 0.947101i \(0.396003\pi\)
\(350\) 0 0
\(351\) −4.14751 −0.221378
\(352\) 0 0
\(353\) 15.3192 8.84456i 0.815360 0.470748i −0.0334536 0.999440i \(-0.510651\pi\)
0.848814 + 0.528692i \(0.177317\pi\)
\(354\) 0 0
\(355\) 15.1549 2.40369i 0.804336 0.127574i
\(356\) 0 0
\(357\) −17.7400 4.30105i −0.938902 0.227636i
\(358\) 0 0
\(359\) −5.46524 + 9.46607i −0.288444 + 0.499600i −0.973439 0.228948i \(-0.926471\pi\)
0.684994 + 0.728548i \(0.259805\pi\)
\(360\) 0 0
\(361\) 4.00183 + 6.93136i 0.210622 + 0.364809i
\(362\) 0 0
\(363\) 25.0804i 1.31638i
\(364\) 0 0
\(365\) −28.1190 + 22.7805i −1.47182 + 1.19239i
\(366\) 0 0
\(367\) 17.8709 10.3178i 0.932853 0.538583i 0.0451400 0.998981i \(-0.485627\pi\)
0.887713 + 0.460398i \(0.152293\pi\)
\(368\) 0 0
\(369\) 7.66853 13.2823i 0.399208 0.691448i
\(370\) 0 0
\(371\) 23.3335 + 22.2422i 1.21142 + 1.15476i
\(372\) 0 0
\(373\) −4.04850 2.33740i −0.209623 0.121026i 0.391513 0.920173i \(-0.371952\pi\)
−0.601136 + 0.799147i \(0.705285\pi\)
\(374\) 0 0
\(375\) 14.3395 22.1126i 0.740488 1.14189i
\(376\) 0 0
\(377\) 8.54804i 0.440246i
\(378\) 0 0
\(379\) −23.7176 −1.21829 −0.609146 0.793058i \(-0.708488\pi\)
−0.609146 + 0.793058i \(0.708488\pi\)
\(380\) 0 0
\(381\) −4.09182 7.08723i −0.209630 0.363090i
\(382\) 0 0
\(383\) −16.8311 9.71744i −0.860029 0.496538i 0.00399321 0.999992i \(-0.498729\pi\)
−0.864022 + 0.503454i \(0.832062\pi\)
\(384\) 0 0
\(385\) 2.01754 2.92287i 0.102823 0.148963i
\(386\) 0 0
\(387\) −17.2543 9.96176i −0.877084 0.506385i
\(388\) 0 0
\(389\) −0.899913 1.55869i −0.0456274 0.0790290i 0.842310 0.538994i \(-0.181195\pi\)
−0.887937 + 0.459965i \(0.847862\pi\)
\(390\) 0 0
\(391\) −1.25237 −0.0633353
\(392\) 0 0
\(393\) 36.8149i 1.85706i
\(394\) 0 0
\(395\) −10.8434 + 28.2665i −0.545591 + 1.42224i
\(396\) 0 0
\(397\) −9.88285 5.70587i −0.496006 0.286369i 0.231057 0.972940i \(-0.425782\pi\)
−0.727063 + 0.686571i \(0.759115\pi\)
\(398\) 0 0
\(399\) −19.8429 + 5.82943i −0.993388 + 0.291836i
\(400\) 0 0
\(401\) −12.3560 + 21.4013i −0.617030 + 1.06873i 0.372994 + 0.927834i \(0.378331\pi\)
−0.990025 + 0.140894i \(0.955002\pi\)
\(402\) 0 0
\(403\) 4.56818 2.63744i 0.227557 0.131380i
\(404\) 0 0
\(405\) 14.2636 + 17.6062i 0.708764 + 0.874860i
\(406\) 0 0
\(407\) 3.69526i 0.183167i
\(408\) 0 0
\(409\) 8.26947 + 14.3231i 0.408899 + 0.708234i 0.994767 0.102173i \(-0.0325795\pi\)
−0.585868 + 0.810407i \(0.699246\pi\)
\(410\) 0 0
\(411\) −10.4888 + 18.1672i −0.517376 + 0.896121i
\(412\) 0 0
\(413\) 14.5476 15.2614i 0.715841 0.750963i
\(414\) 0 0
\(415\) 1.81708 + 11.4564i 0.0891967 + 0.562371i
\(416\) 0 0
\(417\) −28.0176 + 16.1760i −1.37203 + 0.792140i
\(418\) 0 0
\(419\) 30.1276 1.47183 0.735915 0.677073i \(-0.236752\pi\)
0.735915 + 0.677073i \(0.236752\pi\)
\(420\) 0 0
\(421\) −6.67555 −0.325347 −0.162673 0.986680i \(-0.552012\pi\)
−0.162673 + 0.986680i \(0.552012\pi\)
\(422\) 0 0
\(423\) −23.9677 + 13.8377i −1.16535 + 0.672814i
\(424\) 0 0
\(425\) 9.78748 10.8796i 0.474762 0.527740i
\(426\) 0 0
\(427\) 18.2374 + 4.42163i 0.882568 + 0.213978i
\(428\) 0 0
\(429\) −2.80825 + 4.86403i −0.135584 + 0.234838i
\(430\) 0 0
\(431\) −9.97972 17.2854i −0.480706 0.832608i 0.519049 0.854745i \(-0.326286\pi\)
−0.999755 + 0.0221371i \(0.992953\pi\)
