L(s) = 1 | + (2.04 − 1.17i)3-s + (2.20 − 0.350i)5-s + (−0.745 − 2.53i)7-s + (1.27 − 2.21i)9-s + (0.300 + 0.519i)11-s + 3.96i·13-s + (4.09 − 3.31i)15-s + (2.53 − 1.46i)17-s + (1.65 − 2.87i)19-s + (−4.51 − 4.30i)21-s + (−0.370 − 0.213i)23-s + (4.75 − 1.54i)25-s + 1.04i·27-s + 2.15·29-s + (−0.664 − 1.15i)31-s + ⋯ |
L(s) = 1 | + (1.17 − 0.680i)3-s + (0.987 − 0.156i)5-s + (−0.281 − 0.959i)7-s + (0.426 − 0.738i)9-s + (0.0905 + 0.156i)11-s + 1.10i·13-s + (1.05 − 0.856i)15-s + (0.614 − 0.354i)17-s + (0.380 − 0.658i)19-s + (−0.985 − 0.939i)21-s + (−0.0772 − 0.0446i)23-s + (0.950 − 0.309i)25-s + 0.201i·27-s + 0.399·29-s + (−0.119 − 0.206i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.485 + 0.874i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.827279193\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.827279193\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.20 + 0.350i)T \) |
| 7 | \( 1 + (0.745 + 2.53i)T \) |
good | 3 | \( 1 + (-2.04 + 1.17i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.300 - 0.519i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.96iT - 13T^{2} \) |
| 17 | \( 1 + (-2.53 + 1.46i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.65 + 2.87i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.370 + 0.213i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 2.15T + 29T^{2} \) |
| 31 | \( 1 + (0.664 + 1.15i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.33 + 3.07i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.99T + 41T^{2} \) |
| 43 | \( 1 + 7.79iT - 43T^{2} \) |
| 47 | \( 1 + (9.37 + 5.41i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (10.5 - 6.09i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.98 - 6.90i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.54 - 6.14i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.7 + 6.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.86T + 71T^{2} \) |
| 73 | \( 1 + (14.0 - 8.09i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.76 - 11.7i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 5.18iT - 83T^{2} \) |
| 89 | \( 1 + (0.395 - 0.684i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 2.80iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.490937420369838276647031175688, −8.989320006895245840898258417895, −8.050134275410780777378623955991, −7.09103655505875190856724225514, −6.74159295716617331320867948380, −5.46125075078377660383475137105, −4.31593142102032953068200687000, −3.20783004235882073649039441071, −2.21786283256092367029345606670, −1.22745554264089225559859350763,
1.74555825977277806920897317099, 2.97963754855664542837482423390, 3.31167093659121244249473998870, 4.83822070013325634665050822622, 5.72518443245591576019236118568, 6.42881616592673641568587665231, 7.893779028426704095743919917411, 8.403850441115200134721542485173, 9.297817635280128566694214109323, 9.814174616852866675329626717723