\(432\) 0 0
\(433\) 2.49880i 0.120085i −0.998196 0.0600423i \(-0.980876\pi\)
0.998196 0.0600423i \(-0.0191235\pi\)
\(434\) 0 0
\(435\) 8.82092 7.14623i 0.422931 0.342635i
\(436\) 0 0
\(437\) −1.22882 + 0.709460i −0.0587825 + 0.0339381i
\(438\) 0 0
\(439\) 4.20723 7.28714i 0.200800 0.347796i −0.747986 0.663714i \(-0.768979\pi\)
0.948786 + 0.315918i \(0.102312\pi\)
\(440\) 0 0
\(441\) 0.856581 + 17.8763i 0.0407896 + 0.851253i
\(442\) 0 0
\(443\) −26.2626 15.1627i −1.24778 0.720404i −0.277110 0.960838i \(-0.589377\pi\)
−0.970665 + 0.240434i \(0.922710\pi\)
\(444\) 0 0
\(445\) −0.633131 + 1.65044i −0.0300133 + 0.0782384i
\(446\) 0 0
\(447\) 13.1662i 0.622739i
\(448\) 0 0
\(449\) −0.159010 −0.00750417 −0.00375208 0.999993i \(-0.501194\pi\)
−0.00375208 + 0.999993i \(0.501194\pi\)
\(450\) 0 0
\(451\) 1.80061 + 3.11875i 0.0847875 + 0.146856i
\(452\) 0 0
\(453\) 41.5150 + 23.9687i 1.95054 + 1.12615i
\(454\) 0 0
\(455\) 21.2135 10.0657i 0.994502 0.471888i
\(456\) 0 0
\(457\) 6.72158 + 3.88071i 0.314422 + 0.181532i 0.648904 0.760871i \(-0.275228\pi\)
−0.334481 + 0.942402i \(0.608561\pi\)
\(458\) 0 0
\(459\) 1.52928 + 2.64878i 0.0713805 + 0.123635i
\(460\) 0 0
\(461\) 7.83640 0.364977 0.182489 0.983208i \(-0.441585\pi\)
0.182489 + 0.983208i \(0.441585\pi\)
\(462\) 0 0
\(463\) 16.6461i 0.773609i 0.922162 + 0.386805i \(0.126421\pi\)
−0.922162 + 0.386805i \(0.873579\pi\)
\(464\) 0 0
\(465\) −6.54066 2.50909i −0.303316 0.116356i
\(466\) 0 0
\(467\) −33.2628 19.2043i −1.53922 0.888669i −0.998885 0.0472189i \(-0.984964\pi\)
−0.540335 0.841450i \(-0.681703\pi\)
\(468\) 0 0
\(469\) −23.7310 22.6211i −1.09580 1.04455i
\(470\) 0 0
\(471\) 26.1875 45.3582i 1.20666 2.08999i
\(472\) 0 0
\(473\) 4.05139 2.33907i 0.186283 0.107551i
\(474\) 0 0
\(475\) 3.44017 16.2196i 0.157846 0.744204i
\(476\) 0 0
\(477\) 31.1510i 1.42631i
\(478\) 0 0
\(479\) −2.13348 3.69529i −0.0974810 0.168842i 0.813160 0.582040i \(-0.197745\pi\)
−0.910641 + 0.413198i \(0.864412\pi\)
\(480\) 0 0
\(481\) 12.2152 21.1574i 0.556966 0.964693i
\(482\) 0 0
\(483\) 0.752203 + 2.56044i 0.0342264 + 0.116504i
\(484\) 0 0
\(485\) 0.982846 + 6.19669i 0.0446288 + 0.281377i
\(486\) 0 0
\(487\) −30.8177 + 17.7926i −1.39648 + 0.806259i −0.994022 0.109179i \(-0.965178\pi\)
−0.402460 + 0.915438i \(0.631845\pi\)
\(488\) 0 0
\(489\) 30.9157 1.39805
\(490\) 0 0
\(491\) −5.06047 −0.228376 −0.114188 0.993459i \(-0.536427\pi\)
−0.114188 + 0.993459i \(0.536427\pi\)
\(492\) 0 0
\(493\) 5.45916 3.15185i 0.245868 0.141952i
\(494\) 0 0
\(495\) 3.38964 0.537625i 0.152353 0.0241645i
\(496\) 0 0
\(497\) −5.11747 17.4195i −0.229550 0.781370i
\(498\) 0 0
\(499\) −3.33860 + 5.78263i −0.149456 + 0.258866i −0.931027 0.364951i \(-0.881086\pi\)
0.781570 + 0.623817i \(0.214419\pi\)
\(500\) 0 0
\(501\) 13.5384 + 23.4492i 0.604850 + 1.04763i
\(502\) 0 0
\(503\) 25.4412i 1.13437i −0.823591 0.567184i \(-0.808033\pi\)
0.823591 0.567184i \(-0.191967\pi\)
\(504\) 0 0
\(505\) −0.493403 0.609030i −0.0219561 0.0271015i
\(506\) 0 0
\(507\) −5.61862 + 3.24391i −0.249532 + 0.144067i
\(508\) 0 0
\(509\) 11.9190 20.6443i 0.528299 0.915041i −0.471156 0.882050i \(-0.656163\pi\)
0.999456 0.0329916i \(-0.0105035\pi\)
\(510\) 0 0
\(511\) 30.9938 + 29.5443i 1.37109 + 1.30696i
\(512\) 0 0
\(513\) 3.00103 + 1.73265i 0.132499 + 0.0764982i
\(514\) 0 0
\(515\) −28.8573 11.0700i −1.27160 0.487804i
\(516\) 0 0
\(517\) 6.49834i 0.285797i
\(518\) 0 0
\(519\) 33.5170 1.47123
\(520\) 0 0
\(521\) −22.0372 38.1695i −0.965467 1.67224i −0.708354 0.705857i \(-0.750562\pi\)
−0.257113 0.966381i \(-0.582771\pi\)
\(522\) 0 0
\(523\) 11.0357 + 6.37148i 0.482558 + 0.278605i 0.721482 0.692433i \(-0.243461\pi\)
−0.238924 + 0.971038i \(0.576795\pi\)
\(524\) 0 0
\(525\) −28.1217 13.4756i −1.22733 0.588125i
\(526\) 0 0
\(527\) −3.36877 1.94496i −0.146746 0.0847239i
\(528\) 0 0
\(529\) −11.4085 19.7600i −0.496020 0.859131i
\(530\) 0 0
\(531\) 20.3744 0.884176
\(532\) 0 0
\(533\) 23.8087i 1.03127i
\(534\) 0 0
\(535\) 2.18167 + 0.836917i 0.0943217 + 0.0361831i
\(536\) 0 0
\(537\) 3.41150 + 1.96963i 0.147217 + 0.0849958i
\(538\) 0 0
\(539\) −3.73567 1.92454i −0.160907 0.0828959i
\(540\) 0 0
\(541\) 17.8879 30.9827i 0.769060 1.33205i −0.169012 0.985614i \(-0.554058\pi\)
0.938073 0.346438i \(-0.112609\pi\)
\(542\) 0 0
\(543\) 11.9418 6.89457i 0.512470 0.295874i
\(544\) 0 0
\(545\) 23.7997 + 29.3771i 1.01947 + 1.25837i
\(546\) 0 0
\(547\) 29.0663i 1.24279i 0.783498 + 0.621394i \(0.213433\pi\)
−0.783498 + 0.621394i \(0.786567\pi\)
\(548\) 0 0
\(549\) 9.06702 + 15.7045i 0.386971 + 0.670253i
\(550\) 0 0
\(551\) 3.57099 6.18514i 0.152129 0.263496i
\(552\) 0 0
\(553\) 34.8133 + 8.44043i 1.48041 + 0.358924i
\(554\) 0 0
\(555\) −32.0448 + 5.08257i −1.36023 + 0.215743i
\(556\) 0 0
\(557\) 20.0615 11.5825i 0.850032 0.490766i −0.0106300 0.999944i \(-0.503384\pi\)
0.860661 + 0.509178i \(0.170050\pi\)
\(558\) 0 0
\(559\) 30.9286 1.30814
\(560\) 0 0
\(561\) 4.14185 0.174869
\(562\) 0 0
\(563\) 22.3258 12.8898i 0.940921 0.543241i 0.0506723 0.998715i \(-0.483864\pi\)
0.890249 + 0.455474i \(0.150530\pi\)
\(564\) 0 0
\(565\) 2.01743 + 12.7195i 0.0848737 + 0.535115i
\(566\) 0 0
\(567\) 18.4986 19.4062i 0.776869 0.814986i
\(568\) 0 0
\(569\) 0.0565598 0.0979645i 0.00237111 0.00410689i −0.864837 0.502052i \(-0.832579\pi\)
0.867209 + 0.497945i \(0.165912\pi\)
\(570\) 0 0
\(571\) 13.1255 + 22.7341i 0.549287 + 0.951393i 0.998324 + 0.0578795i \(0.0184339\pi\)
−0.449037 + 0.893513i \(0.648233\pi\)
\(572\) 0 0
\(573\) 50.9589i 2.12884i
\(574\) 0 0
\(575\) −2.09290 0.443904i −0.0872799 0.0185121i
\(576\) 0 0
\(577\) −4.54477 + 2.62393i −0.189201 + 0.109236i −0.591609 0.806225i \(-0.701507\pi\)
0.402407 + 0.915461i \(0.368174\pi\)
\(578\) 0 0
\(579\) −19.8975 + 34.4634i −0.826911 + 1.43225i
\(580\) 0 0
\(581\) 13.1683 3.86857i 0.546314 0.160495i
\(582\) 0 0
\(583\) −6.33448 3.65721i −0.262347 0.151466i
\(584\) 0 0
\(585\) 21.1847 + 8.12675i 0.875881 + 0.336000i
\(586\) 0 0
\(587\) 45.2908i 1.86935i −0.355500 0.934676i \(-0.615689\pi\)
0.355500 0.934676i \(-0.384311\pi\)
\(588\) 0 0
\(589\) −4.40722 −0.181596
\(590\) 0 0
\(591\) −8.74648 15.1493i −0.359782 0.623161i
\(592\) 0 0
\(593\) 4.13011 + 2.38452i 0.169603 + 0.0979206i 0.582399 0.812903i \(-0.302114\pi\)
−0.412795 + 0.910824i \(0.635448\pi\)
\(594\) 0 0
\(595\) −14.2503 9.83642i −0.584205 0.403254i
\(596\) 0 0
\(597\) 29.8099 + 17.2107i 1.22004 + 0.704388i
\(598\) 0 0
\(599\) −7.44105 12.8883i −0.304033 0.526601i 0.673012 0.739631i \(-0.265000\pi\)
−0.977046 + 0.213030i \(0.931667\pi\)
\(600\) 0 0
\(601\) −21.5026 −0.877109 −0.438555 0.898705i \(-0.644509\pi\)
−0.438555 + 0.898705i \(0.644509\pi\)
\(602\) 0 0
\(603\) 31.6817i 1.29018i
\(604\) 0 0
\(605\) 8.52104 22.2126i 0.346430 0.903070i
\(606\) 0 0
\(607\) 2.15820 + 1.24604i 0.0875986 + 0.0505751i 0.543159 0.839630i \(-0.317228\pi\)
−0.455561 + 0.890205i \(0.650561\pi\)
\(608\) 0 0
\(609\) −9.72275 9.26802i −0.393986 0.375559i
\(610\) 0 0
\(611\) 21.4812 37.2065i 0.869036 1.50521i
\(612\) 0 0
\(613\) −13.0206 + 7.51744i −0.525896 + 0.303626i −0.739344 0.673328i \(-0.764864\pi\)
0.213447 + 0.976955i \(0.431531\pi\)
\(614\) 0 0
\(615\) 24.5687 19.9043i 0.990707 0.802617i
\(616\) 0 0
\(617\) 19.5231i 0.785970i −0.919545 0.392985i \(-0.871442\pi\)
0.919545 0.392985i \(-0.128558\pi\)
\(618\) 0 0
\(619\) 1.65750 + 2.87087i 0.0666205 + 0.115390i 0.897412 0.441194i \(-0.145445\pi\)
−0.830791 + 0.556584i \(0.812112\pi\)
\(620\) 0 0
\(621\) 0.223573 0.387240i 0.00897167 0.0155394i
\(622\) 0 0
\(623\) 2.03270 + 0.492825i 0.0814383 + 0.0197446i
\(624\) 0 0
\(625\) 20.2126 14.7123i 0.808503 0.588492i
\(626\) 0 0
\(627\) 4.06395 2.34633i 0.162299 0.0937032i
\(628\) 0 0
\(629\) −18.0161 −0.718347
\(630\) 0 0
\(631\) 9.52923 0.379352 0.189676 0.981847i \(-0.439256\pi\)
0.189676 + 0.981847i \(0.439256\pi\)
\(632\) 0 0
\(633\) −25.9426 + 14.9780i −1.03113 + 0.595322i
\(634\) 0 0
\(635\) −1.21606 7.66704i −0.0482577 0.304257i
\(636\) 0 0
\(637\) −15.0269 23.3678i −0.595386 0.925867i
\(638\) 0 0
\(639\) 8.77223 15.1939i 0.347024 0.601063i
\(640\) 0 0
\(641\) −11.3355 19.6337i −0.447726 0.775485i 0.550511 0.834828i \(-0.314433\pi\)
−0.998238 + 0.0593429i \(0.981099\pi\)
\(642\) 0 0
\(643\) 27.2239i 1.07361i −0.843707 0.536804i \(-0.819632\pi\)
0.843707 0.536804i \(-0.180368\pi\)
\(644\) 0 0
\(645\) −25.8565 31.9159i −1.01810 1.25669i
\(646\) 0 0
\(647\) 20.0105 11.5531i 0.786693 0.454197i −0.0521041 0.998642i \(-0.516593\pi\)
0.838797 + 0.544444i \(0.183259\pi\)
\(648\) 0 0
\(649\) −2.39201 + 4.14309i −0.0938947 + 0.162630i
\(650\) 0 0
\(651\) −1.95306 + 8.05554i −0.0765463 + 0.315721i
\(652\) 0 0
\(653\) −8.52235 4.92038i −0.333505 0.192549i 0.323891 0.946094i \(-0.395009\pi\)
−0.657396 + 0.753545i \(0.728342\pi\)
\(654\) 0 0
\(655\) 12.5078 32.6053i 0.488721 1.27399i
\(656\) 0 0
\(657\) 41.3778i 1.61430i
\(658\) 0 0
\(659\) 7.00099 0.272720 0.136360 0.990659i \(-0.456460\pi\)
0.136360 + 0.990659i \(0.456460\pi\)
\(660\) 0 0
\(661\) 0.0752886 + 0.130404i 0.00292839 + 0.00507212i 0.867486 0.497462i \(-0.165735\pi\)
−0.864557 + 0.502534i \(0.832401\pi\)
\(662\) 0 0
\(663\) 23.7143 + 13.6915i 0.920988 + 0.531733i
\(664\) 0 0
\(665\) −19.5545 1.57875i −0.758292 0.0612214i
\(666\) 0 0
\(667\) −0.798103 0.460785i −0.0309027 0.0178417i
\(668\) 0 0
\(669\) 26.7336 + 46.3040i 1.03358 + 1.79022i
\(670\) 0 0
\(671\) −4.25797 −0.164377
\(672\) 0 0
\(673\) 11.6610i 0.449499i −0.974417 0.224749i \(-0.927844\pi\)
0.974417 0.224749i \(-0.0721564\pi\)
\(674\) 0 0
\(675\) 1.61678 + 4.96856i 0.0622299 + 0.191240i
\(676\) 0 0
\(677\) 33.7522 + 19.4868i 1.29720 + 0.748940i 0.979920 0.199391i \(-0.0638964\pi\)
0.317282 + 0.948331i \(0.397230\pi\)
\(678\) 0 0
\(679\) 7.12267 2.09249i 0.273343 0.0803024i
\(680\) 0 0
\(681\) −22.7510 + 39.4059i −0.871821 + 1.51004i
\(682\) 0 0
\(683\) −16.8500 + 9.72834i −0.644747 + 0.372245i −0.786441 0.617666i \(-0.788078\pi\)
0.141694 + 0.989911i \(0.454745\pi\)
\(684\) 0 0
\(685\) −15.4618 + 12.5263i −0.590764 + 0.478605i
\(686\) 0 0
\(687\) 53.0508i 2.02402i
\(688\) 0 0
\(689\) −24.1789 41.8790i −0.921141 1.59546i
\(690\) 0 0
\(691\) −11.9076 + 20.6245i −0.452985 + 0.784594i −0.998570 0.0534621i \(-0.982974\pi\)
0.545584 + 0.838056i \(0.316308\pi\)
\(692\) 0 0
\(693\) −1.14461 3.89616i −0.0434801 0.148003i
\(694\) 0 0
\(695\) −30.3097 + 4.80737i −1.14971 + 0.182354i
\(696\) 0 0
\(697\) 15.2053 8.77879i 0.575942 0.332520i
\(698\) 0 0
\(699\) 12.1076 0.457952
\(700\) 0 0
\(701\) 43.2250 1.63258 0.816292 0.577639i \(-0.196026\pi\)
0.816292 + 0.577639i \(0.196026\pi\)
\(702\) 0 0
\(703\) −17.6772 + 10.2060i −0.666709 + 0.384925i
\(704\) 0 0
\(705\) −56.3527 + 8.93801i −2.12237 + 0.336625i
\(706\) 0 0
\(707\) −0.639899 + 0.671295i −0.0240659 + 0.0252467i
\(708\) 0 0
\(709\) 6.27709 10.8722i 0.235741 0.408316i −0.723747 0.690066i \(-0.757582\pi\)
0.959488 + 0.281750i \(0.0909149\pi\)
\(710\) 0 0
\(711\) 17.3080 + 29.9783i 0.649101 + 1.12428i
\(712\) 0 0
\(713\) 0.568688i 0.0212975i
\(714\) 0 0
\(715\) −4.13969 + 3.35375i −0.154816 + 0.125423i
\(716\) 0 0
\(717\) −14.2761 + 8.24230i −0.533150 + 0.307814i
\(718\) 0 0
\(719\) 15.9721 27.6645i 0.595659 1.03171i −0.397794 0.917475i \(-0.630224\pi\)
0.993453 0.114237i \(-0.0364425\pi\)
\(720\) 0 0
\(721\) −8.61684 + 35.5408i −0.320908 + 1.32361i
\(722\) 0 0
\(723\) 24.9723 + 14.4178i 0.928731 + 0.536203i
\(724\) 0 0
\(725\) 10.2402 3.33220i 0.380312 0.123755i
\(726\) 0 0
\(727\) 4.97260i 0.184424i −0.995739 0.0922118i \(-0.970606\pi\)
0.995739 0.0922118i \(-0.0293937\pi\)
\(728\) 0 0
\(729\) 18.5180 0.685851
\(730\) 0 0
\(731\) −11.4040 19.7524i −0.421793 0.730568i
\(732\) 0 0
\(733\) −12.0552 6.96010i −0.445271 0.257077i 0.260560 0.965458i \(-0.416093\pi\)
−0.705831 + 0.708380i \(0.749426\pi\)
\(734\) 0 0
\(735\) −11.5512 + 35.0422i −0.426073 + 1.29255i
\(736\) 0 0
\(737\) 6.44238 + 3.71951i 0.237308 + 0.137010i
\(738\) 0 0
\(739\) −19.1401 33.1516i −0.704080 1.21950i −0.967022 0.254691i \(-0.918026\pi\)
0.262942 0.964812i \(-0.415307\pi\)
\(740\) 0 0
\(741\) 31.0244 1.13971
\(742\) 0 0
\(743\) 18.0800i 0.663292i 0.943404 + 0.331646i \(0.107604\pi\)
−0.943404 + 0.331646i \(0.892396\pi\)
\(744\) 0 0
\(745\) 4.47321 11.6607i 0.163886 0.427215i
\(746\) 0 0
\(747\) 11.4859 + 6.63140i 0.420248 + 0.242630i
\(748\) 0 0
\(749\) 0.651451 2.68696i 0.0238035 0.0981794i
\(750\) 0 0
\(751\) 2.46210 4.26448i 0.0898433 0.155613i −0.817601 0.575785i \(-0.804697\pi\)
0.907445 + 0.420171i \(0.138030\pi\)
\(752\) 0 0
\(753\) −64.6289 + 37.3135i −2.35521 + 1.35978i
\(754\) 0 0
\(755\) 28.6246 + 35.3327i 1.04176 + 1.28589i
\(756\) 0 0
\(757\) 8.13716i 0.295750i −0.989006 0.147875i \(-0.952757\pi\)
0.989006 0.147875i \(-0.0472434\pi\)
\(758\) 0 0
\(759\) −0.302759 0.524395i −0.0109895 0.0190343i
\(760\) 0 0
\(761\) 3.64812 6.31874i 0.132244 0.229054i −0.792297 0.610136i \(-0.791115\pi\)
0.924541 + 0.381082i \(0.124448\pi\)
\(762\) 0 0
\(763\) 30.8661 32.3805i 1.11743 1.17225i
\(764\) 0 0
\(765\) −2.62117 16.5260i −0.0947684 0.597500i
\(766\) 0 0
\(767\) −27.3911 + 15.8143i −0.989036 + 0.571020i
\(768\) 0 0
\(769\) −7.83640 −0.282588 −0.141294 0.989968i \(-0.545126\pi\)
−0.141294 + 0.989968i \(0.545126\pi\)
\(770\) 0 0
\(771\) −8.04235 −0.289638
\(772\) 0 0
\(773\) 4.77210 2.75517i 0.171641 0.0990967i −0.411719 0.911311i \(-0.635071\pi\)
0.583359 + 0.812214i \(0.301738\pi\)
\(774\) 0 0
\(775\) −4.94032 4.44437i −0.177461 0.159647i
\(776\) 0 0
\(777\) 10.8208 + 36.8333i 0.388195 + 1.32139i
\(778\) 0 0
\(779\) 9.94623 17.2274i 0.356361 0.617235i
\(780\) 0 0
\(781\) 2.05977 + 3.56762i 0.0737042 + 0.127659i
\(782\) 0 0
\(783\) 2.25066i 0.0804321i
\(784\) 0 0
\(785\) 38.6036 31.2745i 1.37782 1.11624i
\(786\) 0 0
\(787\) −13.7324 + 7.92842i −0.489508 + 0.282618i −0.724371 0.689411i \(-0.757869\pi\)
0.234862 + 0.972029i \(0.424536\pi\)
\(788\) 0 0
\(789\) −26.6502 + 46.1594i −0.948771 + 1.64332i
\(790\) 0 0
\(791\) 14.6202 4.29512i 0.519836 0.152717i
\(792\) 0 0
\(793\) −24.3792 14.0753i −0.865729 0.499829i
\(794\) 0 0
\(795\) −23.0022 + 59.9619i −0.815804 + 2.12663i
\(796\) 0 0
\(797\) 43.6533i 1.54628i −0.634237 0.773139i \(-0.718686\pi\)
0.634237 0.773139i \(-0.281314\pi\)
\(798\) 0 0
\(799\) −31.6824 −1.12084
\(800\) 0 0
\(801\) 1.01059 + 1.75039i 0.0357074 + 0.0618471i
\(802\) 0 0
\(803\) −8.41406 4.85786i −0.296926 0.171430i
\(804\) 0 0
\(805\) −0.203715 + 2.52323i −0.00718002 + 0.0889322i
\(806\) 0 0
\(807\) 5.38043 + 3.10639i 0.189400 + 0.109350i
\(808\) 0 0
\(809\) 19.3307 + 33.4817i 0.679631 + 1.17716i 0.975092 + 0.221800i \(0.0711934\pi\)
−0.295461 + 0.955355i \(0.595473\pi\)
\(810\) 0 0
\(811\) −37.9019 −1.33092 −0.665458 0.746435i \(-0.731764\pi\)
−0.665458 + 0.746435i \(0.731764\pi\)
\(812\) 0 0
\(813\) 42.0593i 1.47508i
\(814\) 0 0
\(815\) 27.3806 + 10.5036i 0.959102 + 0.367924i
\(816\) 0 0
\(817\) −22.3791 12.9206i −0.782946 0.452034i
\(818\) 0 0
\(819\) 6.32580 26.0913i 0.221041 0.911703i
\(820\) 0 0
\(821\) −4.32225 + 7.48636i −0.150848 + 0.261276i −0.931539 0.363641i \(-0.881534\pi\)
0.780692 + 0.624916i \(0.214867\pi\)
\(822\) 0 0
\(823\) −29.5340 + 17.0515i −1.02949 + 0.594377i −0.916839 0.399257i \(-0.869268\pi\)
−0.112653 + 0.993634i \(0.535935\pi\)
\(824\) 0 0
\(825\) 6.92163 + 1.46808i 0.240980 + 0.0511120i
\(826\) 0 0
\(827\) 32.6226i 1.13440i 0.823581 + 0.567199i \(0.191973\pi\)
−0.823581 + 0.567199i \(0.808027\pi\)
\(828\) 0 0
\(829\) 17.7385 + 30.7240i 0.616083 + 1.06709i 0.990193 + 0.139703i \(0.0446149\pi\)
−0.374110 + 0.927384i \(0.622052\pi\)
\(830\) 0 0
\(831\) −8.41507 + 14.5753i −0.291916 + 0.505613i
\(832\) 0 0
\(833\) −9.38301 + 18.2131i −0.325102 + 0.631045i
\(834\) 0 0
\(835\) 4.02350 + 25.3675i 0.139239 + 0.877880i
\(836\) 0 0
\(837\) 1.20278 0.694426i 0.0415742 0.0240029i
\(838\) 0 0
\(839\) 10.2512 0.353909 0.176955 0.984219i \(-0.443375\pi\)
0.176955 + 0.984219i \(0.443375\pi\)
\(840\) 0 0
\(841\) −24.3614 −0.840047
\(842\) 0 0
\(843\) −8.46446 + 4.88696i −0.291532 + 0.168316i
\(844\) 0 0
\(845\) −6.07828 + 0.964066i −0.209099 + 0.0331649i
\(846\) 0 0
\(847\) −27.3572 6.63272i −0.940004 0.227903i
\(848\) 0 0
\(849\) 14.0520 24.3388i 0.482263 0.835304i
\(850\) 0 0
\(851\) 1.31693 + 2.28099i 0.0451438 + 0.0781914i
\(852\) 0 0
\(853\) 1.86650i 0.0639078i −0.999489 0.0319539i \(-0.989827\pi\)
0.999489 0.0319539i \(-0.0101730\pi\)
\(854\) 0 0
\(855\) −11.9337 14.7304i −0.408125 0.503767i
\(856\) 0 0
\(857\) 5.85835 3.38232i 0.200117 0.115538i −0.396593 0.917995i \(-0.629808\pi\)
0.596710 + 0.802457i \(0.296474\pi\)
\(858\) 0 0
\(859\) 18.7612 32.4954i 0.640124 1.10873i −0.345281 0.938499i \(-0.612216\pi\)
0.985405 0.170228i \(-0.0544504\pi\)
\(860\) 0 0
\(861\) −27.0806 25.8140i −0.922904 0.879740i
\(862\) 0 0
\(863\) −22.6478 13.0757i −0.770939 0.445102i 0.0622704 0.998059i \(-0.480166\pi\)
−0.833210 + 0.552957i \(0.813499\pi\)
\(864\) 0 0
\(865\) 29.6845 + 11.3874i 1.00930 + 0.387183i
\(866\) 0 0
\(867\) 19.8801i 0.675163i
\(868\) 0 0
\(869\) −8.12802 −0.275724
\(870\) 0 0
\(871\) 24.5907 + 42.5924i 0.833225 + 1.44319i
\(872\) 0 0
\(873\) 6.21267 + 3.58689i 0.210267 + 0.121398i
\(874\) 0 0
\(875\) −20.3278 21.4891i −0.687204 0.726464i
\(876\) 0 0
\(877\) 26.0834 + 15.0593i 0.880775 + 0.508516i 0.870914 0.491436i \(-0.163528\pi\)
0.00986116 + 0.999951i \(0.496861\pi\)
\(878\) 0 0
\(879\) −26.9016 46.5950i −0.907369 1.57161i
\(880\) 0 0
\(881\) −48.3437 −1.62874 −0.814370 0.580347i \(-0.802917\pi\)
−0.814370 + 0.580347i \(0.802917\pi\)
\(882\) 0 0
\(883\) 3.28707i 0.110619i −0.998469 0.0553093i \(-0.982386\pi\)
0.998469 0.0553093i \(-0.0176145\pi\)
\(884\) 0 0
\(885\) 39.2183 + 15.0447i 1.31831 + 0.505721i
\(886\) 0 0
\(887\) 45.8502 + 26.4716i 1.53950 + 0.888830i 0.998868 + 0.0475704i \(0.0151478\pi\)
0.540631 + 0.841260i \(0.318185\pi\)
\(888\) 0 0
\(889\) −8.81274 + 2.58900i −0.295570 + 0.0868321i
\(890\) 0 0
\(891\) −3.04166 + 5.26832i −0.101900 + 0.176495i
\(892\) 0 0
\(893\) −31.0865 + 17.9478i −1.04027 + 0.600600i
\(894\) 0 0
\(895\) 2.35223 + 2.90347i 0.0786265 + 0.0970523i
\(896\) 0 0
\(897\) 4.00326i 0.133665i
\(898\) 0 0
\(899\) −1.43122 2.47894i −0.0477337 0.0826773i
\(900\) 0 0
\(901\) −17.8306 + 30.8834i −0.594022 + 1.02888i
\(902\) 0 0
\(903\) −33.5336 + 35.1789i −1.11593 + 1.17068i
\(904\) 0 0
\(905\) 12.9187 2.04902i 0.429433 0.0681116i
\(906\) 0 0
\(907\) 45.3678 26.1931i 1.50641 0.869727i 0.506439 0.862276i \(-0.330961\pi\)
0.999972 0.00745157i \(-0.00237193\pi\)
\(908\) 0 0
\(909\) −0.896202 −0.0297251
\(910\) 0 0
\(911\) −50.1269 −1.66078 −0.830390 0.557183i \(-0.811882\pi\)
−0.830390 + 0.557183i \(0.811882\pi\)
\(912\) 0 0
\(913\) −2.69695 + 1.55709i −0.0892562 + 0.0515321i
\(914\) 0 0
\(915\) 5.85653 + 36.9245i 0.193611 + 1.22069i
\(916\) 0 0
\(917\) −40.1570 9.73601i −1.32610 0.321511i
\(918\) 0 0
\(919\) −13.3285 + 23.0856i −0.439667 + 0.761525i −0.997664 0.0683181i \(-0.978237\pi\)
0.557997 + 0.829843i \(0.311570\pi\)
\(920\) 0 0
\(921\) 3.97217 + 6.88001i 0.130888 + 0.226704i
\(922\) 0 0
\(923\) 27.2354i 0.896464i
\(924\) 0 0
\(925\) −30.1074 6.38579i −0.989927 0.209964i
\(926\) 0 0
\(927\) −30.6049 + 17.6697i −1.00520 + 0.580350i
\(928\) 0 0
\(929\) −7.04900 + 12.2092i −0.231270 + 0.400572i −0.958182 0.286159i \(-0.907621\pi\)
0.726912 + 0.686731i \(0.240955\pi\)
\(930\) 0 0
\(931\) 1.11100 + 23.1859i 0.0364116 + 0.759888i
\(932\) 0 0
\(933\) −61.5396 35.5299i −2.01472 1.16320i
\(934\) 0 0
\(935\) 3.66825 + 1.40719i 0.119965 + 0.0460201i
\(936\) 0 0
\(937\) 13.1880i 0.430835i −0.976522 0.215417i \(-0.930889\pi\)
0.976522 0.215417i \(-0.0691112\pi\)
\(938\) 0 0
\(939\) 42.7835 1.39619
\(940\) 0 0
\(941\) −2.51245 4.35169i −0.0819034 0.141861i 0.822164 0.569251i \(-0.192767\pi\)
−0.904068 + 0.427390i \(0.859433\pi\)
\(942\) 0 0
\(943\) −2.22294 1.28342i −0.0723890 0.0417938i
\(944\) 0 0
\(945\) 5.58541 2.65026i 0.181694 0.0862130i
\(946\) 0 0
\(947\) −13.5831 7.84218i −0.441390 0.254837i 0.262797 0.964851i \(-0.415355\pi\)
−0.704187 + 0.710015i \(0.748688\pi\)
\(948\) 0 0
\(949\) −32.1167 55.6277i −1.04255 1.80575i
\(950\) 0 0
\(951\) −77.6139 −2.51680
\(952\) 0 0
\(953\) 25.4887i 0.825659i 0.910808 + 0.412830i \(0.135460\pi\)
−0.910808 + 0.412830i \(0.864540\pi\)
\(954\) 0 0
\(955\) 17.3133 45.1321i 0.560244 1.46044i
\(956\) 0 0
\(957\) 2.63949 + 1.52391i 0.0853225 + 0.0492610i
\(958\) 0 0
\(959\) 17.0426 + 16.2455i 0.550333 + 0.524594i
\(960\) 0 0
\(961\) 14.6168 25.3171i 0.471510 0.816680i
\(962\) 0 0
\(963\) 2.31379 1.33587i 0.0745609 0.0430477i
\(964\) 0 0
\(965\) −29.3313 + 23.7626i −0.944207 + 0.764945i
\(966\) 0 0
\(967\) 11.9730i 0.385027i 0.981294 + 0.192514i \(0.0616639\pi\)
−0.981294 + 0.192514i \(0.938336\pi\)
\(968\) 0 0
\(969\) −11.4394 19.8136i −0.367486 0.636505i
\(970\) 0 0
\(971\) −3.02372 + 5.23725i −0.0970360 + 0.168071i −0.910456 0.413605i \(-0.864270\pi\)
0.813421 + 0.581676i \(0.197603\pi\)
\(972\) 0 0
\(973\) 10.2349 + 34.8389i 0.328117 + 1.11688i
\(974\) 0 0
\(975\) 34.7771 + 31.2860i 1.11376 + 1.00195i
\(976\) 0 0
\(977\) 45.7143 26.3932i 1.46253 0.844392i 0.463402 0.886148i \(-0.346629\pi\)
0.999128 + 0.0417564i \(0.0132953\pi\)
\(978\) 0 0
\(979\) −0.474583 −0.0151678
\(980\) 0 0
\(981\) 43.2290 1.38020
\(982\) 0 0
\(983\) 2.43961 1.40851i 0.0778114 0.0449244i −0.460589 0.887613i \(-0.652362\pi\)
0.538401 + 0.842689i \(0.319029\pi\)
\(984\) 0 0
\(985\) −2.59939 16.3887i −0.0828234 0.522188i
\(986\) 0 0
\(987\) 19.0291 + 64.7736i 0.605703 + 2.06177i
\(988\) 0 0
\(989\) −1.66722 + 2.88770i −0.0530144 + 0.0918236i
\(990\) 0 0
\(991\) 12.8466 + 22.2509i 0.408085 + 0.706823i 0.994675 0.103060i \(-0.0328635\pi\)
−0.586590 + 0.809884i \(0.699530\pi\)
\(992\) 0 0
\(993\) 48.7806i 1.54800i
\(994\) 0 0
\(995\) 20.5539 + 25.3707i 0.651604 + 0.804304i
\(996\) 0 0
\(997\) 18.8558 10.8864i 0.597169 0.344776i −0.170758 0.985313i \(-0.554622\pi\)
0.767927 + 0.640537i \(0.221288\pi\)
\(998\) 0 0
\(999\) 3.21621 5.57064i 0.101756 0.176247i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.bw.h.289.15 yes 40
4.3 odd 2 inner 1120.2.bw.h.289.6 yes 40
5.4 even 2 inner 1120.2.bw.h.289.5 40
7.4 even 3 inner 1120.2.bw.h.1089.5 yes 40
20.19 odd 2 inner 1120.2.bw.h.289.16 yes 40
28.11 odd 6 inner 1120.2.bw.h.1089.16 yes 40
35.4 even 6 inner 1120.2.bw.h.1089.15 yes 40
140.39 odd 6 inner 1120.2.bw.h.1089.6 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1120.2.bw.h.289.5 40 5.4 even 2 inner
1120.2.bw.h.289.6 yes 40 4.3 odd 2 inner
1120.2.bw.h.289.15 yes 40 1.1 even 1 trivial
1120.2.bw.h.289.16 yes 40 20.19 odd 2 inner
1120.2.bw.h.1089.5 yes 40 7.4 even 3 inner
1120.2.bw.h.1089.6 yes 40 140.39 odd 6 inner
1120.2.bw.h.1089.15 yes 40 35.4 even 6 inner
1120.2.bw.h.1089.16 yes 40 28.11 odd 6 inner